Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Uniform 8-polytope
Vertex-transitive 8-polytope bounded by uniform facets
Graphs of three regular and related uniform polytopes.
8-simplexRectified 8-simplexTruncated 8-simplex
Cantellated 8-simplexRuncinated 8-simplexStericated 8-simplex
Pentellated 8-simplexHexicated 8-simplexHeptellated 8-simplex
8-orthoplexRectified 8-orthoplexTruncated 8-orthoplex
Cantellated 8-orthoplexRuncinated 8-orthoplex
Hexicated 8-orthoplexCantellated 8-cube
Runcinated 8-cubeStericated 8-cubePentellated 8-cube
Hexicated 8-cubeHeptellated 8-cube
8-cubeRectified 8-cubeTruncated 8-cube
8-demicubeTruncated 8-demicubeCantellated 8-demicube
Runcinated 8-demicubeStericated 8-demicube
Pentellated 8-demicubeHexicated 8-demicube
421142241

In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.

A uniform 8-polytope is one which is vertex-transitive, and constructed from uniform 7-polytope facets.

Related Image Collections Add Image
We don't have any YouTube videos related to Uniform 8-polytope yet.
We don't have any PDF documents related to Uniform 8-polytope yet.
We don't have any Books related to Uniform 8-polytope yet.
We don't have any archived web articles related to Uniform 8-polytope yet.

Regular 8-polytopes

Regular 8-polytopes can be represented by the Schläfli symbol {p,q,r,s,t,u,v}, with v {p,q,r,s,t,u} 7-polytope facets around each peak.

There are exactly three such convex regular 8-polytopes:

  1. {3,3,3,3,3,3,3} - 8-simplex
  2. {4,3,3,3,3,3,3} - 8-cube
  3. {3,3,3,3,3,3,4} - 8-orthoplex

There are no nonconvex regular 8-polytopes.

Characteristics

The topology of any given 8-polytope is defined by its Betti numbers and torsion coefficients.1

The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 8-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.2

Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients.3

Uniform 8-polytopes by fundamental Coxeter groups

Uniform 8-polytopes with reflective symmetry can be generated by these four Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams:

#Coxeter groupForms
1A8[37]135
2BC8[4,36]255
3D8[35,1,1]191 (64 unique)
4E8[34,2,1]255

Selected regular and uniform 8-polytopes from each family include:

  1. Simplex family: A8 [37] -
    • 135 uniform 8-polytopes as permutations of rings in the group diagram, including one regular:
      1. {37} - 8-simplex or ennea-9-tope or enneazetton -
  2. Hypercube/orthoplex family: B8 [4,36] -
    • 255 uniform 8-polytopes as permutations of rings in the group diagram, including two regular ones:
      1. {4,36} - 8-cube or octeract-
      2. {36,4} - 8-orthoplex or octacross -
  3. Demihypercube D8 family: [35,1,1] -
    • 191 uniform 8-polytopes as permutations of rings in the group diagram, including:
      1. {3,35,1} - 8-demicube or demiocteract, 151 - ; also as h{4,36} .
      2. {3,3,3,3,3,31,1} - 8-orthoplex, 511 -
  4. E-polytope family E8 family: [34,1,1] -
    • 255 uniform 8-polytopes as permutations of rings in the group diagram, including:
      1. {3,3,3,3,32,1} - Thorold Gosset's semiregular 421,
      2. {3,34,2} - the uniform 142, ,
      3. {3,3,34,1} - the uniform 241,

Uniform prismatic forms

There are many uniform prismatic families, including:

Uniform 8-polytope prism families
#Coxeter groupCoxeter-Dynkin diagram
7+1
1A7A1[3,3,3,3,3,3]×[ ]
2B7A1[4,3,3,3,3,3]×[ ]
3D7A1[34,1,1]×[ ]
4E7A1[33,2,1]×[ ]
6+2
1A6I2(p)[3,3,3,3,3]×[p]
2B6I2(p)[4,3,3,3,3]×[p]
3D6I2(p)[33,1,1]×[p]
4E6I2(p)[3,3,3,3,3]×[p]
6+1+1
1A6A1A1[3,3,3,3,3]×[ ]x[ ]
2B6A1A1[4,3,3,3,3]×[ ]x[ ]
3D6A1A1[33,1,1]×[ ]x[ ]
4E6A1A1[3,3,3,3,3]×[ ]x[ ]
5+3
1A5A3[34]×[3,3]
2B5A3[4,33]×[3,3]
3D5A3[32,1,1]×[3,3]
4A5B3[34]×[4,3]
5B5B3[4,33]×[4,3]
6D5B3[32,1,1]×[4,3]
7A5H3[34]×[5,3]
8B5H3[4,33]×[5,3]
9D5H3[32,1,1]×[5,3]
5+2+1
1A5I2(p)A1[3,3,3]×[p]×[ ]
2B5I2(p)A1[4,3,3]×[p]×[ ]
3D5I2(p)A1[32,1,1]×[p]×[ ]
5+1+1+1
1A5A1A1A1[3,3,3]×[ ]×[ ]×[ ]
2B5A1A1A1[4,3,3]×[ ]×[ ]×[ ]
3D5A1A1A1[32,1,1]×[ ]×[ ]×[ ]
4+4
1A4A4[3,3,3]×[3,3,3]
2B4A4[4,3,3]×[3,3,3]
3D4A4[31,1,1]×[3,3,3]
4F4A4[3,4,3]×[3,3,3]
5H4A4[5,3,3]×[3,3,3]
6B4B4[4,3,3]×[4,3,3]
7D4B4[31,1,1]×[4,3,3]
8F4B4[3,4,3]×[4,3,3]
9H4B4[5,3,3]×[4,3,3]
10D4D4[31,1,1]×[31,1,1]
11F4D4[3,4,3]×[31,1,1]
12H4D4[5,3,3]×[31,1,1]
13F4×F4[3,4,3]×[3,4,3]
14H4×F4[5,3,3]×[3,4,3]
15H4H4[5,3,3]×[5,3,3]
4+3+1
1A4A3A1[3,3,3]×[3,3]×[ ]
2A4B3A1[3,3,3]×[4,3]×[ ]
3A4H3A1[3,3,3]×[5,3]×[ ]
4B4A3A1[4,3,3]×[3,3]×[ ]
5B4B3A1[4,3,3]×[4,3]×[ ]
6B4H3A1[4,3,3]×[5,3]×[ ]
7H4A3A1[5,3,3]×[3,3]×[ ]
8H4B3A1[5,3,3]×[4,3]×[ ]
9H4H3A1[5,3,3]×[5,3]×[ ]
10F4A3A1[3,4,3]×[3,3]×[ ]
11F4B3A1[3,4,3]×[4,3]×[ ]
12F4H3A1[3,4,3]×[5,3]×[ ]
13D4A3A1[31,1,1]×[3,3]×[ ]
14D4B3A1[31,1,1]×[4,3]×[ ]
15D4H3A1[31,1,1]×[5,3]×[ ]
4+2+2
...
4+2+1+1
...
4+1+1+1+1
...
3+3+2
1A3A3I2(p)[3,3]×[3,3]×[p]
2B3A3I2(p)[4,3]×[3,3]×[p]
3H3A3I2(p)[5,3]×[3,3]×[p]
4B3B3I2(p)[4,3]×[4,3]×[p]
5H3B3I2(p)[5,3]×[4,3]×[p]
6H3H3I2(p)[5,3]×[5,3]×[p]
3+3+1+1
1A32A12[3,3]×[3,3]×[ ]×[ ]
2B3A3A12[4,3]×[3,3]×[ ]×[ ]
3H3A3A12[5,3]×[3,3]×[ ]×[ ]
4B3B3A12[4,3]×[4,3]×[ ]×[ ]
5H3B3A12[5,3]×[4,3]×[ ]×[ ]
6H3H3A12[5,3]×[5,3]×[ ]×[ ]
3+2+2+1
1A3I2(p)I2(q)A1[3,3]×[p]×[q]×[ ]
2B3I2(p)I2(q)A1[4,3]×[p]×[q]×[ ]
3H3I2(p)I2(q)A1[5,3]×[p]×[q]×[ ]
3+2+1+1+1
1A3I2(p)A13[3,3]×[p]×[ ]x[ ]×[ ]
2B3I2(p)A13[4,3]×[p]×[ ]x[ ]×[ ]
3H3I2(p)A13[5,3]×[p]×[ ]x[ ]×[ ]
3+1+1+1+1+1
1A3A15[3,3]×[ ]x[ ]×[ ]x[ ]×[ ]
2B3A15[4,3]×[ ]x[ ]×[ ]x[ ]×[ ]
3H3A15[5,3]×[ ]x[ ]×[ ]x[ ]×[ ]
2+2+2+2
1I2(p)I2(q)I2(r)I2(s)[p]×[q]×[r]×[s]
2+2+2+1+1
1I2(p)I2(q)I2(r)A12[p]×[q]×[r]×[ ]×[ ]
2+2+1+1+1+1
2I2(p)I2(q)A14[p]×[q]×[ ]×[ ]×[ ]×[ ]
2+1+1+1+1+1+1
1I2(p)A16[p]×[ ]×[ ]×[ ]×[ ]×[ ]×[ ]
1+1+1+1+1+1+1+1
1A18[ ]×[ ]×[ ]×[ ]×[ ]×[ ]×[ ]×[ ]

The A8 family

The A8 family has symmetry of order 362880 (9 factorial).

