Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Timeline of quantum computing and communication

This is a timeline of quantum computing and communication.

1960s

1968/69/70

Stephen Wiesner invents conjugate coding.12

1969

13 June – James L. Park (Washington State University, Pullman)'s paper is received by Foundations of Physics,3 in which he describes the non possibility of disturbance in a quantum transition state in the context of a disproof of quantum jumps in the concept of the atom described by Bohr.456

1970s

1973

1975

  • R. P. Poplavskii publishes "Thermodynamical models of information processing" (in Russian)11 which shows the computational infeasibility of simulating quantum systems on classical computers, due to the superposition principle.
  • Roman Stanisław Ingarden, a Polish mathematical physicist, submits the paper "Quantum Information Theory" in Reports on Mathematical Physics, vol. 10, pp. 43–72, published 1976. It is one of the first attempts at creating a quantum information theory, showing that Shannon information theory cannot directly be generalized to the quantum case, but rather that it is possible to construct a quantum information theory, which is a generalization of Shannon's theory, within the formalism of a generalized quantum mechanics of open systems and a generalized concept of observables (the so-called semi-observables).

1980s

1980

1981

At the first Conference on the Physics of Computation, held at the Massachusetts Institute of Technology (MIT) in May,15 Paul Benioff and Richard Feynman give talks on quantum computing. Benioff's talk built on his earlier 1980 work showing that a computer can operate under the laws of quantum mechanics. The talk was titled "Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: application to Turing machines".16 In Feynman's talk, he observed that it appeared to be impossible to efficiently simulate the evolution of a quantum nature system on a classical computer, and he proposed a basic model for a quantum computer.17 Feynman's conjecture on a quantum simulating computer, published 1982,18 understood as - the reality of quantum mechanics expressed as an effective quantum system necessitates quantum computers,19 is conventionally accepted as a beginning of quantum computing.2021

1982

1984

Charles Bennett and Gilles Brassard employ Wiesner's conjugate coding for distribution of cryptographic keys.25

1985

1988

  • Yoshihisa Yamamoto and K. Igeta propose the first physical realization of a quantum computer, including Feynman's CNOT gate.27 Their approach uses atoms and photons and is the progenitor of modern quantum computing and networking protocols using photons to transmit qubits and atoms to perform two-qubit operations.

1989

1990s

1991

Artur Ekert at the University of Oxford, proposes entanglement-based secure communication.31

1992

  • David Deutsch and Richard Jozsa propose a computational problem that can be solved efficiently with the deterministic Deutsch–Jozsa algorithm on a quantum computer, but for which no deterministic classical algorithm is possible. This was perhaps the earliest result in the computational complexity of quantum computers, proving that they were capable of performing some well-defined computation more efficiently than any classical computer.
  • Ethan Bernstein and Umesh Vazirani propose the Bernstein–Vazirani algorithm. It is a restricted version of the Deutsch–Jozsa algorithm where instead of distinguishing between two different classes of functions, it tries to learn a string encoded in a function. The Bernstein–Vazirani algorithm was designed to prove an oracle separation between complexity classes BQP and BPP.
  • Research groups at Max Planck Institute of Quantum Optics (Garching)3233 and shortly after at NIST (Boulder)34 experimentally realize the first crystallized strings of laser-cooled ions. Linear ion crystals constitute the qubit basis for most quantum computing and simulation experiments with trapped ions.

1993

Daniel R. Simon, at Université de Montréal, Quebec, Canada, invent an oracle problem, Simon's problem, for which a quantum computer would be exponentially faster than a conventional computer. This algorithm introduces the main ideas which were then developed in Peter Shor's factorization algorithm.

1994

1995

1996

  • Lov Grover, at Bell Labs, invents the quantum database search algorithm. The quadratic speedup is not as dramatic as the speedup for factoring, discrete logs, or physics simulations. However, the algorithm can be applied to a much wider variety of problems. Any problem that can be solved by random, brute-force search, may take advantage of this quadratic speedup in the number of search queries.
  • The United States Government, particularly in a joint partnership of the Army Research Office (now part of the Army Research Laboratory) and the National Security Agency, issues the first public call for research proposals in quantum information processing.
  • Andrew Steane designs Steane code for error correction.41
  • David DiVincenzo, of IBM, proposes a list of minimal requirements for creating a quantum computer,42 now called DiVincenzo's criteria.
  • Seth Lloyd proves Feynman's conjecture on quantum simulation.43

1997

1998

1999

  • Samuel L. Braunstein and collaborators show that none of the bulk NMR experiments performed to date contain any entanglement; the quantum states being too strongly mixed. This is seen as evidence that NMR computers would likely not yield a benefit over classical computers. It remains an open question, however, whether entanglement is necessary for quantum computational speedup.51
  • Gabriel Aeppli, Thomas Rosenbaum and colleagues demonstrate experimentally the basic concepts of quantum annealing in a condensed matter system.
  • Yasunobu Nakamura and Jaw-Shen Tsai demonstrate that a superconducting circuit can be used as a qubit.52

2000s

2000

2001

  • The first execution of Shor's algorithm at IBM's Almaden Research Center and Stanford University is demonstrated. The number 15 was factored using 1018 identical molecules, each containing seven active nuclear spins.
  • Noah Linden and Sandu Popescu prove that the presence of entanglement is a necessary condition for a large class of quantum protocols. This, coupled with Braunstein's result (see 1999 above), called the validity of NMR quantum computation into question.53
  • Emanuel Knill, Raymond Laflamme, and Gerard Milburn show that optical quantum computing is possible with single-photon sources, linear optical elements, and single-photon detectors, establishing the field of linear optical quantum computing.
  • Robert Raussendorf and Hans Jürgen Briegel propose measurement-based quantum computation.54

2002

2003

2004

  • The first working pure state NMR quantum computer (based on parahydrogen) is demonstrated at Oxford University and University of York in England.
  • Physicists at the University of Innsbruck show deterministic quantum-state teleportation between a pair of trapped calcium ions.61
  • The first five-photon entanglement is demonstrated by Pan Jianwei's team at the University of Science and Technology of China; the minimal number of qubits required for universal quantum error correction.62

2005

2006

  • The Materials Science Department of Oxford University, England cage a qubit in a "buckyball" (a molecule of buckminsterfullerene) and demonstrated quantum "bang-bang" error correction.65
  • Researchers from the University of Illinois Urbana-Champaign use the Zeno Effect, repeatedly measuring the properties of a photon to gradually change it without actually allowing the photon to reach the program, to search a database using counterfactual quantum computation.66
  • Vlatko Vedral of the University of Leeds, England and colleagues at the universities of Porto and Vienna find that the photons in ordinary laser light can be quantum mechanically entangled with the vibrations of a macroscopic mirror.67
  • Samuel L. Braunstein at the University of York, North Yorkshire, England, along with the University of Tokyo and the Japan Science and Technology Agency give the first experimental demonstration of quantum telecloning.68
  • Professors at the University of Sheffield, England, develop a means to efficiently produce and manipulate individual photons at high efficiency at room temperature.69
  • A new error checking method is theorized for Josephson junction computers.70
  • The first 12-qubit quantum computer is benchmarked by researchers at the Institute for Quantum Computing and the Perimeter Institute for Theoretical Physics in Waterloo, Ontario as well as at MIT, Cambridge, Massachusetts.71
  • A two-dimensional ion trap is developed for quantum computing.72
  • Seven atoms are placed in a stable line, a step on the way to constructing a quantum gate, at the University of Bonn, Germany.73
  • A team at Delft University of Technology in the Netherlands creates a device that can manipulate the "up" or "down" spin-states of electrons on quantum dots.74
  • The University of Arkansas develops quantum dot molecules.75
  • The spinning new theory on particle spin brings science closer to quantum computing.76
  • The University of Copenhagen, Denmark, develops quantum teleportation between photons and atoms.77
  • University of Camerino scientists develop a theory of macroscopic object entanglement, which has implications for the development of quantum repeaters.78
  • Tai-Chang Chiang, at Illinois at Urbana–Champaign, finds that quantum coherence can be maintained in mixed-material systems.79
  • Cristophe Boehme, University of Utah, demonstrates the feasibility of reading data using the nuclear spin on a silicon-phosphorus Kane quantum computer.80

2007

  • Subwavelength waveguide is developed for light.81
  • A single-photon emitter for optical fibers is developed.82
  • The first one-way quantum computers are built,83 where measurement (collapse) of an entangled cluster state is the main driving force of computation,84 and shown to perform simple computations, such as Deutsch's algorithm.85
  • A new material is proposed for quantum computing.86
  • A single-atom single-photon server is devised.87
  • The University of Cambridge, England, develops an electron quantum pump.88
  • A superior method of qubit coupling is developed.89
  • A successful demonstration of controllably coupled qubits is reported.90
  • A breakthrough in applying spin-based electronics to silicon is reported.91
  • Scientists demonstrate a quantum state exchange between light and matter.92
  • A diamond quantum register is developed.93
  • Controlled NOT quantum gates on a pair of superconducting quantum bits are realized.94
  • Scientists contain and study hundreds of individual atoms in 3D array.95
  • Nitrogen in a buckyball molecule is used in quantum computing.96
  • A large number of electrons are quantum coupled.97
  • Spin–orbit interaction of electrons are measured.98
  • Atoms are quantum manipulated in laser light.99
  • Light pulses are used to control electron spins.100
  • Quantum effects are demonstrated across tens of nanometers.101
  • Light pulses are used to accelerate quantum computing development.102
  • A quantum random access memory (RAM) blueprint is unveiled.103
  • A model of a quantum transistor is developed.104
  • Long distance entanglement is demonstrated.105
  • Photonic quantum computing is used to factor a number by two independent labs.106
  • A quantum bus is developed by two independent labs.107
  • A superconducting quantum cable is developed.108
  • The transmission of qubits is demonstrated.109
  • Superior qubit material is devised.110
  • A single-electron qubit memory is reported.111
  • Bose–Einstein condensate quantum memory is developed.112
  • D-Wave Systems demonstrates use of a 28-qubit quantum annealing computer.113
  • A new cryonic method reduces decoherence and increases interaction distance, and thus quantum computing speed.114
  • A photonic quantum computer is demonstrated.115
  • Graphene quantum dot spin qubits are proposed.116

