Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Quarter hypercubic honeycomb

In geometry, the quarter hypercubic honeycomb (or quarter n-cubic honeycomb) is a dimensional infinite series of honeycombs, based on the hypercube honeycomb. It is given a Schläfli symbol q{4,3...3,4} or Coxeter symbol qδ4 representing the regular form with three quarters of the vertices removed and containing the symmetry of Coxeter group D ~ n − 1 {\displaystyle {\tilde {D}}_{n-1}} for n ≥ 5, with D ~ 4 {\displaystyle {\tilde {D}}_{4}} = A ~ 4 {\displaystyle {\tilde {A}}_{4}} and for quarter n-cubic honeycombs D ~ 5 {\displaystyle {\tilde {D}}_{5}} = B ~ 5 {\displaystyle {\tilde {B}}_{5}} .

qδnNameSchläflisymbolCoxeter diagramsFacetsVertex figure
qδ3quarter square tilingq{4,4} or

or

h{4}={2}{ }×{ }{ }×{ }
qδ4quarter cubic honeycombq{4,3,4} or or h{4,3}h2{4,3}Elongatedtriangular antiprism
qδ5quarter tesseractic honeycombq{4,32,4} or or h{4,32}h3{4,32}{3,4}×{}
qδ6quarter 5-cubic honeycombq{4,33,4}h{4,33}h4{4,33}Rectified 5-cell antiprism
qδ7quarter 6-cubic honeycombq{4,34,4}h{4,34}h5{4,34}{3,3}×{3,3}
qδ8quarter 7-cubic honeycombq{4,35,4}h{4,35}h6{4,35}{3,3}×{3,31,1}
qδ9quarter 8-cubic honeycombq{4,36,4}h{4,36}h7{4,36}{3,3}×{3,32,1}{3,31,1}×{3,31,1}
 
qδnquarter n-cubic honeycombq{4,3n−3,4}...h{4,3n−2}hn−2{4,3n−2}...
Related Image Collections Add Image
We don't have any YouTube videos related to Quarter hypercubic honeycomb yet.
We don't have any PDF documents related to Quarter hypercubic honeycomb yet.
We don't have any Books related to Quarter hypercubic honeycomb yet.
We don't have any archived web articles related to Quarter hypercubic honeycomb yet.

See also

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8
    1. pp. 122–123, 1973. (The lattice of hypercubes γn form the cubic honeycombs, δn+1)
    2. pp. 154–156: Partial truncation or alternation, represented by q prefix
    3. p. 296, Table II: Regular honeycombs, δn+1
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p318 [2]
  • Klitzing, Richard. "1D-8D Euclidean tesselations".
  • v
  • t
  • e
Fundamental convex regular and uniform honeycombs in dimensions 2–9
SpaceFamily A ~ n − 1 {\displaystyle {\tilde {A}}_{n-1}} C ~ n − 1 {\displaystyle {\tilde {C}}_{n-1}} B ~ n − 1 {\displaystyle {\tilde {B}}_{n-1}} D ~ n − 1 {\displaystyle {\tilde {D}}_{n-1}} G ~ 2 {\displaystyle {\tilde {G}}_{2}} / F ~ 4 {\displaystyle {\tilde {F}}_{4}} / E ~ n − 1 {\displaystyle {\tilde {E}}_{n-1}}
E2Uniform tiling0[3]δ3hδ3qδ3Hexagonal
E3Uniform convex honeycomb0[4]δ4hδ4qδ4
E4Uniform 4-honeycomb0[5]δ5hδ5qδ524-cell honeycomb
E5Uniform 5-honeycomb0[6]δ6hδ6qδ6
E6Uniform 6-honeycomb0[7]δ7hδ7qδ7222
E7Uniform 7-honeycomb0[8]δ8hδ8qδ8133331
E8Uniform 8-honeycomb0[9]δ9hδ9qδ9152251521
E9Uniform 9-honeycomb0[10]δ10hδ10qδ10
E10Uniform 10-honeycomb0[11]δ11hδ11qδ11
En−1Uniform (n−1)-honeycomb0[n]δnnqδn1k22k1k21

References

  1. Coxeter, Regular and semi-regular honeycoms, 1988, p.318-319