There are 135 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. (128+8-1 cases) These are all enumerated below. Bowers-style acronym names are given in parentheses for cross-referencing.

See also a list of 8-simplex polytopes for symmetric Coxeter plane graphs of these polytopes.

A8 uniform polytopes
#Coxeter-Dynkin diagramTruncationindicesJohnson nameBasepointElement counts
76543210
1t08-simplex (ene)(0,0,0,0,0,0,0,0,1)9368412612684369
2t1Rectified 8-simplex (rene)(0,0,0,0,0,0,0,1,1)1810833663057658825236
3t2Birectified 8-simplex (bene)(0,0,0,0,0,0,1,1,1)1814458813862016176475684
4t3Trirectified 8-simplex (trene)(0,0,0,0,0,1,1,1,1)1260126
5t0,1Truncated 8-simplex (tene)(0,0,0,0,0,0,0,1,2)28872
6t0,2Cantellated 8-simplex(0,0,0,0,0,0,1,1,2)1764252
7t1,2Bitruncated 8-simplex(0,0,0,0,0,0,1,2,2)1008252
8t0,3Runcinated 8-simplex(0,0,0,0,0,1,1,1,2)4536504
9t1,3Bicantellated 8-simplex(0,0,0,0,0,1,1,2,2)5292756
10t2,3Tritruncated 8-simplex(0,0,0,0,0,1,2,2,2)2016504
11t0,4Stericated 8-simplex(0,0,0,0,1,1,1,1,2)6300630
12t1,4Biruncinated 8-simplex(0,0,0,0,1,1,1,2,2)113401260
13t2,4Tricantellated 8-simplex(0,0,0,0,1,1,2,2,2)88201260
14t3,4Quadritruncated 8-simplex(0,0,0,0,1,2,2,2,2)2520630
15t0,5Pentellated 8-simplex(0,0,0,1,1,1,1,1,2)5040504
16t1,5Bistericated 8-simplex(0,0,0,1,1,1,1,2,2)126001260
17t2,5Triruncinated 8-simplex(0,0,0,1,1,1,2,2,2)151201680
18t0,6Hexicated 8-simplex(0,0,1,1,1,1,1,1,2)2268252
19t1,6Bipentellated 8-simplex(0,0,1,1,1,1,1,2,2)7560756
20t0,7Heptellated 8-simplex(0,1,1,1,1,1,1,1,2)50472
21t0,1,2Cantitruncated 8-simplex(0,0,0,0,0,0,1,2,3)2016504
22t0,1,3Runcitruncated 8-simplex(0,0,0,0,0,1,1,2,3)98281512
23t0,2,3Runcicantellated 8-simplex(0,0,0,0,0,1,2,2,3)68041512
24t1,2,3Bicantitruncated 8-simplex(0,0,0,0,0,1,2,3,3)60481512
25t0,1,4Steritruncated 8-simplex(0,0,0,0,1,1,1,2,3)201602520
26t0,2,4Stericantellated 8-simplex(0,0,0,0,1,1,2,2,3)264603780
27t1,2,4Biruncitruncated 8-simplex(0,0,0,0,1,1,2,3,3)226803780
28t0,3,4Steriruncinated 8-simplex(0,0,0,0,1,2,2,2,3)126002520
29t1,3,4Biruncicantellated 8-simplex(0,0,0,0,1,2,2,3,3)189003780
30t2,3,4Tricantitruncated 8-simplex(0,0,0,0,1,2,3,3,3)100802520
31t0,1,5Pentitruncated 8-simplex(0,0,0,1,1,1,1,2,3)214202520
32t0,2,5Penticantellated 8-simplex(0,0,0,1,1,1,2,2,3)428405040
33t1,2,5Bisteritruncated 8-simplex(0,0,0,1,1,1,2,3,3)352805040
34t0,3,5Pentiruncinated 8-simplex(0,0,0,1,1,2,2,2,3)378005040
35t1,3,5Bistericantellated 8-simplex(0,0,0,1,1,2,2,3,3)529207560
36t2,3,5Triruncitruncated 8-simplex(0,0,0,1,1,2,3,3,3)277205040
37t0,4,5Pentistericated 8-simplex(0,0,0,1,2,2,2,2,3)138602520
38t1,4,5Bisteriruncinated 8-simplex(0,0,0,1,2,2,2,3,3)302405040
39t0,1,6Hexitruncated 8-simplex(0,0,1,1,1,1,1,2,3)120961512
40t0,2,6Hexicantellated 8-simplex(0,0,1,1,1,1,2,2,3)340203780
41t1,2,6Bipentitruncated 8-simplex(0,0,1,1,1,1,2,3,3)264603780
42t0,3,6Hexiruncinated 8-simplex(0,0,1,1,1,2,2,2,3)453605040
43t1,3,6Bipenticantellated 8-simplex(0,0,1,1,1,2,2,3,3)604807560
44t0,4,6Hexistericated 8-simplex(0,0,1,1,2,2,2,2,3)302403780
45t0,5,6Hexipentellated 8-simplex(0,0,1,2,2,2,2,2,3)90721512
46t0,1,7Heptitruncated 8-simplex(0,1,1,1,1,1,1,2,3)3276504
47t0,2,7Hepticantellated 8-simplex(0,1,1,1,1,1,2,2,3)128521512
48t0,3,7Heptiruncinated 8-simplex(0,1,1,1,1,2,2,2,3)239402520
49t0,1,2,3Runcicantitruncated 8-simplex(0,0,0,0,0,1,2,3,4)120963024
50t0,1,2,4Stericantitruncated 8-simplex(0,0,0,0,1,1,2,3,4)453607560
51t0,1,3,4Steriruncitruncated 8-simplex(0,0,0,0,1,2,2,3,4)340207560
52t0,2,3,4Steriruncicantellated 8-simplex(0,0,0,0,1,2,3,3,4)340207560
53t1,2,3,4Biruncicantitruncated 8-simplex(0,0,0,0,1,2,3,4,4)302407560
54t0,1,2,5Penticantitruncated 8-simplex(0,0,0,1,1,1,2,3,4)7056010080
55t0,1,3,5Pentiruncitruncated 8-simplex(0,0,0,1,1,2,2,3,4)9828015120
56t0,2,3,5Pentiruncicantellated 8-simplex(0,0,0,1,1,2,3,3,4)9072015120
57t1,2,3,5Bistericantitruncated 8-simplex(0,0,0,1,1,2,3,4,4)8316015120
58t0,1,4,5Pentisteritruncated 8-simplex(0,0,0,1,2,2,2,3,4)5040010080
59t0,2,4,5Pentistericantellated 8-simplex(0,0,0,1,2,2,3,3,4)8316015120
60t1,2,4,5Bisteriruncitruncated 8-simplex(0,0,0,1,2,2,3,4,4)6804015120
61t0,3,4,5Pentisteriruncinated 8-simplex(0,0,0,1,2,3,3,3,4)5040010080
62t1,3,4,5Bisteriruncicantellated 8-simplex(0,0,0,1,2,3,3,4,4)7560015120
63t2,3,4,5Triruncicantitruncated 8-simplex(0,0,0,1,2,3,4,4,4)4032010080
64t0,1,2,6Hexicantitruncated 8-simplex(0,0,1,1,1,1,2,3,4)529207560
65t0,1,3,6Hexiruncitruncated 8-simplex(0,0,1,1,1,2,2,3,4)11340015120
66t0,2,3,6Hexiruncicantellated 8-simplex(0,0,1,1,1,2,3,3,4)9828015120
67t1,2,3,6Bipenticantitruncated 8-simplex(0,0,1,1,1,2,3,4,4)9072015120
68t0,1,4,6Hexisteritruncated 8-simplex(0,0,1,1,2,2,2,3,4)10584015120
69t0,2,4,6Hexistericantellated 8-simplex(0,0,1,1,2,2,3,3,4)15876022680
70t1,2,4,6Bipentiruncitruncated 8-simplex(0,0,1,1,2,2,3,4,4)13608022680
71t0,3,4,6Hexisteriruncinated 8-simplex(0,0,1,1,2,3,3,3,4)9072015120
72t1,3,4,6Bipentiruncicantellated 8-simplex(0,0,1,1,2,3,3,4,4)13608022680