2008

  • The HHL algorithm for solving linear equations is published.117
  • Graphene quantum dot qubits are described.118
  • Scientists succeed in storing a quantum bit.119
  • 3D qubit-qutrit entanglement is demonstrated.120
  • Analog quantum computing is devised.121
  • Control of quantum tunneling is devised.122
  • Entangled memory is developed.123
  • A superior NOT gate is developed.124
  • Qutrits are developed.125
  • Quantum logic gate in optical fiber is reported.126
  • A superior quantum Hall Effect is discovered.127
  • Enduring spin states in quantum dots are reported.128
  • Molecular magnets are proposed for quantum RAM.129
  • Quasiparticles offer hope of stable quantum computers.130
  • Image storage may have better storage of qubits is reported.131
  • Quantum entangled images are reported.132
  • Quantum state is intentionally altered in a molecule.133
  • Electron position is controlled in a silicon circuit.134
  • A superconducting electronic circuit pumps microwave photons.135
  • Amplitude spectroscopy is developed.136
  • A superior quantum computer test is developed.137
  • An optical frequency comb is devised.138
  • The concept of Quantum Darwinism is supported.139
  • Hybrid qubit memory is developed.140
  • A qubit is stored for over 1 second in an atomic nucleus.141
  • Faster electron spin qubit switching and reading is developed.142
  • The possibility of non-entanglement quantum computing is described.143
  • D-Wave Systems claims to have produced a 128-qubit computer chip, though this claim had yet to be verified.144

2009

  • Carbon 12 is purified for longer coherence times.145
  • The lifetime of qubits is extended to hundreds of milliseconds.146
  • Improved quantum control of photons is reported.147
  • Quantum entanglement is demonstrated over 240 micrometres.148
  • Qubit lifetime is extended by a factor of 1000.149
  • The first electronic quantum processor is created.150
  • Six-photon graph state entanglement is used to simulate the fractional statistics of anyons living in artificial spin-lattice models.151
  • A single-molecule optical transistor is devised.152
  • NIST reads and writes individual qubits.153
  • NIST demonstrates multiple computing operations on qubits.154
  • The first large-scale topological cluster state quantum architecture is developed for atom-optics.155
  • A combination of all of the fundamental elements required to perform scalable quantum computing through the use of qubits stored in the internal states of trapped atomic ions is shown.156
  • Researchers at University of Bristol, U.K., demonstrate Shor's algorithm on a silicon photonic chip.157
  • Quantum Computing with an Electron Spin Ensemble is reported.158
  • A so-called photon machine gun is developed for quantum computing.159
  • The first universal programmable quantum computer is unveiled.160
  • Scientists electrically control quantum states of electrons.161
  • Google collaborates with D-Wave Systems on image search technology using quantum computing.162
  • A method for synchronizing the properties of multiple coupled CJJ rf-SQUID flux qubits with a small spread of device parameters due to fabrication variations is demonstrated.163
  • Universal Ion Trap Quantum Computation with decoherence free qubits is realized.164
  • The first chip-scale quantum computer is reported.165

2010s

2010

  • Ions are trapped in an optical trap.166
  • An optical quantum computer with three qubits calculates the energy spectrum of molecular hydrogen to high precision.167
  • The first germanium laser advances the state of optical computers.168
  • A single-electron qubit is developed169
  • The quantum state in a macroscopic object is reported.170
  • A new quantum computer cooling method is developed.171
  • Racetrack ion trap is developed.172
  • Evidence for a Moore-Read state in the u = 5 / 2 {\displaystyle u=5/2} quantum Hall plateau,173 which would be suitable for topological quantum computation is reported
  • A quantum interface between a single photon and a single atom is demonstrated.174
  • LED (light emitting diode) quantum entanglement is demonstrated.175
  • Multiplexed design increases the speed of transmission of quantum information through a quantum communications channel.176
  • A two-photon optical chip is reported.177
  • Microfabricated planar ion traps are tested.178179
  • A boson sampling technique is proposed by Aaronson and Arkhipov.180
  • Quantum dot qubits are manipulated electrically, not magnetically.181

2011

  • Entanglement in a solid-state spin ensemble is reported182
  • NOON photons in a superconducting quantum integrated circuit are reported.183
  • A quantum antenna is described.184
  • Multimode quantum interference is documented.185
  • Magnetic Resonance applied to quantum computing is reported.186
  • The quantum pen for single atoms is documented.187
  • Atomic "Racing Dual" is reported.188
  • A 14-qubit register is reported.189
  • D-Wave claims to have developed quantum annealing and introduces their product called D-Wave One. The company claims this is the first commercially available quantum computer.190
  • Repetitive error correction is demonstrated in a quantum processor.191
  • Diamond quantum computer memory is demonstrated.192
  • Qmodes are developed.193
  • Decoherence is demonstrated as suppressed.194
  • Simplification of controlled operations is reported.195
  • Ions entangled using microwaves are documented.196
  • Practical error rates are achieved.197
  • A quantum computer employing Von Neumann architecture is described.198
  • A quantum spin Hall topological insulator is reported.199
  • The concept of two diamonds linked by quantum entanglement could help develop photonic processors is described.200

2012

  • D-Wave claims a quantum computation using 84 qubits.201
  • Physicists create a working transistor from a single atom.202203
  • A method for manipulating the charge of nitrogen vacancy-centres in diamond is reported.204
  • Creation of a 300 qubit/particle quantum simulator is reported.205206
  • Demonstration of topologically protected qubits with an eight-photon entanglement is reported; a robust approach to practical quantum computing.207
  • 1QB Information Technologies (1QBit) is founded; the world's first dedicated quantum computing software company.208
  • The first design of a quantum repeater system without a need for quantum memories is reported.209
  • Decoherence suppressed for 2 seconds at room temperature by manipulating Carbon-13 atoms with lasers is reported.210211
  • The theory of Bell-based randomness expansion with reduced assumption of measurement independence is reported.212
  • New low overhead method for fault-tolerant quantum logic is developed called lattice surgery.213

2013

  • Coherence time of 39 minutes at room temperature (and 3 hours at cryogenic temperatures) is demonstrated for an ensemble of impurity-spin qubits in isotopically purified silicon.214
  • Extension of time for a qubit maintained in superimposed state for ten times longer than what has ever been achieved before is reported.215
  • The first resource analysis of a large-scale quantum algorithm using explicit fault-tolerant, error-correction protocols is developed for factoring.216

2014

  • Documents leaked by Edward Snowden confirm the Penetrating Hard Targets project,217 by which the US National Security Agency sought to develop a quantum computing capability for cryptography purposes.218219220
  • Researchers in Japan and Austria publish the first large-scale quantum computing architecture for a diamond-based system.221
  • Scientists at the University of Innsbruck perform quantum computations on a topologically encoded qubit which is encoded in entangled states distributed over seven trapped-ion qubits.222
  • Scientists transfer data by quantum teleportation over a distance of 10 feet (3.0 meters) with zero percent error rate; a vital step towards a quantum Internet.223224

2015

  • Optically addressable nuclear spins in a solid with a six-hour coherence time are documented.225
  • Quantum information encoded by simple electrical pulses is documented.226
  • Quantum error detection code using a square lattice of four superconducting qubits is documented.227
  • D-Wave Systems Incorporated announce on June 22 that it had broken the 1,000-qubit barrier.228
  • A two-qubit silicon logic gate is successfully developed.229

2016

  • Physicists led by Rainer Blatt join forces with scientists at the Massachusetts Institute of Technology (MIT), led by Isaac Chuang, to efficiently implement Shor's algorithm in an ion-trap-based quantum computer.230
  • IBM releases the Quantum Experience, an online interface to their superconducting systems. The system is immediately used to publish new protocols in quantum information processing.231232
  • Google, using an array of 9 superconducting qubits developed by the Martinis group and UCSB, simulates a hydrogen molecule.233
  • Scientists in Japan and Australia invent a quantum version of a Sneakernet communications system.234

2017

  • D-Wave Systems Incorporated announce general commercial availability of the D-Wave 2000Q quantum annealer, which it claims has 2000 qubits.235
  • A blueprint for a microwave trapped ion quantum computer is published.236
  • IBM unveils a 17-qubit quantum computer—and a better way of benchmarking it.237
  • Scientists build a microchip that generates two entangled qudits each with 10 states, for 100 dimensions total.238
  • Microsoft revealed Q#, a quantum programming language integrated with its Visual Studio development environment. Programs can be executed locally on a 32-qubit simulator, or a 40-qubit simulator on Azure.239
  • IBM reveals a working 50-qubit quantum computer that maintains its quantum state for 90 microseconds.240
  • The first teleportation using a satellite, connecting ground stations over a distance of 1400 km apart is announced.241 Previous experiments were at Earth, at shorter distances.

