The half symmetry [1+,8,3] = [(4,3,3)] can be shown with alternating two colors of hexagons | Dual tiling |
Symmetry
The dual of this tiling represents the fundamental domains of *443 symmetry. It only has one subgroup 443, replacing mirrors with gyration points.
This symmetry can be doubled to 832 symmetry by adding a bisecting mirror to the fundamental domain.
Small index subgroups of [(4,3,3)], (*433)
From a Wythoff construction there are ten hyperbolic uniform tilings that can be based from the regular octagonal tiling.
Uniform octagonal/triangular tilings |
---|
Symmetry: [8,3], (*832) | [8,3]+(832) | [1+,8,3](*443) | [8,3+](3*4) |
---|
{8,3} | t{8,3} | r{8,3} | t{3,8} | {3,8} | rr{8,3}s2{3,8} | tr{8,3} | sr{8,3} | h{8,3} | h2{8,3} | s{3,8} |
---|
| | | | | | | | | | |
| | | | | | | | or | or | |
| | | | | | | | | | |
Uniform duals |
---|
V83 | V3.16.16 | V3.8.3.8 | V6.6.8 | V38 | V3.4.8.4 | V4.6.16 | V34.8 | V(3.4)3 | V8.6.6 | V35.4 |
| | | | | | | | | | |
---|
| | | | | | | | | | |
It can also be generated from the (4 3 3) hyperbolic tilings:
Uniform (4,3,3) tilings Symmetry: [(4,3,3)], (*433) | [(4,3,3)]+, (433) |
---|
| | | | | | | |
---|
| | | | | | | |
---|
| | | | | | | |
h{8,3}t0(4,3,3) | r{3,8}1/2t0,1(4,3,3) | h{8,3}t1(4,3,3) | h2{8,3}t1,2(4,3,3) | {3,8}1/2t2(4,3,3) | h2{8,3}t0,2(4,3,3) | t{3,8}1/2t0,1,2(4,3,3) | s{3,8}1/2s(4,3,3) |
Uniform duals |
---|
| | | | | | | |
V(3.4)3 | V3.8.3.8 | V(3.4)3 | V3.6.4.6 | V(3.3)4 | V3.6.4.6 | V6.6.8 | V3.3.3.3.3.4 |
This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (n.6.6), and [n,3] Coxeter group symmetry.
*n32 symmetry mutation of truncated tilings: n.6.6 |
---|
Sym.*n42[n,3] | Spherical | Euclid. | Compact | Parac. | Noncompact hyperbolic |
---|
*232[2,3] | *332[3,3] | *432[4,3] | *532[5,3] | *632[6,3] | *732[7,3] | *832[8,3]... | *∞32[∞,3] | [12i,3] | [9i,3] | [6i,3] |
---|
Truncatedfigures | | | | | | | | | | | |
---|
Config. | 2.6.6 | 3.6.6 | 4.6.6 | 5.6.6 | 6.6.6 | 7.6.6 | 8.6.6 | ∞.6.6 | 12i.6.6 | 9i.6.6 | 6i.6.6 |
---|
n-kisfigures | | | | | | | | | | | |
---|
Config. | V2.6.6 | V3.6.6 | V4.6.6 | V5.6.6 | V6.6.6 | V7.6.6 | V8.6.6 | V∞.6.6 | V12i.6.6 | V9i.6.6 | V6i.6.6 |
---|
*n32 symmetry mutation of omnitruncated tilings: 6.8.2n |
---|
Sym.*n43[(n,4,3)] | Spherical | Compact hyperbolic | Paraco. |
---|
*243[4,3] | *343[(3,4,3)] | *443[(4,4,3)] | *543[(5,4,3)] | *643[(6,4,3)] | *743[(7,4,3)] | *843[(8,4,3)] | *∞43[(∞,4,3)] |
---|
Figures | | | | | | | | |
---|
Config. | 4.8.6 | 6.8.6 | 8.8.6 | 10.8.6 | 12.8.6 | 14.8.6 | 16.8.6 | ∞.8.6 |
---|
Duals | | | | | | | | |
---|
Config. | V4.8.6 | V6.8.6 | V8.8.6 | V10.8.6 | V12.8.6 | V14.8.6 | V16.8.6 | V6.8.∞ |
---|
See also
Wikimedia Commons has media related to Uniform tiling 6-6-8.
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links