73t0,1,5,6Hexipentitruncated 8-simplex(0,0,1,2,2,2,2,3,4)415807560
74t0,2,5,6Hexipenticantellated 8-simplex(0,0,1,2,2,2,3,3,4)9828015120
75t1,2,5,6Bipentisteritruncated 8-simplex(0,0,1,2,2,2,3,4,4)7560015120
76t0,3,5,6Hexipentiruncinated 8-simplex(0,0,1,2,2,3,3,3,4)9828015120
77t0,4,5,6Hexipentistericated 8-simplex(0,0,1,2,3,3,3,3,4)415807560
78t0,1,2,7Hepticantitruncated 8-simplex(0,1,1,1,1,1,2,3,4)181443024
79t0,1,3,7Heptiruncitruncated 8-simplex(0,1,1,1,1,2,2,3,4)567007560
80t0,2,3,7Heptiruncicantellated 8-simplex(0,1,1,1,1,2,3,3,4)453607560
81t0,1,4,7Heptisteritruncated 8-simplex(0,1,1,1,2,2,2,3,4)8064010080
82t0,2,4,7Heptistericantellated 8-simplex(0,1,1,1,2,2,3,3,4)11340015120
83t0,3,4,7Heptisteriruncinated 8-simplex(0,1,1,1,2,3,3,3,4)6048010080
84t0,1,5,7Heptipentitruncated 8-simplex(0,1,1,2,2,2,2,3,4)567007560
85t0,2,5,7Heptipenticantellated 8-simplex(0,1,1,2,2,2,3,3,4)12096015120
86t0,1,6,7Heptihexitruncated 8-simplex(0,1,2,2,2,2,2,3,4)181443024
87t0,1,2,3,4Steriruncicantitruncated 8-simplex(0,0,0,0,1,2,3,4,5)6048015120
88t0,1,2,3,5Pentiruncicantitruncated 8-simplex(0,0,0,1,1,2,3,4,5)16632030240
89t0,1,2,4,5Pentistericantitruncated 8-simplex(0,0,0,1,2,2,3,4,5)13608030240
90t0,1,3,4,5Pentisteriruncitruncated 8-simplex(0,0,0,1,2,3,3,4,5)13608030240
91t0,2,3,4,5Pentisteriruncicantellated 8-simplex(0,0,0,1,2,3,4,4,5)13608030240
92t1,2,3,4,5Bisteriruncicantitruncated 8-simplex(0,0,0,1,2,3,4,5,5)12096030240
93t0,1,2,3,6Hexiruncicantitruncated 8-simplex(0,0,1,1,1,2,3,4,5)18144030240
94t0,1,2,4,6Hexistericantitruncated 8-simplex(0,0,1,1,2,2,3,4,5)27216045360
95t0,1,3,4,6Hexisteriruncitruncated 8-simplex(0,0,1,1,2,3,3,4,5)24948045360
96t0,2,3,4,6Hexisteriruncicantellated 8-simplex(0,0,1,1,2,3,4,4,5)24948045360
97t1,2,3,4,6Bipentiruncicantitruncated 8-simplex(0,0,1,1,2,3,4,5,5)22680045360
98t0,1,2,5,6Hexipenticantitruncated 8-simplex(0,0,1,2,2,2,3,4,5)15120030240
99t0,1,3,5,6Hexipentiruncitruncated 8-simplex(0,0,1,2,2,3,3,4,5)24948045360
100t0,2,3,5,6Hexipentiruncicantellated 8-simplex(0,0,1,2,2,3,4,4,5)22680045360
101t1,2,3,5,6Bipentistericantitruncated 8-simplex(0,0,1,2,2,3,4,5,5)20412045360
102t0,1,4,5,6Hexipentisteritruncated 8-simplex(0,0,1,2,3,3,3,4,5)15120030240
103t0,2,4,5,6Hexipentistericantellated 8-simplex(0,0,1,2,3,3,4,4,5)24948045360
104t0,3,4,5,6Hexipentisteriruncinated 8-simplex(0,0,1,2,3,4,4,4,5)15120030240
105t0,1,2,3,7Heptiruncicantitruncated 8-simplex(0,1,1,1,1,2,3,4,5)8316015120
106t0,1,2,4,7Heptistericantitruncated 8-simplex(0,1,1,1,2,2,3,4,5)19656030240
107t0,1,3,4,7Heptisteriruncitruncated 8-simplex(0,1,1,1,2,3,3,4,5)16632030240
108t0,2,3,4,7Heptisteriruncicantellated 8-simplex(0,1,1,1,2,3,4,4,5)16632030240
109t0,1,2,5,7Heptipenticantitruncated 8-simplex(0,1,1,2,2,2,3,4,5)19656030240
110t0,1,3,5,7Heptipentiruncitruncated 8-simplex(0,1,1,2,2,3,3,4,5)29484045360
111t0,2,3,5,7Heptipentiruncicantellated 8-simplex(0,1,1,2,2,3,4,4,5)27216045360
112t0,1,4,5,7Heptipentisteritruncated 8-simplex(0,1,1,2,3,3,3,4,5)16632030240
113t0,1,2,6,7Heptihexicantitruncated 8-simplex(0,1,2,2,2,2,3,4,5)8316015120
114t0,1,3,6,7Heptihexiruncitruncated 8-simplex(0,1,2,2,2,3,3,4,5)19656030240
115t0,1,2,3,4,5Pentisteriruncicantitruncated 8-simplex(0,0,0,1,2,3,4,5,6)24192060480
116t0,1,2,3,4,6Hexisteriruncicantitruncated 8-simplex(0,0,1,1,2,3,4,5,6)45360090720
117t0,1,2,3,5,6Hexipentiruncicantitruncated 8-simplex(0,0,1,2,2,3,4,5,6)40824090720
118t0,1,2,4,5,6Hexipentistericantitruncated 8-simplex(0,0,1,2,3,3,4,5,6)40824090720
119t0,1,3,4,5,6Hexipentisteriruncitruncated 8-simplex(0,0,1,2,3,4,4,5,6)40824090720
120t0,2,3,4,5,6Hexipentisteriruncicantellated 8-simplex(0,0,1,2,3,4,5,5,6)40824090720
121t1,2,3,4,5,6Bipentisteriruncicantitruncated 8-simplex(0,0,1,2,3,4,5,6,6)36288090720
122t0,1,2,3,4,7Heptisteriruncicantitruncated 8-simplex(0,1,1,1,2,3,4,5,6)30240060480
123t0,1,2,3,5,7Heptipentiruncicantitruncated 8-simplex(0,1,1,2,2,3,4,5,6)49896090720
124t0,1,2,4,5,7Heptipentistericantitruncated 8-simplex(0,1,1,2,3,3,4,5,6)45360090720
125t0,1,3,4,5,7Heptipentisteriruncitruncated 8-simplex(0,1,1,2,3,4,4,5,6)45360090720
126t0,2,3,4,5,7Heptipentisteriruncicantellated 8-simplex(0,1,1,2,3,4,5,5,6)45360090720
127t0,1,2,3,6,7Heptihexiruncicantitruncated 8-simplex(0,1,2,2,2,3,4,5,6)30240060480
128t0,1,2,4,6,7Heptihexistericantitruncated 8-simplex(0,1,2,2,3,3,4,5,6)49896090720
129t0,1,3,4,6,7Heptihexisteriruncitruncated 8-simplex(0,1,2,2,3,4,4,5,6)45360090720
130t0,1,2,5,6,7Heptihexipenticantitruncated 8-simplex(0,1,2,3,3,3,4,5,6)30240060480
131t0,1,2,3,4,5,6Hexipentisteriruncicantitruncated 8-simplex(0,0,1,2,3,4,5,6,7)725760181440
132t0,1,2,3,4,5,7Heptipentisteriruncicantitruncated 8-simplex(0,1,1,2,3,4,5,6,7)816480181440
133t0,1,2,3,4,6,7Heptihexisteriruncicantitruncated 8-simplex(0,1,2,2,3,4,5,6,7)816480181440
134t0,1,2,3,5,6,7Heptihexipentiruncicantitruncated 8-simplex(0,1,2,3,3,4,5,6,7)816480181440
135t0,1,2,3,4,5,6,7Omnitruncated 8-simplex(0,1,2,3,4,5,6,7,8)1451520362880