2018

  • John Preskill introduces the concept of noisy intermediate-scale quantum (NISQ) era.242
  • MIT scientists report the discovery of a new triple-photon form of light.243244
  • Oxford researchers successfully use a trapped-ion technique, where they place two charged atoms in a state of quantum entanglement to speed up logic gates by a factor of 20 to 60 times, as compared with the previous best gates, translated to 1.6 microseconds long, with 99.8% precision.245
  • QuTech successfully tests a silicon-based 2-spin-qubit processor.246247
  • Google announces the creation of a 72-qubit quantum chip, called "Bristlecone",248 achieving a new record.
  • Intel announces the fabrication and testing of silicon-based spin-qubit processors manufactured in the company's D1D fab in Oregon.249250
  • Intel confirms development of a 49-qubit superconducting test chip, called "Tangle Lake".251
  • Japanese researchers demonstrate universal holonomic quantum gates.252
  • An integrated photonic platform for quantum information with continuous variables is documented.253
  • On December 17, 2018, the company IonQ introduces the first commercial trapped-ion quantum computer, with a program length of over 60 two-qubit gates, 11 fully connected qubits, 55 addressable pairs, one-qubit gate error of <0.03% and two-qubit gate error of <1.0%.254255
  • On December 21, 2018, the US National Quantum Initiative Act was signed into law by US President Donald Trump, establishing the goals and priorities for a 10-year plan to accelerate the development of quantum information science and technology applications in the United States.256257258

2019

See also: 2019 in science

  • IBM unveils its first commercial quantum computer, the IBM Q System One,259 designed by UK-based Map Project Office and Universal Design Studio and manufactured by Goppion.260
  • Austrian physicists demonstrate self-verifying, hybrid, variational quantum simulation of lattice models in condensed matter and high-energy physics using a feedback loop between a classical computer and a quantum co-processor.261
  • Griffith University, University of New South Wales (UNSW), Sydney, Australia, and UTS, in partnership with seven universities in the United States, develop noise cancelling for quantum bits via machine learning, taking quantum noise in a quantum chip down to 0%.262263
  • Quantum Darwinism is observed in diamond at room temperature.264265
  • Google reveals its Sycamore processor, consisting of 53 qubits. A paper by Google's quantum computer research team is briefly available in late September 2019, claiming the project had reached quantum supremacy.266267268 Google also develops a cryogenic chip for controlling qubits from within a dilution refrigerator.269
  • University of Science and Technology of China researchers demonstrate boson sampling with 14 detected photons.270

2020s

2020

See also: 2020 in science, Timeline of computing 2020–present, and 2020 in philosophy

  • 20 April – UNSW Sydney develops a way of producing 'hot qubits' – quantum devices that operate at 1.5 kelvin.271
  • 11 March – UNSW perform electric nuclear resonance to control single atoms in electronic devices.272
  • 23 April – University of Tokyo and Australian scientists create and successfully test a solution to the quantum wiring problem, creating a 2D structure for qubits. Such structure can be built using existing integrated circuit technology and has considerably lower cross-talk.273
  • 16 January – Quantum physicists report the first direct splitting of one photon into three using spontaneous parametric down-conversion which may have applications in quantum technology.274275
  • 11 February – Quantum engineers report that they created artificial atoms in silicon quantum dots for quantum computing and that artificial atoms with a higher number of electrons can be more stable qubits than previously thought possible. Enabling silicon-based quantum computers may make it possible to reuse the manufacturing technology of "classical" modern-day computer chips among other advantages.276277
  • 14 February – Quantum physicists develop a novel single-photon source which may allow bridging of semiconductor-based quantum-computers that use photons by converting the state of an electron spin to the polarisation of a photon. They showed that they can generate a single photon in a controlled way without the need for randomly formed quantum dots or structural defects in diamonds.278279
  • 25 February – Scientists visualize a quantum measurement: by taking snapshots of ion states at different times of measurement via coupling of a trapped ion qutrit to the photon environment, they showed that the changes of the degrees of superpositions, and therefore of probabilities of states after measurement, happens gradually under the measurement influence.280281
  • 2 March – Scientists report achieving repeated quantum nondemolition measurements of an electron's spin in a silicon quantum dot: measurements that do not change the electron's spin in the process.282283
  • 11 March – Quantum engineers report to have controlled the nucleus of a single atom using only electric fields. This was first suggested to be possible in 1961 and may be used for silicon quantum computers that use single-atom spins without needing oscillating magnetic fields. This may be especially useful for nanodevices, for precise sensors of electric and magnetic fields, as well as for fundamental inquiries into quantum nature.284285
  • 19 March – A US Army laboratory announces that its scientists analysed a Rydberg sensor's sensitivity to oscillating electric fields over an enormous range of frequencies—from 0 to 10^12 Hz (the spectrum to 0.3 mm wavelength). The Rydberg sensor may potentially be used to detect communications signals as it could reliably detect signals over the entire spectrum and compare favourably with other established electric field sensor technologies, such as electro-optic crystals and dipole antenna-coupled passive electronics.286287
  • 23 March – Researchers report that they corrected for signal loss in a prototype quantum node that can catch, store and entangle bits of quantum information. Their concepts could be used for key components of quantum repeaters in quantum networks and extend their longest possible range.288289
  • 15 April – Researchers demonstrate a proof-of-concept silicon quantum processor unit cell which works at 1.5 kelvin – many times warmer than common quantum processors that are being developed. The finding may enable the integration of classical control electronics with a qubit array and substantially reduce costs. The cooling requirements necessary for quantum computing have been called one of the toughest roadblocks in the field.290291292293
  • 16 April – Scientists prove the existence of the Rashba effect in bulk perovskites. Previously researchers have hypothesized that the materials' extraordinary electronic, magnetic and optical properties – which make it a commonly used material for solar cells and quantum electronics – are related to this effect which to date had not been proven to be present in the material.294295
  • 8 May – Researchers report to have developed a proof-of-concept of a quantum radar using quantum entanglement and microwaves which may potentially be useful for the development of improved radar systems, security scanners and medical imaging systems.296297298
  • 12 May – Researchers report to have developed a method to selectively manipulate a layered manganite's correlated electrons' spin state while leaving its orbital state intact using femtosecond X-ray laser pulses. This may indicate that orbitronics – using variations in the orientations of orbitals – may be used as the basic unit of information in novel information technology devices.299300
  • 19 May – Researchers report to have developed the first integrated silicon on-chip low-noise single-photon source compatible with large-scale quantum photonics.301302303
  • 11 June – Scientists report the generation of rubidium Bose–Einstein condensates (BECs) in the Cold Atom Laboratory aboard the International Space Station under microgravity which could enable improved research of BECs and quantum mechanics, whose physics are scaled to macroscopic scales in BECs, support long-term investigations of few-body physics, support the development of techniques for atom–wave interferometry and atom lasers and verified the successful operation of the laboratory.304305306
  • 15 June – Scientists report the development of the smallest synthetic molecular motor, consisting of 12 atoms and a rotor of 4 atoms, shown to be capable of being powered by an electric current using an electron scanning microscope and moving with very low amounts of energy due to quantum tunneling.307308309
  • 17 June – Quantum scientists report the development of a system that entangled two photon quantum communication nodes through a microwave cable that can send information in between without the photons being sent through, or occupying, the cable. On 12 June it was reported that they also, for the first time, entangled two phonons as well as erase information from their measurement after the measurement had been completed using delayed-choice quantum erasure.310311312313
  • 18 June – Honeywell announces a quantum computer with a quantum volume of 64, the highest at the time.314
  • 13 August – Universal coherence protection is reported to have been achieved in a solid-state spin qubit, a modification that allows quantum systems to stay operational (or "coherent") for 10,000 times longer than before.315316
  • 26 August – Scientists report that ionizing radiation from environmental radioactive materials and cosmic rays may substantially limit the coherence times of qubits if they are not adequately shielded.317318319
  • 28 August – Quantum engineers working for Google report the largest chemical simulation on a quantum computer – a Hartree–Fock approximation with a Sycamore computer paired with a classical computer that analyzed results to provide new parameters for a 12-qubit system.320321322
  • 2 September – Researchers present an eight-user city-scale quantum communication network, located in Bristol, England, using already deployed fibres without active switching or trusted nodes.323324
  • 9 September – Xanadu offers a cloud quantum computing service, using a photonic quantum computer.325
  • 21 September – Researchers report the achievement of quantum entanglement between the motion of a millimetre-sized mechanical oscillator and a disparate distant spin system of a cloud of atoms.326327
  • 3 December – Chinese researchers claim to have achieved quantum supremacy, using a photonic peak 76-qubit system (43 average) known as Jiuzhang, which performed calculations at 100 trillion times the speed of classical supercomputers.328329330
  • 29 October – Honeywell introduces a subscription for a quantum computing service, known as quantum computing as a service, with an ion trap quantum computer.331
  • 12 December – At the IEEE International Electron Devices Meeting (IEDM), IMEC shows an RF multiplexer chip that operates at temperatures as low as a few millikelvins, designed for quantum computers. Researchers from the Chalmers University of Technology report the development of a cryogenic low-noise amplifier (LNA) for amplifying signals from qubits, made of indium phosphide (InP) high-electron-mobility transistors (HEMTs).332
  • 21 December – Publication of research of "counterfactual quantum communication" – whose first achievement was reported in 2017 – by which information can be exchanged without any physical particle traveling between observers and without quantum teleportation.333 The research suggests that this is based on some form of relation between the properties of modular angular momentum.334335336

