Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Truncated order-7 triangular tiling
Truncated order-7 triangular tiling
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration7.6.6
Schläfli symbolt{3,7}
Wythoff symbol2 7 | 3
Coxeter diagram
Symmetry group[7,3], (*732)
DualHeptakis heptagonal tiling
PropertiesVertex-transitive

In geometry, the order-7 truncated triangular tiling, sometimes called the hyperbolic soccerball, is a semiregular tiling of the hyperbolic plane. There are two hexagons and one heptagon on each vertex, forming a pattern similar to a conventional soccer ball (truncated icosahedron) with heptagons in place of pentagons. It has Schläfli symbol of t{3,7}.

Related Image Collections Add Image
We don't have any YouTube videos related to Truncated order-7 triangular tiling yet.
We don't have any PDF documents related to Truncated order-7 triangular tiling yet.
We don't have any Books related to Truncated order-7 triangular tiling yet.
We don't have any archived web articles related to Truncated order-7 triangular tiling yet.

Hyperbolic soccerball (football)

This tiling is called a hyperbolic soccerball (football) for its similarity to the truncated icosahedron pattern used on soccer balls. Small portions of it as a hyperbolic surface can be constructed in 3-space.

A truncated icosahedronas a polyhedron and a ballThe Euclidean hexagonal tilingcolored as truncatedtriangular tilingA paper constructionof a hyperbolic soccerball

Dual tiling

The dual tiling is called a heptakis heptagonal tiling, named for being constructible as a heptagonal tiling with every heptagon divided into seven triangles by the center point.

This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (n.6.6), and [n,3] Coxeter group symmetry.

*n32 symmetry mutation of truncated tilings: n.6.6
  • v
  • t
  • e
Sym.*n42[n,3]SphericalEuclid.CompactParac.Noncompact hyperbolic
*232[2,3]*332[3,3]*432[4,3]*532[5,3]*632[6,3]*732[7,3]*832[8,3]...*∞32[∞,3][12i,3][9i,3][6i,3]
Truncatedfigures
Config.2.6.63.6.64.6.65.6.66.6.67.6.68.6.6∞.6.612i.6.69i.6.66i.6.6
n-kisfigures
Config.V2.6.6V3.6.6V4.6.6V5.6.6V6.6.6V7.6.6V8.6.6V∞.6.6V12i.6.6V9i.6.6V6i.6.6

From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.

Uniform heptagonal/triangular tilings
  • v
  • t
  • e
Symmetry: [7,3], (*732)[7,3]+, (732)
{7,3}t{7,3}r{7,3}t{3,7}{3,7}rr{7,3}tr{7,3}sr{7,3}
Uniform duals
V73V3.14.14V3.7.3.7V6.6.7V37V3.4.7.4V4.6.14V3.3.3.3.7

This tiling features prominently in HyperRogue.

See also

Wikimedia Commons has media related to Uniform tiling 6-6-7.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

References

  1. HOW TO BUILD YOUR OWN HYPERBOLIC SOCCER BALL MODEL http://www.theiff.org/images/IFF_HypSoccerBall.pdf