The B8 family

The B8 family has symmetry of order 10321920 (8 factorial x 28). There are 255 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.

See also a list of B8 polytopes for symmetric Coxeter plane graphs of these polytopes.

B8 uniform polytopes
#Coxeter-Dynkin diagramSchläflisymbolNameElement counts
76543210
1t0{36,4}8-orthoplexDiacosipentacontahexazetton (ek)256102417921792112044811216
2t1{36,4}Rectified 8-orthoplexRectified diacosipentacontahexazetton (rek)27230728960125441008049281344112
3t2{36,4}Birectified 8-orthoplexBirectified diacosipentacontahexazetton (bark)2723184161283404836960224006720448
4t3{36,4}Trirectified 8-orthoplexTrirectified diacosipentacontahexazetton (tark)272318416576483847168053760179201120
5t3{4,36}Trirectified 8-cubeTrirectified octeract (tro)272318416576477128064071680268801792
6t2{4,36}Birectified 8-cubeBirectified octeract (bro)272318414784369605555250176215041792
7t1{4,36}Rectified 8-cubeRectified octeract (recto)2722160761615456197121612871681024
8t0{4,36}8-cubeOcteract (octo)161124481120179217921024256
9t0,1{36,4}Truncated 8-orthoplexTruncated diacosipentacontahexazetton (tek)1456224
10t0,2{36,4}Cantellated 8-orthoplexSmall rhombated diacosipentacontahexazetton (srek)147841344
11t1,2{36,4}Bitruncated 8-orthoplexBitruncated diacosipentacontahexazetton (batek)80641344
12t0,3{36,4}Runcinated 8-orthoplexSmall prismated diacosipentacontahexazetton (spek)604804480
13t1,3{36,4}Bicantellated 8-orthoplexSmall birhombated diacosipentacontahexazetton (sabork)672006720
14t2,3{36,4}Tritruncated 8-orthoplexTritruncated diacosipentacontahexazetton (tatek)246404480
15t0,4{36,4}Stericated 8-orthoplexSmall cellated diacosipentacontahexazetton (scak)1254408960
16t1,4{36,4}Biruncinated 8-orthoplexSmall biprismated diacosipentacontahexazetton (sabpek)21504017920
17t2,4{36,4}Tricantellated 8-orthoplexSmall trirhombated diacosipentacontahexazetton (satrek)16128017920
18t3,4{4,36}Quadritruncated 8-cubeOcteractidiacosipentacontahexazetton (oke)448008960
19t0,5{36,4}Pentellated 8-orthoplexSmall terated diacosipentacontahexazetton (setek)13440010752
20t1,5{36,4}Bistericated 8-orthoplexSmall bicellated diacosipentacontahexazetton (sibcak)32256026880
21t2,5{4,36}Triruncinated 8-cubeSmall triprismato-octeractidiacosipentacontahexazetton (sitpoke)37632035840
22t2,4{4,36}Tricantellated 8-cubeSmall trirhombated octeract (satro)21504026880
23t2,3{4,36}Tritruncated 8-cubeTritruncated octeract (tato)4838410752
24t0,6{36,4}Hexicated 8-orthoplexSmall petated diacosipentacontahexazetton (supek)645127168
25t1,6{4,36}Bipentellated 8-cubeSmall biteri-octeractidiacosipentacontahexazetton (sabtoke)21504021504
26t1,5{4,36}Bistericated 8-cubeSmall bicellated octeract (sobco)35840035840
27t1,4{4,36}Biruncinated 8-cubeSmall biprismated octeract (sabepo)32256035840
28t1,3{4,36}Bicantellated 8-cubeSmall birhombated octeract (subro)15052821504
29t1,2{4,36}Bitruncated 8-cubeBitruncated octeract (bato)286727168
30t0,7{4,36}Heptellated 8-cubeSmall exi-octeractidiacosipentacontahexazetton (saxoke)143362048
31t0,6{4,36}Hexicated 8-cubeSmall petated octeract (supo)645127168
32t0,5{4,36}Pentellated 8-cubeSmall terated octeract (soto)14336014336
33t0,4{4,36}Stericated 8-cubeSmall cellated octeract (soco)17920017920
34t0,3{4,36}Runcinated 8-cubeSmall prismated octeract (sopo)12902414336
35t0,2{4,36}Cantellated 8-cubeSmall rhombated octeract (soro)501767168
36t0,1{4,36}Truncated 8-cubeTruncated octeract (tocto)81922048
37t0,1,2{36,4}Cantitruncated 8-orthoplexGreat rhombated diacosipentacontahexazetton161282688
38t0,1,3{36,4}Runcitruncated 8-orthoplexPrismatotruncated diacosipentacontahexazetton12768013440
39t0,2,3{36,4}Runcicantellated 8-orthoplexPrismatorhombated diacosipentacontahexazetton8064013440
40t1,2,3{36,4}Bicantitruncated 8-orthoplexGreat birhombated diacosipentacontahexazetton7392013440
41t0,1,4{36,4}Steritruncated 8-orthoplexCellitruncated diacosipentacontahexazetton39424035840
42t0,2,4{36,4}Stericantellated 8-orthoplexCellirhombated diacosipentacontahexazetton48384053760
43t1,2,4{36,4}Biruncitruncated 8-orthoplexBiprismatotruncated diacosipentacontahexazetton43008053760
44t0,3,4{36,4}Steriruncinated 8-orthoplexCelliprismated diacosipentacontahexazetton21504035840
45t1,3,4{36,4}Biruncicantellated 8-orthoplexBiprismatorhombated diacosipentacontahexazetton32256053760
46t2,3,4{36,4}Tricantitruncated 8-orthoplexGreat trirhombated diacosipentacontahexazetton17920035840
47t0,1,5{36,4}Pentitruncated 8-orthoplexTeritruncated diacosipentacontahexazetton56448053760
48t0,2,5{36,4}Penticantellated 8-orthoplexTerirhombated diacosipentacontahexazetton1075200107520
49t1,2,5{36,4}Bisteritruncated 8-orthoplexBicellitruncated diacosipentacontahexazetton913920107520
50t0,3,5{36,4}Pentiruncinated 8-orthoplexTeriprismated diacosipentacontahexazetton913920107520
51t1,3,5{36,4}Bistericantellated 8-orthoplexBicellirhombated diacosipentacontahexazetton1290240161280
52t2,3,5{36,4}Triruncitruncated 8-orthoplexTriprismatotruncated diacosipentacontahexazetton698880107520
53t0,4,5{36,4}Pentistericated 8-orthoplexTericellated diacosipentacontahexazetton32256053760
54t1,4,5{36,4}Bisteriruncinated 8-orthoplexBicelliprismated diacosipentacontahexazetton698880107520
55t2,3,5{4,36}Triruncitruncated 8-cubeTriprismatotruncated octeract645120107520
56t2,3,4{4,36}Tricantitruncated 8-cubeGreat trirhombated octeract24192053760
57t0,1,6{36,4}Hexitruncated 8-orthoplexPetitruncated diacosipentacontahexazetton34406443008
58t0,2,6{36,4}Hexicantellated 8-orthoplexPetirhombated diacosipentacontahexazetton967680107520
59t1,2,6{36,4}Bipentitruncated 8-orthoplexBiteritruncated diacosipentacontahexazetton752640107520
60t0,3,6{36,4}Hexiruncinated 8-orthoplexPetiprismated diacosipentacontahexazetton1290240143360
61t1,3,6{36,4}Bipenticantellated 8-orthoplexBiterirhombated diacosipentacontahexazetton1720320215040
62t1,4,5{4,36}Bisteriruncinated 8-cubeBicelliprismated octeract860160143360
63t0,4,6{36,4}Hexistericated 8-orthoplexPeticellated diacosipentacontahexazetton860160107520
64t1,3,6{4,36}Bipenticantellated 8-cubeBiterirhombated octeract1720320215040
65t1,3,5{4,36}Bistericantellated 8-cubeBicellirhombated octeract1505280215040
66t1,3,4{4,36}Biruncicantellated 8-cubeBiprismatorhombated octeract537600107520
67t0,5,6{36,4}Hexipentellated 8-orthoplexPetiterated diacosipentacontahexazetton25804843008