2021

  • 6 January – Chinese researchers report that they have built the world's largest integrated quantum communication network, combining over 700 optical fibers with two QKD-ground-to-satellite links for a total distance between nodes of the network of up to ~4,600 km.337338
  • 13 January – Austrian researchers report the first realization of an entangling gate between two logical qubits encoded in topological quantum error-correction codes using a trapped-ion quantum computer with 10 ions.339340
  • 15 January – Researchers in China report the successful transmission of entangled photons between drones, used as nodes for the development of mobile quantum networks or flexible network extensions, marking the first work in which entangled particles were sent between two moving devices.341342
  • 27 January – BMW announces the use of a quantum computer for the optimization of supply chains.343
  • 28 January – Swiss and German researchers report the development of a highly efficient single-photon source for quantum information technology with a system of gated quantum dots in a tunable microcavity which captures photons released from excited "artificial atoms".344345
  • 3 February – Microsoft starts offering a cloud quantum computing service, called Azure Quantum.346
  • 5 February – Researchers demonstrate a first prototype of quantum-logic gates for distributed quantum computers.347348
  • 11 March – Honeywell announces a quantum computer with a quantum volume of 512.349
  • 13 April – In a preprint, an astronomer describes for the first time how one could search for quantum communication transmissions sent by extraterrestrial intelligence using existing telescope and receiver technology. He also provides arguments for why future searches of SETI should also target interstellar quantum communications.350351
  • 7 May – Two studies complement research published September 2020 by quantum-entangling two mechanical oscillators.352353354
  • 8 June – Researchers from Toshiba achieve quantum communications over optical fibres exceeding 600 km in length, a world-record distance.355356357
  • 17 June – Austrian, German and Swiss researchers present a quantum computing demonstrator fitting into two standard 19-inch racks, the world's first quality standards-meeting compact quantum computer.358359
  • 29 June – IBM demonstrates quantum advantage.360
  • 1 July – Rigetti develops a method to join several quantum processor chips together.361
  • 7 July – American researchers present a programmable quantum simulator that can operate with 256 qubits,362363 and on the same date and journal another team presents a quantum simulator of 196 Rydeberg atoms trapped in optical tweezers.364
  • 25 October – Chinese researchers report that they have developed the world's fastest programmable quantum computers. The photon-based Jiuzhang 2 is claimed to calculate a task in one millisecond, that otherwise would have taken a conventional computer 30 trillion years to complete. Additionally, Zuchongzhi 2 is a 66-qubit programmable superconducting quantum computer that was claimed to be the world's fastest quantum computer that can run a calculation task one million times more complex than Google's Sycamore, as well as being 10 million times faster.365366

    See also: Quantum supremacy § Progress in the 21st century

  • 11 November – The first simulation of baryons on a quantum computer is reported by University of Waterloo, Canada.367368
  • 16 November – IBM claims that it has created a 127-quantum bit processor, 'IBM Eagle', which according to a report is the most powerful quantum processor known. According to the report, the company had not yet published an academic paper describing its metrics, performance or abilities.369370

2022

  • 18 January – Europe's first quantum annealer with more than 5,000 qubits is presented in Jülich, Germany.371
  • 24 March – The first prototype, photonic, quantum memristive device, for neuromorphic (quantum-) computers and artificial neural networks, that is "able to produce memristive dynamics on single-photon states through a scheme of measurement and classical feedback" is invented.372373
  • 29 March - Researchers at Intel and Delft University of Technology publish data on the first qubits fabricated on 300 mm wafers in a semiconductor manufacturing facility using all-optical lithography and fully industrial processing.374
  • 14 April – The Quantinuum System Model H1-2 doubles its performance claiming to be the first commercial quantum computer to pass quantum volume 4096.375
  • 26 May – A universal set of computational operations on fault-tolerant quantum bits is demonstrated by a team of experimental physicists in Innsbruck, Austria.376
  • 22 June – The world's first quantum computer integrated circuit is demonstrated.377378
  • 28 June – Physicists report that interstellar quantum communication by other civilizations could be possible and may be advantageous, identifying some potential challenges and factors for detecting such. They may use, for example, X-ray photons for remotely established quantum communications and quantum teleportation as the communication mode.379380
  • 21 July – A universal qudit quantum processor is demonstrated with trapped ions.381
  • 15 August – Nature Materials publishes the first work showing optical initialization and coherent control of nuclear spin qubits in 2D materials (an ultrathin hexagonal boron nitride).382
  • 24 August – Nature publishes the first research related to a set of 14 photons entangled with high efficiency and in a defined way.383
  • 26 August – Created photon pairs at several different frequencies using optical ultra-thin resonant metasurfaces made up of arrays of nanoresonators is reported.384
  • 29 August – Physicists at the Max Planck Institute for Quantum Optics deterministically generate entangled graph states of up to 14 photons using a trapped rubidium atom in an optical cavity.385
  • 2 September – Researchers from The University of Tokyo and other Japanese institutions develop a systematic method that applies optimal control theory (GRAPE algorithm) to identify the theoretically optimal sequence from among all conceivable quantum operation sequences. It is necessary to complete the operations within the time that the coherent quantum state is maintained.386
  • 30 September – Researchers at University of New South Wales, Australia, achieve a coherence time of two milliseconds, 100 times higher than the previous benchmark in the same quantum processor.387
  • 9 November – IBM presents its 433-qubit 'Osprey' quantum processor, the successor to its Eagle system.388389
  • 1 December – The world's first portable quantum computer enters into commerce in Japan. With three variants, topping out at 3 qubits, they are meant for education. They are based on nuclear magnetic resonance (NMR), "NMR has extremely limited scaling capabilities" and dimethylphosphite.390391392

2023

  • 3 February – At the University of Innsbruck, researchers entangle two ions over a distance of 230 meters.393
  • 8 February – Alpine Quantum Technologies (AQT) demonstrates a quantum volume of 128 on its 19-inch rack-compatible quantum computer system PINE – a new record in Europe.394
  • 17 February – Fusion-based quantum computation is proposed.395
  • 27 March – India's first quantum computing-based telecom network link is inaugurated.396
  • 14 June – IBM computer scientists report that a quantum computer produced better results for a physics problem than a conventional supercomputer.397398
  • 21 June – Microsoft declares that it is working on a topological quantum computer based on Majorana fermions, with the aim of arriving within 10 years at a computer capable of carrying out at least one million operations per second with an error rate of one operation every 1,000 billion (corresponding to 11 uninterrupted days of calculation).399
  • 13 October – Researchers at TU Darmstadt publish the first experimental demonstration of a qubit array with more than 1,000 qubits:400401 A 3,000-site atomic array based on a 2D configuration of optical tweezers402 holds up to 1,305 atomic qubits.
  • 24 October – Atom Computing announces that it has "created a 1,225-site atomic array, currently populated with 1,180 qubits",403 based on Rydberg atoms.404
  • 4 December – IBM presents its 1121-qubit 'Condor' quantum processor, the successor to its Osprey and Eagle systems.405406 The Condor system was the culmination of IBM's multi-year 'Roadmap to Quantum Advantage' seeking to break the 1,000 qubit threshold.407
  • 6 December – A group led by Misha Lukin at Harvard University realises a programmable quantum processor based on logical qubits using reconfigurable neutral atom arrays.408

2024

  • 14 February – Researchers at UNSW Sydney demonstrated control409 of antimony-based materials, including antimonides, in quantum computing. These materials enable high-dimensional Schrödinger-cat quantum states (qudits), with enhanced scalability and error resilience, utilizing the nucleus spin of 123Sb antimony embedded in silicon nanoelectronics.410411
  • 21 February – UCL researchers achieved 97% precision in placing single arsenic atoms in silicon lattices using scanning tunneling microscopy, enabling scalable, low-error qubit arrays for quantum computing.412
  • 25 February – Researchers at the California Institute of Technology demonstrated multiplexed entanglement generation in quantum network nodes, entangling remote quantum memories using multiple distinct emitters. By embedding ytterbium atoms in yttrium orthovanadate (YVO₄) crystals and coupling them to optical cavities, they enabled parallel transmission of entangled photons, scaling the entanglement rate with the number of qubits.413
  • 12 March – Physicists at EPFL directly observed dissipative phase transitions (DPTs) in a superconducting Kerr resonator. Their experiment confirmed both first- and second-order DPTs, revealing critical slowing down and metastability effects, which could lead to more stable quantum computing and ultra-sensitive quantum sensors.414
  • 1 May – Researchers at Intel show data using a cryogenic 300-mm wafer prober to collect high-volume data on hundreds of industry-manufactured spin qubit devices at 1.6 K. Devices were characterized in the single electrons across full wafers with high yield.415
  • 8 May – Researchers deterministically fuse small quantum states into states with up to eight qubits.416
  • 10 May – Researchers from Google and the Paul Scherrer Institute developed a new hybrid digital-analog quantum simulator, combining the strengths of both techniques. This innovation enhanced the precision and flexibility of quantum computing while enabling more accurate modeling of complex quantum processes.417418
  • 30 May – Researchers at Photonic and Microsoft perform a teleported CNOT gate between qubits physically separated by 40 meters, confirming remote quantum entanglement between T-centers.419
  • 30 June – Researchers from Oxford University successfully linked two quantum processors via an optical fiber network, enabling distributed quantum computing by demonstrating quantum entanglement between distant qubits, paving the way for scalable modular quantum computers and the development of a quantum internet.420
  • 5 August – Research from Brown University discovered fractional excitons in bilayer graphene under the fractional quantum Hall effect, expanding excitonic understanding and quantum computing potential.421
  • 26 August – Researchers at Northwestern University successfully teleported a quantum state of light over 30 kilometres (19 mi) of fiber optic cable carrying conventional internet traffic, demonstrating the feasibility of integrating quantum communication into existing networks.422
  • 29 August – Researchers at Empa successfully constructed a one-dimensional alternating Heisenberg model using synthetic nanographenes, confirming century-old quantum physics predictions. Their work marked a significant step toward real-world quantum technologies such as ultra-fast computing and unbreakable encryption.423
  • 2 December – Physicists observed quantum entanglement within individual protons, demonstrating that entanglement, a key concept in quantum computing, extended to the subatomic level, revealing the complex interdependence of quarks and gluons within protons.424
  • 9 December – Google Quantum AI announced Willow, the first quantum processor where error-corrected qubits get exponentially better as they get bigger. Willow performed a standard benchmark computation in under five minutes that would take today's fastest supercomputers 10 septillion years.425426
  • 15 December – Researchers at Oak Ridge National Laboratory in collaboration with EPB and the University of Tennessee achieved transmission of entangled quantum signals with 100% uptime through a commercial fiber-optic network for over 30 hours using automatic polarization compensation to prevent disruptions from environmental factors.427428429
  • 25 December – Researchers at Intel demonstrate a test chip with 12 spin-qubits fabricated using immersion and extreme ultraviolet lithography (EUV), along with other standard high-volume manufacturing (HVM) processes.430 This doubles the number of spin qubits published in September 2022.431

2025

  • 7 January – Researchers at Osaka Metropolitan University derived a simplified formula for quantum entanglement entropy, allowing for easier analysis of entanglement in strongly correlated electron systems. Their study identified unexpected quantum behaviors in nanoscale artificial magnetic materials and highlighted the role of quantum relative entropy in the Kondo effect.432
  • 14 February – Researchers (Björkman et al.) used transmon qubits to demonstrate a virtual-state process of the Landau-Zener-Stückelberg-Majorana (LZSM) transition.433434435436 Their experiment significantly suppressed the AC Stark shift, improving control over quantum state transitions.437438
  • 19 February – Microsoft announced Majorana 1, the first quantum processing unit based on a topological core.439 The research created a new class of materials called topoconductors, which use topological superconductivity to control hardware-protected topological qubits and determined fermion parity in Majorana zero modes.440441
  • 27 February – Amazon announced442 a quantum computing processor prototype, nicknamed "Ocelot", that utilizes cat qubits for bosonic quantum error correction.443
  • 26 March – Researchers at JPMorganChase and Quantinuum announced the realization of certified randomness, generating publicly certifiable bits using a trapped-ion quantum processor.444445

See also

Notes

References

  1. Mor, Tal; Renner, Renato (2014). "Preface". Natural Computing. 13 (4): 447–452. doi:10.1007/s11047-014-9464-3. /wiki/Doi_(identifier)

  2. Published January 1, 1983.[2][3] 1968 is the year Wiesner developed a new coding in the Columbia University timeline[4] and of the relevant publication in Charles H. Bennett (2021) citing Bennett CH, Bessette F, Brassard G, Salvail L, Smolin J (1992) "Experimental quantum cryptography." J Cryptol 5(1): 3–28. In Bennett, Bessette et al. (1992) the year of "manuscript written" by Wiesner is "circa 1970".[5]

  3. Park, James (March 1970). "The concept of transition in quantum mechanics". Foundations of Physics. 1 (1): 23–33. Bibcode:1970FoPh....1...23P. CiteSeerX 10.1.1.623.5267. doi:10.1007/BF00708652. S2CID 55890485. /wiki/Bibcode_(identifier)

  4. James Park. "The Concept of Transition in Quantum Mechanics" (PDF). quantum-thermodynamics.unibs.it. University of Brescia. Retrieved February 19, 2025. https://quantum-thermodynamics.unibs.it/Park-FoundPhys-1-23-1970.pdf

  5. Bertlmann, Reinhold A.; Friis, Nicolai (2023). "21.5.Impossible Operations - No cloning". Modern Quantum Theory From Quantum Mechanics to Entanglement and Quantum Information. United States of America: Oxford Academic (published November 23, 2023). p. 721. ISBN 9780199683338. Retrieved February 19, 2025 – via Google Books. 9780199683338

  6. Some sources state that: an idea in Park's paper was used as[9] information for what was later undertood by proof as the no-cloning theorem circa 1982.[8][9] An alternative position is: the no-cloning theorem was discovered in 1982 without mentioning 1969/1970.[10][11] Sources state Park proved mathematically no-cloning explicitly as a reality[12][13] though his paper makes no mention explicitly of the term as it is now known.[7][14] An alternative position: simply, Park 1970 was the origin of the no-cloning theorem without mentioning 1982.[15] One further position states Park was first to show the existence of no-cloning - this quantum mechanical reality was rediscovered in 1982 and 2013.[16]

  7. Holevo's paper is the first published on the subject of quantum information according to the Stanford Encyclopedia of Philosophy (Michael Cuffaro)[17] /wiki/Quantum_information

  8. Холево (Holevo), А. С. (A. S.) (1973). "НЕКОТОРЫЕ ОЦЕНКИ ДЛЯ КОЛИЧЕСТВА ИНФОРМАЦИИ, ПЕРЕДАВАЕМОГО КВАНТОВЫМ КАНАЛОМ СВЯЗИ" [Bounds for the quantity of information transmitted by a quantum communication channel]. ПРОБЛЕМЫ ПЕРЕДАЧ И ИНФОРМАЦИИ [Problemy Peredachi Informatsii] (in Russian). 9 (3): 177–183 – via www.mathnet.ru: Steklov Mathematical Institute of the Russian Academy of Sciences. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=903&option_lang=eng

  9. Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo (January 3, 2012). "Achieving the Holevo bound via sequential measurements" (PDF). Physical Review A. 85 (1). Scuola Normale Superiore and Istituto Nanoscienze–CNR, Department of Mechanical Engineering - Massachusetts Institute of Technology, Dipartimento Fisica "A. Volta" - INFN Sezione Pavia - Università di Pavia: American Physical Society :mit.edu: 012302-1: 1.Introduction. arXiv:1012.0386. Bibcode:2012PhRvA..85a2302G. doi:10.1103/PhysRevA.85.012302 – via Umesh Vazirani: people.eecs.berkeley.edu/~vazirani/s07quantum/notes/lec17/lec17.pdf: "Holevo's bound". quantumexplainer.com/holevo-bound-holevos-theorem. https://dspace.mit.edu/bitstream/handle/1721.1/69151/Giovannetti-2012-Achieving%20the%20Holevo%20bound%20via%20sequential%20measurements.pdf?sequence=2

  10. Bennett, C. (November 1973). "Logical Reversibility of Computation" (PDF). IBM Journal of Research and Development. 17 (6): 525–532. doi:10.1147/rd.176.0525. https://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2013W/Bennett_Reversibiity.pdf

  11. Poplavskii, R. P. (1975). "Thermodynamical models of information processing". Uspekhi Fizicheskikh Nauk (in Russian). 115 (3): 465–501. doi:10.3367/UFNr.0115.197503d.0465. https://doi.org/10.3367%2FUFNr.0115.197503d.0465

  12. Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/bf01011339. S2CID 122949592. /wiki/Bibcode_(identifier)

  13. Manin, Yu I (1980). Vychislimoe i nevychislimoe (Computable and Noncomputable) (in Russian). Soviet Radio. pp. 13–15. Archived from the original on May 10, 2013. Retrieved March 4, 2013. https://web.archive.org/web/20130510173823/http://publ.lib.ru/ARCHIVES/M/MANIN_Yuriy_Ivanovich/Manin_Yu.I._Vychislimoe_i_nevychislimoe.%281980%29.%5Bdjv%5D.zip

  14. Technical Report MIT/LCS/TM-151 (1980) and an adapted and condensed version: Toffoli, Tommaso (1980). "Reversible computing" (PDF). In J. W. de Bakker and J. van Leeuwen (ed.). Automata, Languages and Programming. Automata, Languages and Programming, Seventh Colloquium. Lecture Notes in Computer Science. Vol. 85. Noordwijkerhout, Netherlands: Springer Verlag. pp. 632–644. doi:10.1007/3-540-10003-2_104. ISBN 3-540-10003-2. Archived from the original (PDF) on April 15, 2010. 3-540-10003-2

  15. Garfinkel, Simson (April 27, 2021). "Tomorrow's computer, yesterday: Four decades ago at Endicott House, an MIT professor convened a conference that launched quantum computing". MIT News. p. 10. https://www.technologyreview.com/2021/04/27/1021714/tomorrows-computer-yesterday/

  16. Benioff, Paul A. (April 1, 1982). "Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: Application to Turing machines". International Journal of Theoretical Physics. 21 (3): 177–201. Bibcode:1982IJTP...21..177B. doi:10.1007/BF01857725. ISSN 1572-9575. S2CID 122151269. /wiki/Bibcode_(identifier)

  17. "Simulating physics with computers" (PDF). Archived from the original (PDF) on August 30, 2019. Retrieved July 5, 2023. https://web.archive.org/web/20190830190404/https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf

  18. Submission received by the IJoTP: May 7, 1981 /wiki/International_Journal_of_Theoretical_Physics

  19. Feynman, Richard (1982). "Simulating physics with computers" (PDF). International Journal of Theoretical Physics. 21 (6). (Southern Methodist University: smu.edu): 467–488. Bibcode:1982IJTP...21..467F. doi:10.1007/BF02650179. /wiki/Richard_Feynman