68t1,2,6{4,36}Bipentitruncated 8-cubeBiteritruncated octeract752640107520
69t1,2,5{4,36}Bisteritruncated 8-cubeBicellitruncated octeract1003520143360
70t1,2,4{4,36}Biruncitruncated 8-cubeBiprismatotruncated octeract645120107520
71t1,2,3{4,36}Bicantitruncated 8-cubeGreat birhombated octeract17203243008
72t0,1,7{36,4}Heptitruncated 8-orthoplexExitruncated diacosipentacontahexazetton9318414336
73t0,2,7{36,4}Hepticantellated 8-orthoplexExirhombated diacosipentacontahexazetton36556843008
74t0,5,6{4,36}Hexipentellated 8-cubePetiterated octeract25804843008
75t0,3,7{36,4}Heptiruncinated 8-orthoplexExiprismated diacosipentacontahexazetton68096071680
76t0,4,6{4,36}Hexistericated 8-cubePeticellated octeract860160107520
77t0,4,5{4,36}Pentistericated 8-cubeTericellated octeract39424071680
78t0,3,7{4,36}Heptiruncinated 8-cubeExiprismated octeract68096071680
79t0,3,6{4,36}Hexiruncinated 8-cubePetiprismated octeract1290240143360
80t0,3,5{4,36}Pentiruncinated 8-cubeTeriprismated octeract1075200143360
81t0,3,4{4,36}Steriruncinated 8-cubeCelliprismated octeract35840071680
82t0,2,7{4,36}Hepticantellated 8-cubeExirhombated octeract36556843008
83t0,2,6{4,36}Hexicantellated 8-cubePetirhombated octeract967680107520
84t0,2,5{4,36}Penticantellated 8-cubeTerirhombated octeract1218560143360
85t0,2,4{4,36}Stericantellated 8-cubeCellirhombated octeract752640107520
86t0,2,3{4,36}Runcicantellated 8-cubePrismatorhombated octeract19353643008
87t0,1,7{4,36}Heptitruncated 8-cubeExitruncated octeract9318414336
88t0,1,6{4,36}Hexitruncated 8-cubePetitruncated octeract34406443008
89t0,1,5{4,36}Pentitruncated 8-cubeTeritruncated octeract60928071680
90t0,1,4{4,36}Steritruncated 8-cubeCellitruncated octeract57344071680
91t0,1,3{4,36}Runcitruncated 8-cubePrismatotruncated octeract27955243008
92t0,1,2{4,36}Cantitruncated 8-cubeGreat rhombated octeract5734414336
93t0,1,2,3{36,4}Runcicantitruncated 8-orthoplexGreat prismated diacosipentacontahexazetton14784026880
94t0,1,2,4{36,4}Stericantitruncated 8-orthoplexCelligreatorhombated diacosipentacontahexazetton860160107520
95t0,1,3,4{36,4}Steriruncitruncated 8-orthoplexCelliprismatotruncated diacosipentacontahexazetton591360107520
96t0,2,3,4{36,4}Steriruncicantellated 8-orthoplexCelliprismatorhombated diacosipentacontahexazetton591360107520
97t1,2,3,4{36,4}Biruncicantitruncated 8-orthoplexGreat biprismated diacosipentacontahexazetton537600107520
98t0,1,2,5{36,4}Penticantitruncated 8-orthoplexTerigreatorhombated diacosipentacontahexazetton1827840215040
99t0,1,3,5{36,4}Pentiruncitruncated 8-orthoplexTeriprismatotruncated diacosipentacontahexazetton2419200322560
100t0,2,3,5{36,4}Pentiruncicantellated 8-orthoplexTeriprismatorhombated diacosipentacontahexazetton2257920322560
101t1,2,3,5{36,4}Bistericantitruncated 8-orthoplexBicelligreatorhombated diacosipentacontahexazetton2096640322560
102t0,1,4,5{36,4}Pentisteritruncated 8-orthoplexTericellitruncated diacosipentacontahexazetton1182720215040
103t0,2,4,5{36,4}Pentistericantellated 8-orthoplexTericellirhombated diacosipentacontahexazetton1935360322560
104t1,2,4,5{36,4}Bisteriruncitruncated 8-orthoplexBicelliprismatotruncated diacosipentacontahexazetton1612800322560
105t0,3,4,5{36,4}Pentisteriruncinated 8-orthoplexTericelliprismated diacosipentacontahexazetton1182720215040
106t1,3,4,5{36,4}Bisteriruncicantellated 8-orthoplexBicelliprismatorhombated diacosipentacontahexazetton1774080322560
107t2,3,4,5{4,36}Triruncicantitruncated 8-cubeGreat triprismato-octeractidiacosipentacontahexazetton967680215040
108t0,1,2,6{36,4}Hexicantitruncated 8-orthoplexPetigreatorhombated diacosipentacontahexazetton1505280215040
109t0,1,3,6{36,4}Hexiruncitruncated 8-orthoplexPetiprismatotruncated diacosipentacontahexazetton3225600430080
110t0,2,3,6{36,4}Hexiruncicantellated 8-orthoplexPetiprismatorhombated diacosipentacontahexazetton2795520430080
111t1,2,3,6{36,4}Bipenticantitruncated 8-orthoplexBiterigreatorhombated diacosipentacontahexazetton2580480430080
112t0,1,4,6{36,4}Hexisteritruncated 8-orthoplexPeticellitruncated diacosipentacontahexazetton3010560430080
113t0,2,4,6{36,4}Hexistericantellated 8-orthoplexPeticellirhombated diacosipentacontahexazetton4515840645120
114t1,2,4,6{36,4}Bipentiruncitruncated 8-orthoplexBiteriprismatotruncated diacosipentacontahexazetton3870720645120
115t0,3,4,6{36,4}Hexisteriruncinated 8-orthoplexPeticelliprismated diacosipentacontahexazetton2580480430080
116t1,3,4,6{4,36}Bipentiruncicantellated 8-cubeBiteriprismatorhombi-octeractidiacosipentacontahexazetton3870720645120
117t1,3,4,5{4,36}Bisteriruncicantellated 8-cubeBicelliprismatorhombated octeract2150400430080
118t0,1,5,6{36,4}Hexipentitruncated 8-orthoplexPetiteritruncated diacosipentacontahexazetton1182720215040
119t0,2,5,6{36,4}Hexipenticantellated 8-orthoplexPetiterirhombated diacosipentacontahexazetton2795520430080
120t1,2,5,6{4,36}Bipentisteritruncated 8-cubeBitericellitrunki-octeractidiacosipentacontahexazetton2150400430080
121t0,3,5,6{36,4}Hexipentiruncinated 8-orthoplexPetiteriprismated diacosipentacontahexazetton2795520430080
122t1,2,4,6{4,36}Bipentiruncitruncated 8-cubeBiteriprismatotruncated octeract3870720645120
123t1,2,4,5{4,36}Bisteriruncitruncated 8-cubeBicelliprismatotruncated octeract1935360430080
124t0,4,5,6{36,4}Hexipentistericated 8-orthoplexPetitericellated diacosipentacontahexazetton1182720215040
125t1,2,3,6{4,36}Bipenticantitruncated 8-cubeBiterigreatorhombated octeract2580480430080
126t1,2,3,5{4,36}Bistericantitruncated 8-cubeBicelligreatorhombated octeract2365440430080
127t1,2,3,4{4,36}Biruncicantitruncated 8-cubeGreat biprismated octeract860160215040
128t0,1,2,7{36,4}Hepticantitruncated 8-orthoplexExigreatorhombated diacosipentacontahexazetton51609686016
129t0,1,3,7{36,4}Heptiruncitruncated 8-orthoplexExiprismatotruncated diacosipentacontahexazetton1612800215040
130t0,2,3,7{36,4}Heptiruncicantellated 8-orthoplexExiprismatorhombated diacosipentacontahexazetton1290240215040
131t0,4,5,6{4,36}Hexipentistericated 8-cubePetitericellated octeract1182720215040
132t0,1,4,7{36,4}Heptisteritruncated 8-orthoplexExicellitruncated diacosipentacontahexazetton2293760286720
133t0,2,4,7{36,4}Heptistericantellated 8-orthoplexExicellirhombated diacosipentacontahexazetton3225600430080
134t0,3,5,6{4,36}Hexipentiruncinated 8-cubePetiteriprismated octeract2795520430080
135t0,3,4,7{4,36}Heptisteriruncinated 8-cubeExicelliprismato-octeractidiacosipentacontahexazetton1720320286720
136t0,3,4,6{4,36}Hexisteriruncinated 8-cubePeticelliprismated octeract2580480430080
137t0,3,4,5{4,36}Pentisteriruncinated 8-cubeTericelliprismated octeract1433600286720
138t0,1,5,7{36,4}Heptipentitruncated 8-orthoplexExiteritruncated diacosipentacontahexazetton1612800215040
139t0,2,5,7{4,36}Heptipenticantellated 8-cubeExiterirhombi-octeractidiacosipentacontahexazetton3440640430080
140t0,2,5,6{4,36}Hexipenticantellated 8-cubePetiterirhombated octeract2795520430080
141t0,2,4,7{4,36}Heptistericantellated 8-cubeExicellirhombated octeract3225600430080
142t0,2,4,6{4,36}Hexistericantellated 8-cubePeticellirhombated octeract4515840645120
143t0,2,4,5{4,36}Pentistericantellated 8-cubeTericellirhombated octeract2365440430080
144t0,2,3,7{4,36}Heptiruncicantellated 8-cubeExiprismatorhombated octeract1290240215040
145t0,2,3,6{4,36}Hexiruncicantellated 8-cubePetiprismatorhombated octeract2795520430080
146t0,2,3,5{4,36}Pentiruncicantellated 8-cubeTeriprismatorhombated octeract2580480430080
147t0,2,3,4{4,36}Steriruncicantellated 8-cubeCelliprismatorhombated octeract967680215040
148t0,1,6,7{4,36}Heptihexitruncated 8-cubeExipetitrunki-octeractidiacosipentacontahexazetton51609686016
149t0,1,5,7{4,36}Heptipentitruncated 8-cubeExiteritruncated octeract1612800215040
150t0,1,5,6{4,36}Hexipentitruncated 8-cubePetiteritruncated octeract1182720215040
151t0,1,4,7{4,36}Heptisteritruncated 8-cubeExicellitruncated octeract2293760286720
152t0,1,4,6{4,36}Hexisteritruncated 8-cubePeticellitruncated octeract3010560430080
153t0,1,4,5{4,36}Pentisteritruncated 8-cubeTericellitruncated octeract1433600286720
154t0,1,3,7{4,36}Heptiruncitruncated 8-cubeExiprismatotruncated octeract1612800215040
155t0,1,3,6{4,36}Hexiruncitruncated 8-cubePetiprismatotruncated octeract3225600430080
156t0,1,3,5{4,36}Pentiruncitruncated 8-cubeTeriprismatotruncated octeract2795520430080
157t0,1,3,4{4,36}Steriruncitruncated 8-cubeCelliprismatotruncated octeract967680215040
158t0,1,2,7{4,36}Hepticantitruncated 8-cubeExigreatorhombated octeract51609686016
159t0,1,2,6{4,36}Hexicantitruncated 8-cubePetigreatorhombated octeract1505280215040
160t0,1,2,5{4,36}Penticantitruncated 8-cubeTerigreatorhombated octeract2007040286720
161t0,1,2,4{4,36}Stericantitruncated 8-cubeCelligreatorhombated octeract1290240215040
162t0,1,2,3{4,36}Runcicantitruncated 8-cubeGreat prismated octeract34406486016
163t0,1,2,3,4{36,4}Steriruncicantitruncated 8-orthoplexGreat cellated diacosipentacontahexazetton1075200215040
164t0,1,2,3,5{36,4}Pentiruncicantitruncated 8-orthoplexTerigreatoprismated diacosipentacontahexazetton4193280645120
165t0,1,2,4,5{36,4}Pentistericantitruncated 8-orthoplexTericelligreatorhombated diacosipentacontahexazetton3225600645120
166t0,1,3,4,5{36,4}Pentisteriruncitruncated 8-orthoplexTericelliprismatotruncated diacosipentacontahexazetton3225600645120
167t0,2,3,4,5{36,4}Pentisteriruncicantellated 8-orthoplexTericelliprismatorhombated diacosipentacontahexazetton3225600645120
168t1,2,3,4,5{36,4}Bisteriruncicantitruncated 8-orthoplexGreat bicellated diacosipentacontahexazetton2903040645120
169t0,1,2,3,6{36,4}Hexiruncicantitruncated 8-orthoplexPetigreatoprismated diacosipentacontahexazetton5160960860160
170t0,1,2,4,6{36,4}Hexistericantitruncated 8-orthoplexPeticelligreatorhombated diacosipentacontahexazetton77414401290240
171t0,1,3,4,6{36,4}Hexisteriruncitruncated 8-orthoplexPeticelliprismatotruncated diacosipentacontahexazetton70963201290240
172t0,2,3,4,6{36,4}Hexisteriruncicantellated 8-orthoplexPeticelliprismatorhombated diacosipentacontahexazetton70963201290240
173t1,2,3,4,6{36,4}Bipentiruncicantitruncated 8-orthoplexBiterigreatoprismated diacosipentacontahexazetton64512001290240
174t0,1,2,5,6{36,4}Hexipenticantitruncated 8-orthoplexPetiterigreatorhombated diacosipentacontahexazetton4300800860160
175t0,1,3,5,6{36,4}Hexipentiruncitruncated 8-orthoplexPetiteriprismatotruncated diacosipentacontahexazetton70963201290240
176t0,2,3,5,6{36,4}Hexipentiruncicantellated 8-orthoplexPetiteriprismatorhombated diacosipentacontahexazetton64512001290240
177t1,2,3,5,6{36,4}Bipentistericantitruncated 8-orthoplexBitericelligreatorhombated diacosipentacontahexazetton58060801290240
178t0,1,4,5,6{36,4}Hexipentisteritruncated 8-orthoplexPetitericellitruncated diacosipentacontahexazetton4300800860160
179t0,2,4,5,6{36,4}Hexipentistericantellated 8-orthoplexPetitericellirhombated diacosipentacontahexazetton70963201290240
180t1,2,3,5,6{4,36}Bipentistericantitruncated 8-cubeBitericelligreatorhombated octeract58060801290240
181t0,3,4,5,6{36,4}Hexipentisteriruncinated 8-orthoplexPetitericelliprismated diacosipentacontahexazetton4300800860160
182t1,2,3,4,6{4,36}Bipentiruncicantitruncated 8-cubeBiterigreatoprismated octeract64512001290240
183t1,2,3,4,5{4,36}Bisteriruncicantitruncated 8-cubeGreat bicellated octeract3440640860160
184t0,1,2,3,7{36,4}Heptiruncicantitruncated 8-orthoplexExigreatoprismated diacosipentacontahexazetton2365440430080
185t0,1,2,4,7{36,4}Heptistericantitruncated 8-orthoplexExicelligreatorhombated diacosipentacontahexazetton5591040860160
186t0,1,3,4,7{36,4}Heptisteriruncitruncated 8-orthoplexExicelliprismatotruncated diacosipentacontahexazetton4730880860160
187t0,2,3,4,7{36,4}Heptisteriruncicantellated 8-orthoplexExicelliprismatorhombated diacosipentacontahexazetton4730880860160
188t0,3,4,5,6{4,36}Hexipentisteriruncinated 8-cubePetitericelliprismated octeract4300800860160
189t0,1,2,5,7{36,4}Heptipenticantitruncated 8-orthoplexExiterigreatorhombated diacosipentacontahexazetton5591040860160
190t0,1,3,5,7{36,4}Heptipentiruncitruncated 8-orthoplexExiteriprismatotruncated diacosipentacontahexazetton83865601290240
191t0,2,3,5,7{36,4}Heptipentiruncicantellated 8-orthoplexExiteriprismatorhombated diacosipentacontahexazetton77414401290240
192t0,2,4,5,6{4,36}Hexipentistericantellated 8-cubePetitericellirhombated octeract70963201290240
193t0,1,4,5,7{36,4}Heptipentisteritruncated 8-orthoplexExitericellitruncated diacosipentacontahexazetton4730880860160
194t0,2,3,5,7{4,36}Heptipentiruncicantellated 8-cubeExiteriprismatorhombated octeract77414401290240
195t0,2,3,5,6{4,36}Hexipentiruncicantellated 8-cubePetiteriprismatorhombated octeract64512001290240
196t0,2,3,4,7{4,36}Heptisteriruncicantellated 8-cubeExicelliprismatorhombated octeract4730880860160
197t0,2,3,4,6{4,36}Hexisteriruncicantellated 8-cubePeticelliprismatorhombated octeract70963201290240
198t0,2,3,4,5{4,36}Pentisteriruncicantellated 8-cubeTericelliprismatorhombated octeract3870720860160