  20. Stein, Jonas. "History of quantum computing". qarlab.de. Oettingenstraße 67 80538 Munich: Ludwig-Maximilians-Universität München. Archived from the original on March 10, 2025. Retrieved March 9, 2025.{{cite web}}: CS1 maint: location (link) https://archive.today/20250310000355/https://qarlab.de/en/history-of-quantum-computing/

  21. Hirvensalo, Mika (2004). "1. Introduction 1.1 A Brief History of Quantum Computing". Written at University of Turku. In Rozenberg, G.; Eiben, A.E. (eds.). Quantum Computing. NATURAL COMPUTING SERIES (2 ed.). Berlin Heidelberg New York: Springer-Verlag. p. 1. ISBN 978-3-662-09636-9. Retrieved March 18, 2025 – via Google Books. 978-3-662-09636-9

  22. Benioff, Paul A. (1982). "Quantum mechanical hamiltonian models of turing machines". Journal of Statistical Physics. 29 (3): 515–546. Bibcode:1982JSP....29..515B. doi:10.1007/BF01342185. S2CID 14956017. /wiki/Bibcode_(identifier)

  23. Wootters, William K.; Zurek, Wojciech H. (1982). "A single quantum cannot be cloned". Nature. 299 (5886): 802–803. Bibcode:1982Natur.299..802W. doi:10.1038/299802a0. S2CID 4339227. /wiki/Bibcode_(identifier)

  24. Dieks, Dennis (1982). "Communication by EPR devices". Physics Letters A. 92 (6): 271–272. Bibcode:1982PhLA...92..271D. CiteSeerX 10.1.1.654.7183. doi:10.1016/0375-9601(82)90084-6. /wiki/Bibcode_(identifier)

  25. Bennett, C. H.; Brassard, G. (1984). "Quantum cryptography: Public key distribution and coin tossing". Proceedings of the International Conference on Computers, Systems & Signal Processing, Bangalore, India. Vol. 1. New York: IEEE. pp. 175–179. Reprinted as Bennett, C. H.; Brassard, G. (December 4, 2014). "Quantum cryptography: Public key distribution and coin tossing". Theoretical Computer Science. Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84. 560 (1): 7–11. arXiv:2003.06557. doi:10.1016/j.tcs.2014.05.025. https://doi.org/10.1016%2Fj.tcs.2014.05.025

  26. Peres, Asher (1985). "SReversible Logic and Quantum Compzters". Physical Review A. 32 (6): 3266–3276. Bibcode:1985PhRvA..32.3266P. doi:10.1103/PhysRevA.32.3266. PMID 9896493. /wiki/Bibcode_(identifier)

  27. Igeta, K.; Yamamoto, Yoshihisa (July 18, 1988). "Quantum mechanical computers with single atom and photon fields". International Conference on Quantum Electronics (1988), Paper TuI4. Optica Publishing Group: TuI4. https://opg.optica.org/abstract.cfm?uri=IQEC-1988-TuI4

  28. Milburn, Gerard J. (May 1, 1989). "Quantum optical Fredkin gate". Physical Review Letters. 62 (18): 2124–2127. Bibcode:1989PhRvL..62.2124M. doi:10.1103/PhysRevLett.62.2124. PMID 10039862. https://link.aps.org/doi/10.1103/PhysRevLett.62.2124

  29. Ray, P.; Chakrabarti, B. K.; Chakrabarti, A. (1989). "Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations". Physical Review B. 39 (16): 11828–11832. Bibcode:1989PhRvB..3911828R. doi:10.1103/PhysRevB.39.11828. PMID 9948016. /wiki/Bibcode_(identifier)

  30. Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation". Rev. Mod. Phys. 80 (3): 1061–1081. arXiv:0801.2193. Bibcode:2008RvMP...80.1061D. CiteSeerX 10.1.1.563.9990. doi:10.1103/RevModPhys.80.1061. S2CID 14255125. /wiki/Reviews_of_Modern_Physics

  31. Ekert, A. K. (1991). "Quantum cryptography based on Bell's theorem". Physical Review Letters. 67 (6): 661–663. Bibcode:1991PhRvL..67..661E. doi:10.1103/PhysRevLett.67.661. PMID 10044956. S2CID 27683254. /wiki/Bibcode_(identifier)

  32. Waki, I.; Kassner, S.; Birkl, G.; Walther, H. (March 30, 1992). "Observation of ordered structures of laser-cooled ions in a quadrupole storage ring". Physical Review Letters. 68 (13): 2007–2010. Bibcode:1992PhRvL..68.2007W. doi:10.1103/PhysRevLett.68.2007. PMID 10045280. https://link.aps.org/doi/10.1103/PhysRevLett.68.2007

  33. Birkl, G.; Kassner, S.; Walther, H. (May 28, 1992). "Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring". Nature. 357 (6376): 310–313. doi:10.1038/357310a0. https://doi.org/10.1038/357310a0

  34. Raizen, M. G.; Gilligan, J. M.; Bergquist, J. C.; Itano, W. M.; Wineland, D. J. (May 1, 1992). "Ionic crystals in a linear Paul trap". Physical Review A. 45 (9): 6493–6501. Bibcode:1992PhRvA..45.6493R. doi:10.1103/PhysRevA.45.6493. PMID 9907772. https://link.aps.org/doi/10.1103/PhysRevA.45.6493

  35. Chuang, Isaac L.; Yamamoto, Yoshihisa (1995). "Simple quantum computer". Physical Review A. 52 (5): 3489–3496. arXiv:quant-ph/9505011. Bibcode:1995PhRvA..52.3489C. doi:10.1103/PhysRevA.52.3489. PMID 9912648. /wiki/ArXiv_(identifier)

  36. Cirac, J. I.; Zoller, P. (May 15, 1995). "Quantum Computations with Cold Trapped Ions". Physical Review Letters. 74 (20): 4091–4094. Bibcode:1995PhRvL..74.4091C. doi:10.1103/PhysRevLett.74.4091. ISSN 0031-9007. PMID 10058410. https://link.aps.org/doi/10.1103/PhysRevLett.74.4091

  37. Shor, Peter W. (1995). "Scheme for reducing decoherence in quantum computer memory". Physical Review A. 52 (4): R2493 – R2496. Bibcode:1995PhRvA..52.2493S. doi:10.1103/PhysRevA.52.R2493. PMID 9912632. /wiki/Peter_W._Shor

  38. Monroe, C.; Meekhof, D. M.; King, B. E.; Itano, W. M.; Wineland, D. J. (December 18, 1995). "Demonstration of a Fundamental Quantum Logic Gate" (PDF). Physical Review Letters. 75 (25): 4714–4717. Bibcode:1995PhRvL..75.4714M. doi:10.1103/PhysRevLett.75.4714. PMID 10059979. Retrieved December 29, 2007. http://tf.nist.gov/general/pdf/140.pdf

  39. Kak, S. C. (1995). "Quantum Neural Computing". Advances in Imaging and Electron Physics. 94: 259–313. Bibcode:1995AdIEP..94..259K. doi:10.1016/S1076-5670(08)70147-2. ISBN 9780120147366. 9780120147366

  40. Chrisley, R. (1995). Pyllkkänen, P.; Pyllkkö, P. (eds.). "Quantum learning". New Directions in Cognitive Science. Finnish Society for Artificial Intelligence. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a4051e9f560742b9d28afb78da4622141ec4db89

  41. Steane, Andrew (1996). "Multiple-Particle Interference and Quantum Error Correction". Proceedings of the Royal Society of London A. 452 (1954): 2551–2577. arXiv:quant-ph/9601029. Bibcode:1996RSPSA.452.2551S. doi:10.1098/rspa.1996.0136. S2CID 8246615. Archived from the original on May 19, 2006. Retrieved April 5, 2020. /wiki/Andrew_Steane

  42. DiVincenzo, David P. (1996). "Topics in Quantum Computers". arXiv:cond-mat/9612126. Bibcode:1996cond.mat.12126D. /wiki/ArXiv_(identifier)

  43. Lloyd, Lloyd (1996). "Universal Quantum Simulators". Science. 273 (5278): 1073–1078. Bibcode:1996Sci...273.1073L. doi:10.1126/science.273.5278.1073. PMID 8688088. /wiki/Seth_Lloyd

  44. Kitaev, A. Yu (2003). "Fault-tolerant quantum computation by anyons". Annals of Physics. 303 (1): 2–30. arXiv:quant-ph/9707021. Bibcode:2003AnPhy.303....2K. doi:10.1016/S0003-4916(02)00018-0. S2CID 119087885. /wiki/ArXiv_(identifier)

  45. Loss, Daniel; DiVincenzo, David P. (January 1, 1998). "Quantum Computation with Quantum Dots". Physical Review A. 57 (1): 120–126. arXiv:cond-mat/9701055. Bibcode:1998PhRvA..57..120L. doi:10.1103/PhysRevA.57.120. ISSN 1050-2947. S2CID 13152124. /wiki/ArXiv_(identifier)

  46. Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Mark (April 13, 1998). "Experimental Implementation of Fast Quantum Searching". Physical Review Letters. 80 (15): 3408–3411. Bibcode:1998PhRvL..80.3408C. doi:10.1103/PhysRevLett.80.3408. S2CID 13891055. /wiki/Bibcode_(identifier)

  47. Kane, B. E. (May 14, 1998). "A silicon-based nuclear spin quantum computer". Nature. 393 (6681): 133–137. Bibcode:1998Natur.393..133K. doi:10.1038/30156. ISSN 0028-0836. S2CID 8470520. /wiki/Bibcode_(identifier)

  48. Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Markdoi (April 1998). "Experimental Implementation of Fast Quantum Searching". Physical Review Letters. 80 (15). American Physical Society: 3408–3411. Bibcode:1998PhRvL..80.3408C. doi:10.1103/PhysRevLett.80.3408. /wiki/Isaac_Chuang

  49. "Hidetoshi Nishimori – Applying quantum annealing to computers". Tokyo Institute of Technology. Retrieved September 8, 2022. https://www.titech.ac.jp/english/public-relations/research/stories/faces13-nishimori

  50. Gottesman, Daniel (1999). "The Heisenberg Representation of Quantum Computers". In Corney, S. P.; Delbourgo, R.; Jarvis, P. D. (eds.). Proceedings of the Xxii International Colloquium on Group Theoretical Methods in Physics. Vol. 22. Cambridge, Massachusetts: International Press. pp. 32–43. arXiv:quant-ph/9807006v1. Bibcode:1998quant.ph..7006G. /wiki/Daniel_Gottesman

  51. Braunstein, S. L.; Caves, C. M.; Jozsa, R.; Linden, N.; Popescu, S.; Schack, R. (1999). "Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing". Physical Review Letters. 83 (5): 1054–1057. arXiv:quant-ph/9811018. Bibcode:1999PhRvL..83.1054B. doi:10.1103/PhysRevLett.83.1054. S2CID 14429986. /wiki/ArXiv_(identifier)

  52. Nakamura, Y.; Pashkin, Yu A.; Tsai, J. S. (April 1999). "Coherent control of macroscopic quantum states in a single-Cooper-pair box". Nature. 398 (6730): 786–788. arXiv:cond-mat/9904003. Bibcode:1999Natur.398..786N. doi:10.1038/19718. ISSN 1476-4687. S2CID 4392755. https://www.nature.com/articles/19718

  53. Linden, Noah; Popescu, Sandu (2001). "Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?". Physical Review Letters. 87 (4): 047901. arXiv:quant-ph/9906008. Bibcode:2001PhRvL..87d7901L. doi:10.1103/PhysRevLett.87.047901. PMID 11461646. S2CID 10533287. /wiki/ArXiv_(identifier)

  54. Raussendorf, R.; Briegel, H. J. (2001). "A One-Way Quantum Computer". Physical Review Letters. 86 (22): 5188–91. Bibcode:2001PhRvL..86.5188R. CiteSeerX 10.1.1.252.5345. doi:10.1103/PhysRevLett.86.5188. PMID 11384453. /wiki/Physical_Review_Letters

  55. "Quick facts | Institute for Quantum Computing | University of Waterloo". Institute for Quantum Computing. May 7, 2019. Archived from the original on May 7, 2019. Retrieved December 24, 2024. https://web.archive.org/web/20190507063322/https://uwaterloo.ca/institute-for-quantum-computing/about/quick-facts

  56. Dumke, R.; Volk, M.; Müther, T.; Buchkremer, F. B. J.; Birkl, G.; Ertmer, W. (August 8, 2002). "Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits". Physical Review Letters. 89 (9): 097903. arXiv:quant-ph/0110140. Bibcode:2002PhRvL..89i7903D. doi:10.1103/PhysRevLett.89.097903. PMID 12190441. https://link.aps.org/doi/10.1103/PhysRevLett.89.097903

  57. Gulde, S.; Riebe, M.; Lancaster, G. P. T.; Becher, C.; Eschner, J.; Häffner, H.; Schmidt-Kaler, F.; Chuang, I. L.; Blatt, R. (January 2, 2003). "Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer". Nature. 421 (6918): 48–50. Bibcode:2003Natur.421...48G. doi:10.1038/nature01336. PMID 12511949. S2CID 4401708. /wiki/Nature_(journal)

  58. Pittman, T. B.; Fitch, M. J.; Jacobs, B. C.; Franson, J. D. (2003). "Experimental controlled-not logic gate for single photons in the coincidence basis". Physical Review A. 68 (3): 032316. arXiv:quant-ph/0303095. Bibcode:2003PhRvA..68c2316P. doi:10.1103/physreva.68.032316. S2CID 119476903. /wiki/ArXiv_(identifier)

  59. O'Brien, J. L.; Pryde, G. J.; White, A. G.; Ralph, T. C.; Branning, D. (2003). "Demonstration of an all-optical quantum controlled-NOT gate". Nature. 426 (6964): 264–267. arXiv:quant-ph/0403062. Bibcode:2003Natur.426..264O. doi:10.1038/nature02054. PMID 14628045. S2CID 9883628. /wiki/ArXiv_(identifier)

  60. Schmidt-Kaler, F.; Häffner, H.; Riebe, M.; Gulde, S.; Lancaster, G. P. T.; Deutschle, T.; Becher, C.; Roos, C. F.; Eschner, J.; Blatt, R. (March 27, 2003). "Realization of the Cirac-Zoller controlled-NOT quantum gate". Nature. 422 (6930): 408–411. Bibcode:2003Natur.422..408S. doi:10.1038/nature01494. PMID 12660777. S2CID 4401898. /wiki/Nature_(journal)

  61. Riebe, M.; Häffner, H.; Roos, C. F.; Hänsel, W.; Benhelm, J.; Lancaster, G. P. T.; Körber, T. W.; Becher, C.; Schmidt-Kaler, F.; James, D. F. V.; Blatt, R. (June 17, 2004). "Deterministic quantum teleportation with atoms". Nature. 429 (6993): 734–737. Bibcode:2004Natur.429..734R. doi:10.1038/nature02570. PMID 15201903. S2CID 4397716. /wiki/Nature_(journal)

  62. Zhao, Z.; Chen, Y. A.; Zhang, A. N.; Yang, T.; Briegel, H. J.; Pan, J. W. (2004). "Experimental demonstration of five-photon entanglement and open-destination teleportation". Nature. 430 (6995): 54–58. arXiv:quant-ph/0402096. Bibcode:2004Natur.430...54Z. doi:10.1038/nature02643. PMID 15229594. S2CID 4336020. /wiki/ArXiv_(identifier)

  63. Dumé, Belle (November 22, 2005). "Breakthrough for quantum measurement". PhysicsWeb. Retrieved August 10, 2018. https://physicsworld.com/a/breakthrough-for-quantum-measurement/

  64. Häffner, H.; Hänsel, W.; Roos, C. F.; Benhelm, J.; Chek-Al-Kar, D.; Chwalla, M.; Körber, T.; Rapol, U. D.; Riebe, M.; Schmidt, P. O.; Becher, C.; Gühne, O.; Dür, W.; Blatt, R. (December 1, 2005). "Scalable multiparticle entanglement of trapped ions". Nature. 438 (7068): 643–646. arXiv:quant-ph/0603217. Bibcode:2005Natur.438..643H. doi:10.1038/nature04279. PMID 16319886. S2CID 4411480. /wiki/ArXiv_(identifier)

  65. "Bang-bang: a step closer to quantum supercomputers". England: University of Oxford. January 4, 2006. Archived from the original on August 30, 2018. Retrieved December 29, 2007. https://web.archive.org/web/20180830005255/http://www.admin.ox.ac.uk/po/news/2005-06/jan/04a.shtml

  66. Dowling, Jonathan P. (2006). "To Compute or Not to Compute?". Nature. 439 (7079): 919–920. Bibcode:2006Natur.439..919D. doi:10.1038/439919a. PMID 16495978. S2CID 4327844. /wiki/Jonathan_P._Dowling

  67. Dumé, Belle (February 23, 2007). "Entanglement heats up". Physics World. Archived from the original on October 19, 2007. https://web.archive.org/web/20071019032222/http://physicsworld.com/cws/article/news/24285

  68. "Captain Kirk's clone and the eavesdropper" (Press release). England: University of York. February 16, 2006. Archived from the original on February 7, 2007. Retrieved December 29, 2007. https://web.archive.org/web/20070207105035/http://www.york.ac.uk/admin/presspr/pressreleases/kirkclone.htm

  69. "Soft Machines – Some personal views on nanotechnology, science and science policy from Richard Jones". June 23, 2023. Retrieved July 5, 2023. http://www.softmachines.org/wordpress/

  70. Simonite, Tom (June 8, 2010). "Error-check breakthrough in quantum computing". New Scientist. Retrieved May 20, 2010. http://www.newscientisttech.com/article/dn9301-errorcheck-breakthrough-in-quantum-computing.html

  71. "12-qubits Reached In Quantum Information Quest". ScienceDaily. May 8, 2006. Retrieved May 20, 2010. https://www.sciencedaily.com/releases/2006/05/060508164700.htm

  72. Simonite, Tom (July 7, 2010). "Flat 'ion trap' holds quantum computing promise". New Scientist. Retrieved May 20, 2010. http://www.newscientisttech.com/article/dn9502-flat-ion-trap-holds-quantum-computing-promise.html

  73. Luerweg, Frank (July 12, 2006). "Quantum Computer: Laser tweezers sort atoms". PhysOrg.com. Archived from the original on December 15, 2007. Retrieved December 29, 2007. https://web.archive.org/web/20071215041757/http://www.physorg.com/news71935118.html

  74. "'Electron-spin' trick boosts quantum computing". New Scientist. August 16, 2006. Archived from the original on November 22, 2006. Retrieved December 29, 2007. https://web.archive.org/web/20061122102719/http://www.newscientisttech.com/article.ns?id=dn9768

  75. Berger, Michael (August 16, 2006). "Quantum Dot Molecules – One Step Further Towards Quantum Computing". Newswire Today. Retrieved December 29, 2007. http://www.newswiretoday.com/news/7723/