199t0,1,2,6,7{36,4}Heptihexicantitruncated 8-orthoplexExipetigreatorhombated diacosipentacontahexazetton2365440430080
200t0,1,3,6,7{36,4}Heptihexiruncitruncated 8-orthoplexExipetiprismatotruncated diacosipentacontahexazetton5591040860160
201t0,1,4,5,7{4,36}Heptipentisteritruncated 8-cubeExitericellitruncated octeract4730880860160
202t0,1,4,5,6{4,36}Hexipentisteritruncated 8-cubePetitericellitruncated octeract4300800860160
203t0,1,3,6,7{4,36}Heptihexiruncitruncated 8-cubeExipetiprismatotruncated octeract5591040860160
204t0,1,3,5,7{4,36}Heptipentiruncitruncated 8-cubeExiteriprismatotruncated octeract83865601290240
205t0,1,3,5,6{4,36}Hexipentiruncitruncated 8-cubePetiteriprismatotruncated octeract70963201290240
206t0,1,3,4,7{4,36}Heptisteriruncitruncated 8-cubeExicelliprismatotruncated octeract4730880860160
207t0,1,3,4,6{4,36}Hexisteriruncitruncated 8-cubePeticelliprismatotruncated octeract70963201290240
208t0,1,3,4,5{4,36}Pentisteriruncitruncated 8-cubeTericelliprismatotruncated octeract3870720860160
209t0,1,2,6,7{4,36}Heptihexicantitruncated 8-cubeExipetigreatorhombated octeract2365440430080
210t0,1,2,5,7{4,36}Heptipenticantitruncated 8-cubeExiterigreatorhombated octeract5591040860160
211t0,1,2,5,6{4,36}Hexipenticantitruncated 8-cubePetiterigreatorhombated octeract4300800860160
212t0,1,2,4,7{4,36}Heptistericantitruncated 8-cubeExicelligreatorhombated octeract5591040860160
213t0,1,2,4,6{4,36}Hexistericantitruncated 8-cubePeticelligreatorhombated octeract77414401290240
214t0,1,2,4,5{4,36}Pentistericantitruncated 8-cubeTericelligreatorhombated octeract3870720860160
215t0,1,2,3,7{4,36}Heptiruncicantitruncated 8-cubeExigreatoprismated octeract2365440430080
216t0,1,2,3,6{4,36}Hexiruncicantitruncated 8-cubePetigreatoprismated octeract5160960860160
217t0,1,2,3,5{4,36}Pentiruncicantitruncated 8-cubeTerigreatoprismated octeract4730880860160
218t0,1,2,3,4{4,36}Steriruncicantitruncated 8-cubeGreat cellated octeract1720320430080
219t0,1,2,3,4,5{36,4}Pentisteriruncicantitruncated 8-orthoplexGreat terated diacosipentacontahexazetton58060801290240
220t0,1,2,3,4,6{36,4}Hexisteriruncicantitruncated 8-orthoplexPetigreatocellated diacosipentacontahexazetton129024002580480
221t0,1,2,3,5,6{36,4}Hexipentiruncicantitruncated 8-orthoplexPetiterigreatoprismated diacosipentacontahexazetton116121602580480
222t0,1,2,4,5,6{36,4}Hexipentistericantitruncated 8-orthoplexPetitericelligreatorhombated diacosipentacontahexazetton116121602580480
223t0,1,3,4,5,6{36,4}Hexipentisteriruncitruncated 8-orthoplexPetitericelliprismatotruncated diacosipentacontahexazetton116121602580480
224t0,2,3,4,5,6{36,4}Hexipentisteriruncicantellated 8-orthoplexPetitericelliprismatorhombated diacosipentacontahexazetton116121602580480
225t1,2,3,4,5,6{4,36}Bipentisteriruncicantitruncated 8-cubeGreat biteri-octeractidiacosipentacontahexazetton103219202580480
226t0,1,2,3,4,7{36,4}Heptisteriruncicantitruncated 8-orthoplexExigreatocellated diacosipentacontahexazetton86016001720320
227t0,1,2,3,5,7{36,4}Heptipentiruncicantitruncated 8-orthoplexExiterigreatoprismated diacosipentacontahexazetton141926402580480
228t0,1,2,4,5,7{36,4}Heptipentistericantitruncated 8-orthoplexExitericelligreatorhombated diacosipentacontahexazetton129024002580480
229t0,1,3,4,5,7{36,4}Heptipentisteriruncitruncated 8-orthoplexExitericelliprismatotruncated diacosipentacontahexazetton129024002580480
230t0,2,3,4,5,7{4,36}Heptipentisteriruncicantellated 8-cubeExitericelliprismatorhombi-octeractidiacosipentacontahexazetton129024002580480
231t0,2,3,4,5,6{4,36}Hexipentisteriruncicantellated 8-cubePetitericelliprismatorhombated octeract116121602580480
232t0,1,2,3,6,7{36,4}Heptihexiruncicantitruncated 8-orthoplexExipetigreatoprismated diacosipentacontahexazetton86016001720320
233t0,1,2,4,6,7{36,4}Heptihexistericantitruncated 8-orthoplexExipeticelligreatorhombated diacosipentacontahexazetton141926402580480
234t0,1,3,4,6,7{4,36}Heptihexisteriruncitruncated 8-cubeExipeticelliprismatotrunki-octeractidiacosipentacontahexazetton129024002580480
235t0,1,3,4,5,7{4,36}Heptipentisteriruncitruncated 8-cubeExitericelliprismatotruncated octeract129024002580480
236t0,1,3,4,5,6{4,36}Hexipentisteriruncitruncated 8-cubePetitericelliprismatotruncated octeract116121602580480
237t0,1,2,5,6,7{4,36}Heptihexipenticantitruncated 8-cubeExipetiterigreatorhombi-octeractidiacosipentacontahexazetton86016001720320
238t0,1,2,4,6,7{4,36}Heptihexistericantitruncated 8-cubeExipeticelligreatorhombated octeract141926402580480
239t0,1,2,4,5,7{4,36}Heptipentistericantitruncated 8-cubeExitericelligreatorhombated octeract129024002580480
240t0,1,2,4,5,6{4,36}Hexipentistericantitruncated 8-cubePetitericelligreatorhombated octeract116121602580480
241t0,1,2,3,6,7{4,36}Heptihexiruncicantitruncated 8-cubeExipetigreatoprismated octeract86016001720320
242t0,1,2,3,5,7{4,36}Heptipentiruncicantitruncated 8-cubeExiterigreatoprismated octeract141926402580480
243t0,1,2,3,5,6{4,36}Hexipentiruncicantitruncated 8-cubePetiterigreatoprismated octeract116121602580480
244t0,1,2,3,4,7{4,36}Heptisteriruncicantitruncated 8-cubeExigreatocellated octeract86016001720320
245t0,1,2,3,4,6{4,36}Hexisteriruncicantitruncated 8-cubePetigreatocellated octeract129024002580480
246t0,1,2,3,4,5{4,36}Pentisteriruncicantitruncated 8-cubeGreat terated octeract68812801720320
247t0,1,2,3,4,5,6{36,4}Hexipentisteriruncicantitruncated 8-orthoplexGreat petated diacosipentacontahexazetton206438405160960
248t0,1,2,3,4,5,7{36,4}Heptipentisteriruncicantitruncated 8-orthoplexExigreatoterated diacosipentacontahexazetton232243205160960
249t0,1,2,3,4,6,7{36,4}Heptihexisteriruncicantitruncated 8-orthoplexExipetigreatocellated diacosipentacontahexazetton232243205160960
250t0,1,2,3,5,6,7{36,4}Heptihexipentiruncicantitruncated 8-orthoplexExipetiterigreatoprismated diacosipentacontahexazetton232243205160960
251t0,1,2,3,5,6,7{4,36}Heptihexipentiruncicantitruncated 8-cubeExipetiterigreatoprismated octeract232243205160960
252t0,1,2,3,4,6,7{4,36}Heptihexisteriruncicantitruncated 8-cubeExipetigreatocellated octeract232243205160960
253t0,1,2,3,4,5,7{4,36}Heptipentisteriruncicantitruncated 8-cubeExigreatoterated octeract232243205160960
254t0,1,2,3,4,5,6{4,36}Hexipentisteriruncicantitruncated 8-cubeGreat petated octeract206438405160960
255t0,1,2,3,4,5,6,7{4,36}Omnitruncated 8-cubeGreat exi-octeractidiacosipentacontahexazetton4128768010321920

The D8 family

The D8 family has symmetry of order 5,160,960 (8 factorial x 27).

This family has 191 Wythoffian uniform polytopes, from 3x64-1 permutations of the D8 Coxeter-Dynkin diagram with one or more rings. 127 (2x64-1) are repeated from the B8 family and 64 are unique to this family, all listed below.

See list of D8 polytopes for Coxeter plane graphs of these polytopes.

D8 uniform polytopes
#Coxeter-Dynkin diagramNameBase point(Alternately signed)Element countsCircumrad
76543210
1= 8-demicubeh{4,3,3,3,3,3,3}(1,1,1,1,1,1,1,1)14411364032828810752716817921281.0000000
2= cantic 8-cubeh2{4,3,3,3,3,3,3}(1,1,3,3,3,3,3,3)2329635842.6457512
3= runcic 8-cubeh3{4,3,3,3,3,3,3}(1,1,1,3,3,3,3,3)6451271682.4494896
4= steric 8-cubeh4{4,3,3,3,3,3,3}(1,1,1,1,3,3,3,3)9856089602.2360678
5= pentic 8-cubeh5{4,3,3,3,3,3,3}(1,1,1,1,1,3,3,3)8960071681.9999999
6= hexic 8-cubeh6{4,3,3,3,3,3,3}(1,1,1,1,1,1,3,3)4838435841.7320508
7= heptic 8-cubeh7{4,3,3,3,3,3,3}(1,1,1,1,1,1,1,3)1433610241.4142135
8= runcicantic 8-cubeh2,3{4,3,3,3,3,3,3}(1,1,3,5,5,5,5,5)86016215044.1231055
9= stericantic 8-cubeh2,4{4,3,3,3,3,3,3}(1,1,3,3,5,5,5,5)349440537603.8729835
10= steriruncic 8-cubeh3,4{4,3,3,3,3,3,3}(1,1,1,3,5,5,5,5)179200358403.7416575
11= penticantic 8-cubeh2,5{4,3,3,3,3,3,3}(1,1,3,3,3,5,5,5)573440716803.6055512
12= pentiruncic 8-cubeh3,5{4,3,3,3,3,3,3}(1,1,1,3,3,5,5,5)537600716803.4641016
13= pentisteric 8-cubeh4,5{4,3,3,3,3,3,3}(1,1,1,1,3,5,5,5)232960358403.3166249
14= hexicantic 8-cubeh2,6{4,3,3,3,3,3,3}(1,1,3,3,3,3,5,5)456960537603.3166249
15= hexicruncic 8-cubeh3,6{4,3,3,3,3,3,3}(1,1,1,3,3,3,5,5)645120716803.1622777
16= hexisteric 8-cubeh4,6{4,3,3,3,3,3,3}(1,1,1,1,3,3,5,5)483840537603
17= hexipentic 8-cubeh5,6{4,3,3,3,3,3,3}(1,1,1,1,1,3,5,5)182784215042.8284271
18= hepticantic 8-cubeh2,7{4,3,3,3,3,3,3}(1,1,3,3,3,3,3,5)172032215043
19= heptiruncic 8-cubeh3,7{4,3,3,3,3,3,3}(1,1,1,3,3,3,3,5)340480358402.8284271
20= heptsteric 8-cubeh4,7{4,3,3,3,3,3,3}(1,1,1,1,3,3,3,5)376320358402.6457512
21= heptipentic 8-cubeh5,7{4,3,3,3,3,3,3}(1,1,1,1,1,3,3,5)236544215042.4494898
22= heptihexic 8-cubeh6,7{4,3,3,3,3,3,3}(1,1,1,1,1,1,3,5)7884871682.236068
23= steriruncicantic 8-cubeh2,3,4{4,36}(1,1,3,5,7,7,7,7)4300801075205.3851647
24= pentiruncicantic 8-cubeh2,3,5{4,36}(1,1,3,5,5,7,7,7)11827202150405.0990195
25= pentistericantic 8-cubeh2,4,5{4,36}(1,1,3,3,5,7,7,7)10752002150404.8989797
26= pentisterirunic 8-cubeh3,4,5{4,36}(1,1,1,3,5,7,7,7)7168001433604.7958317
27= hexiruncicantic 8-cubeh2,3,6{4,36}(1,1,3,5,5,5,7,7)12902402150404.7958317
28= hexistericantic 8-cubeh2,4,6{4,36}(1,1,3,3,5,5,7,7)20966403225604.5825758
29= hexisterirunic 8-cubeh3,4,6{4,36}(1,1,1,3,5,5,7,7)12902402150404.472136
30= hexipenticantic 8-cubeh2,5,6{4,36}(1,1,3,3,3,5,7,7)12902402150404.3588991
31= hexipentirunic 8-cubeh3,5,6{4,36}(1,1,1,3,3,5,7,7)13977602150404.2426405
32= hexipentisteric 8-cubeh4,5,6{4,36}(1,1,1,1,3,5,7,7)6988801075204.1231055
33= heptiruncicantic 8-cubeh2,3,7{4,36}(1,1,3,5,5,5,5,7)5913601075204.472136
34= heptistericantic 8-cubeh2,4,7{4,36}(1,1,3,3,5,5,5,7)15052802150404.2426405
35= heptisterruncic 8-cubeh3,4,7{4,36}(1,1,1,3,5,5,5,7)8601601433604.1231055
36= heptipenticantic 8-cubeh2,5,7{4,36}(1,1,3,3,3,5,5,7)16128002150404
37= heptipentiruncic 8-cubeh3,5,7{4,36}(1,1,1,3,3,5,5,7)16128002150403.8729835
38= heptipentisteric 8-cubeh4,5,7{4,36}(1,1,1,1,3,5,5,7)7526401075203.7416575
39= heptihexicantic 8-cubeh2,6,7{4,36}(1,1,3,3,3,3,5,7)7526401075203.7416575
40= heptihexiruncic 8-cubeh3,6,7{4,36}(1,1,1,3,3,3,5,7)11468801433603.6055512
41= heptihexisteric 8-cubeh4,6,7{4,36}(1,1,1,1,3,3,5,7)9139201075203.4641016
42= heptihexipentic 8-cubeh5,6,7{4,36}(1,1,1,1,1,3,5,7)365568430083.3166249
43= pentisteriruncicantic 8-cubeh2,3,4,5{4,36}(1,1,3,5,7,9,9,9)17203204300806.4031243
44= hexisteriruncicantic 8-cubeh2,3,4,6{4,36}(1,1,3,5,7,7,9,9)32256006451206.0827627
45= hexipentiruncicantic 8-cubeh2,3,5,6{4,36}(1,1,3,5,5,7,9,9)29030406451205.8309517
46= hexipentistericantic 8-cubeh2,4,5,6{4,36}(1,1,3,3,5,7,9,9)32256006451205.6568542
47= hexipentisteriruncic 8-cubeh3,4,5,6{4,36}(1,1,1,3,5,7,9,9)21504004300805.5677648
48= heptsteriruncicantic 8-cubeh2,3,4,7{4,36}(1,1,3,5,7,7,7,9)21504004300805.7445626
49= heptipentiruncicantic 8-cubeh2,3,5,7{4,36}(1,1,3,5,5,7,7,9)35481606451205.4772258
50= heptipentistericantic 8-cubeh2,4,5,7{4,36}(1,1,3,3,5,7,7,9)35481606451205.291503
51= heptipentisteriruncic 8-cubeh3,4,5,7{4,36}(1,1,1,3,5,7,7,9)23654404300805.1961527
52= heptihexiruncicantic 8-cubeh2,3,6,7{4,36}(1,1,3,5,5,5,7,9)21504004300805.1961527
53= heptihexistericantic 8-cubeh2,4,6,7{4,36}(1,1,3,3,5,5,7,9)38707206451205
54= heptihexisteriruncic 8-cubeh3,4,6,7{4,36}(1,1,1,3,5,5,7,9)23654404300804.8989797
55= heptihexipenticantic 8-cubeh2,5,6,7{4,36}(1,1,3,3,3,5,7,9)25804804300804.7958317
56= heptihexipentiruncic 8-cubeh3,5,6,7{4,36}(1,1,1,3,3,5,7,9)27955204300804.6904159
57= heptihexipentisteric 8-cubeh4,5,6,7{4,36}(1,1,1,1,3,5,7,9)13977602150404.5825758
58= hexipentisteriruncicantic 8-cubeh2,3,4,5,6{4,36}(1,1,3,5,7,9,11,11)516096012902407.1414285
59= heptipentisteriruncicantic 8-cubeh2,3,4,5,7{4,36}(1,1,3,5,7,9,9,11)580608012902406.78233
60= heptihexisteriruncicantic 8-cubeh2,3,4,6,7{4,36}(1,1,3,5,7,7,9,11)580608012902406.480741
61= heptihexipentiruncicantic 8-cubeh2,3,5,6,7{4,36}(1,1,3,5,5,7,9,11)580608012902406.244998
62= heptihexipentistericantic 8-cubeh2,4,5,6,7{4,36}(1,1,3,3,5,7,9,11)645120012902406.0827627
63= heptihexipentisteriruncic 8-cubeh3,4,5,6,7{4,36}(1,1,1,3,5,7,9,11)43008008601606.0000000
64= heptihexipentisteriruncicantic 8-cubeh2,3,4,5,6,7{4,36}(1,1,3,5,7,9,11,13)2580480103219207.5498347

The E8 family

The E8 family has symmetry order 696,729,600.

There are 255 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. Eight forms are shown below, 4 single-ringed, 3 truncations (2 rings), and the final omnitruncation are given below. Bowers-style acronym names are given for cross-referencing.

See also list of E8 polytopes for Coxeter plane graphs of this family.

E8 uniform polytopes
#Coxeter-Dynkin diagramNamesElement counts
7-faces6-faces5-faces4-facesCellsFacesEdgesVertices
1421 (fy)19440207360483840483840241920604806720240
2Truncated 421 (tiffy)18816013440
3Rectified 421 (riffy)1968037584019353603386880266112010281601814406720
4Birectified 421 (borfy)196803825602600640774144099187205806080145152060480
5Trirectified 421 (torfy)196803825602661120931392016934400145152004838400241920
6Rectified 142 (buffy)196803825602661120907200016934400169344007257600483840
7Rectified 241 (robay)196803134401693440471744072576005322240145152069120
8241 (bay)1752014496054432012096001209600483840691202160
9Truncated 241138240
10142 (bif)240010608072576022982403628800241920048384017280
11Truncated 142967680
12Omnitruncated 421696729600

Regular and uniform honeycombs

There are five fundamental affine Coxeter groups that generate regular and uniform tessellations in 7-space:

#Coxeter groupCoxeter diagramForms
1 A ~ 7 {\displaystyle {\tilde {A}}_{7}} [3[8]]29
2 C ~ 7 {\displaystyle {\tilde {C}}_{7}} [4,35,4]135
3 B ~ 7 {\displaystyle {\tilde {B}}_{7}} [4,34,31,1]191 (64 new)
4 D ~ 7 {\displaystyle {\tilde {D}}_{7}} [31,1,33,31,1]77 (10 new)
5 E ~ 7 {\displaystyle {\tilde {E}}_{7}} [33,3,1]143

Regular and uniform tessellations include:

  • A ~ 7 {\displaystyle {\tilde {A}}_{7}} 29 uniquely ringed forms, including:
  • C ~ 7 {\displaystyle {\tilde {C}}_{7}} 135 uniquely ringed forms, including:
  • B ~ 7 {\displaystyle {\tilde {B}}_{7}} 191 uniquely ringed forms, 127 shared with C ~ 7 {\displaystyle {\tilde {C}}_{7}} , and 64 new, including:
  • D ~ 7 {\displaystyle {\tilde {D}}_{7}} , [31,1,33,31,1]: 77 unique ring permutations, and 10 are new, the first Coxeter called a quarter 7-cubic honeycomb.
    • , , , , , , , , ,
  • E ~ 7 {\displaystyle {\tilde {E}}_{7}} 143 uniquely ringed forms, including:

Regular and uniform hyperbolic honeycombs

There are no compact hyperbolic Coxeter groups of rank 8, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 4 paracompact hyperbolic Coxeter groups of rank 8, each generating uniform honeycombs in 7-space as permutations of rings of the Coxeter diagrams.

P ¯ 7 {\displaystyle {\bar {P}}_{7}} = [3,3[7]]: Q ¯ 7 {\displaystyle {\bar {Q}}_{7}} = [31,1,32,32,1]: S ¯ 7 {\displaystyle {\bar {S}}_{7}} = [4,33,32,1]: T ¯ 7 {\displaystyle {\bar {T}}_{7}} = [33,2,2]:
  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Klitzing, Richard. "8D uniform polytopes (polyzetta)".
  • v
  • t
  • e
Fundamental convex regular and uniform polytopes in dimensions 2–10
FamilyAnBnI2(p) / DnE6 / E7 / E8 / F4 / G2Hn
Regular polygonTriangleSquarep-gonHexagonPentagon
Uniform polyhedronTetrahedronOctahedronCubeDemicubeDodecahedronIcosahedron
Uniform polychoronPentachoron16-cellTesseractDemitesseract24-cell120-cell600-cell
Uniform 5-polytope5-simplex5-orthoplex5-cube5-demicube
Uniform 6-polytope6-simplex6-orthoplex6-cube6-demicube122221
Uniform 7-polytope7-simplex7-orthoplex7-cube7-demicube132231321
Uniform 8-polytope8-simplex8-orthoplex8-cube8-demicube142241421
Uniform 9-polytope9-simplex9-orthoplex9-cube9-demicube
Uniform 10-polytope10-simplex10-orthoplex10-cube10-demicube
Uniform n-polytopen-simplexn-orthoplexn-cuben-demicube1k22k1k21n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds

References

  1. Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.

  2. Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.

  3. Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.