  76. "Spinning new theory on particle spin brings science closer to quantum computing". PhysOrg.com. September 7, 2006. Archived from the original on January 17, 2008. Retrieved December 29, 2007. https://web.archive.org/web/20080117223659/http://www.physorg.com/news76863086.html

  77. Merali, Zeeya (October 4, 2006). "Spooky steps to a quantum network". New Scientist. 192 (2572): 12. doi:10.1016/s0262-4079(06)60639-8. Retrieved December 29, 2007. http://www.newscientisttech.com/article/dn10226-spooky-steps-to-a-quantum-network.html

  78. Zyga, Lisa (October 24, 2006). "Scientists present method for entangling macroscopic objects". PhysOrg.com. Archived from the original on October 13, 2007. Retrieved December 29, 2007. https://web.archive.org/web/20071013014512/http://physorg.com/news80896839.html

  79. Kloeppel, James E. (November 2, 2006). "Quantum coherence possible in incommensurate electronic systems". Champaign-Urbana, Illinois: University of Illinois. Retrieved August 19, 2010. http://news.illinois.edu/news/06/1102quantum.html

  80. "A Quantum (Computer) Step: Study Shows It's Feasible to Read Data Stored as Nuclear 'Spins'". PhysOrg.com. November 19, 2006. Archived from the original on September 29, 2007. Retrieved December 29, 2007. https://web.archive.org/web/20070929120422/http://physorg.com/news83163617.html

  81. Hecht, Jeff (January 8, 2007). "Nanoscopic 'coaxial cable' transmits light". New Scientist. Retrieved December 30, 2007. http://www.newscientisttech.com/article/dn10911-nanoscopic-coaxial-cable-transmits-light.html

  82. "Toshiba unveils quantum security". The Engineer. February 21, 2007. Archived from the original on March 4, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20070304090639/http://www.e4engineering.com/Articles/298360/Toshiba+unveils+quantum+security.htm

  83. Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei (2007). "Experimental entanglement of six photons in graph states". Nature Physics. 3 (2): 91–95. arXiv:quant-ph/0609130. Bibcode:2007NatPh...3...91L. doi:10.1038/nphys507. S2CID 16319327. /wiki/ArXiv_(identifier)

  84. Danos, V.; Kashefi, E.; Panangaden, P. (2007). "The measurement calculus". Journal of the Association for Computing Machinery. 54 (2): 8. arXiv:0704.1263. doi:10.1145/1219092.1219096. S2CID 5851623. /wiki/ArXiv_(identifier)

  85. Marquit, Miranda (April 18, 2007). "First use of Deutsch's Algorithm in a cluster state quantum computer". PhysOrg.com. Archived from the original on January 17, 2008. Retrieved December 30, 2007. https://web.archive.org/web/20080117224207/http://www.physorg.com/news96107220.html

  86. Merali, Zeeya (March 15, 2007). "The universe is a string-net liquid". New Scientist. Retrieved December 30, 2007. https://www.newscientist.com/article.ns?id=mg19325954.200&feedId=fundamentals_rss20

  87. "A Single-Photon Server with Just One Atom" (Press release). Max Planck Society. March 12, 2007. Retrieved December 30, 2007. http://www.mpg.de/english/illustrationsDocumentation/documentation/pressReleases/2007/pressRelease200703091/index.html

  88. Bush, Steve (April 19, 2007). "Cambridge team closer to working quantum computer". Electronics Weekly. Archived from the original on May 15, 2012. Retrieved December 30, 2007. https://archive.today/20120515222358/http://www.electronicsweekly.com/Articles/2007/04/19/41206/Cambridge+team+closer+to+working+quantum+computer.htm

  89. Farivar, Cyrus (May 7, 2007). "It's the "Wiring" That's Tricky in Quantum Computing". Wired. Archived from the original on July 6, 2008. Retrieved December 30, 2007. https://web.archive.org/web/20080706171401/http://www.wired.com/science/discoveries/news/2007/05/quantumcoupling

  90. "NEC, JST, and RIKEN Successfully Demonstrate World's First Controllably Coupled Qubits" (Press release). Media-Newswire.com. May 8, 2007. Retrieved December 30, 2007. http://media-newswire.com/release_1049194.html

  91. Minkel, J. R. (May 16, 2007). "Spintronics Breaks the Silicon Barrier". Scientific American. Retrieved December 30, 2007. http://www.sciam.com/article.cfm?articleId=959FBD96-E7F2-99DF-341F959A7DA2A292&chanId=sa013&modsrc=most_popular

  92. Zyga, Lisa (May 22, 2007). "Scientists demonstrate quantum state exchange between light and matter". PhysOrg.com. Archived from the original on March 7, 2008. Retrieved December 30, 2007. https://web.archive.org/web/20080307093926/http://www.physorg.com/news99050442.html

  93. Dutt, M. V.; Childress, L.; Jiang, L.; Togan, E.; Maze, J.; Jelezko, F.; Zibrov, A. S.; Hemmer, P. R; Lukin, M. D. (June 1, 2007). "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond". Science. 316 (5829): 1312–1316. Bibcode:2007Sci...316.....D. doi:10.1126/science.1139831. PMID 17540898. S2CID 20697722. /wiki/Bibcode_(identifier)

  94. Plantenberg, J. H.; De Groot, P. C.; Harmans, C. J. P. M.; Mooij, J. E. (June 14, 2007). "Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits". Nature. 447 (7146): 836–839. Bibcode:2007Natur.447..836P. doi:10.1038/nature05896. PMID 17568742. S2CID 3054763. /wiki/Bibcode_(identifier)

  95. Inman, Mason (June 17, 2007). "Atom trap is a step towards a quantum computer". New Scientist. Retrieved December 30, 2007. http://www.newscientisttech.com/article/dn12082-atom-trap-is-a-step-towards-a-quantum-computer-.html

  96. "Nanotechnology and Emerging Technologies News from Nanowerk". www.nanowerk.com. Retrieved July 5, 2023. https://www.nanowerk.com/

  97. "Discovery Of 'Hidden' Quantum Order Improves Prospects For Quantum Super Computers". Science Daily. July 27, 2007. Retrieved December 30, 2007. https://www.sciencedaily.com/releases/2007/07/070726142010.htm

  98. Marquit, Miranda (July 23, 2007). "Indium arsenide may provide clues to quantum information processing". PhysOrg.com. Archived from the original on September 26, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20070926220146/http://www.physorg.com/news104418332.html

  99. "Thousands of Atoms Swap 'Spins' with Partners in Quantum Square Dance". National Institute of Standards and Technology. July 25, 2007. Archived from the original on December 18, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20071218224341/http://www.nist.gov/public_affairs/releases/quantum_gate.html

  100. Zyga, Lisa (August 15, 2007). "Ultrafast quantum computer uses optically controlled electrons". PhysOrg.com. Archived from the original on January 2, 2008. Retrieved December 30, 2007. https://web.archive.org/web/20080102004025/http://www.physorg.com/news106395871.html

  101. Bush, Steve (August 15, 2007). "Research points way to qubits on standard chips". Electronics Weekly. Retrieved December 30, 2007. http://www.electronicsweekly.com/Articles/2007/08/15/41988/research-points-way-to-qubits-on-standard-chips.htm

  102. "Computing Breakthrough Could Elevate Security To Unprecedented Levels". ScienceDaily. August 17, 2007. Retrieved December 30, 2007. https://www.sciencedaily.com/releases/2007/08/070816143801.htm

  103. Battersby, Stephen (August 21, 2007). "Blueprints drawn up for quantum computer RAM". New Scientist. Retrieved December 30, 2007. https://www.newscientist.com/article/dn12516-blueprints-drawn-up-for-quantum-computer-ram.html

  104. "Photon-transistors for the supercomputers of the future". PhysOrg.com. August 26, 2007. Archived from the original on January 1, 2008. Retrieved December 30, 2007. https://web.archive.org/web/20080101165713/http://physorg.com/news107357370.html

  105. "Physicists establish "spooky" quantum communication". University of Michigan. September 5, 2007. Archived from the original on December 28, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20071228220630/http://www.ns.umich.edu/htdocs/releases/story.php?id=6016

  106. "Qubits poised to reveal our secrets". huliq.com. September 13, 2007. Retrieved December 30, 2007. http://www.huliq.com/34160/qubits-poised-to-reveal-our-secrets

  107. Das, Saswato (September 26, 2007). "Quantum chip rides on superconducting bus". New Scientist. Retrieved December 30, 2007. https://www.newscientist.com/article/dn12696-quantum-chip-rides-on-superconducting-bus.html

  108. "Superconducting Quantum Computing Cable Created". ScienceDaily. September 27, 2007. Retrieved December 30, 2007. https://www.sciencedaily.com/releases/2007/09/070926172232.htm

  109. Bush, Steve (October 11, 2007). "Qubit transmission signals quantum computing advance". Electronics Weekly. Archived from the original on October 12, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20071012144831/http://www.electronicsweekly.com/Articles/2007/10/11/42346/qubit+transmission+signals+quantum+computing+advance.htm

  110. Hodgin, Rick C. (October 8, 2007). "New material breakthrough brings quantum computers one step closer". TG Daily. Archived from the original on December 12, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20071212162540/http://www.tgdaily.com/content/view/34244/113/

  111. "Single electron-spin memory with a semiconductor quantum dot". Optics.org. October 19, 2007. Retrieved December 30, 2007. http://optics.org/cws/article/journals/31503

  112. Battersby, Stephen (November 7, 2007). "'Light trap' is a step towards quantum memory". New Scientist. Retrieved December 30, 2007. https://www.newscientist.com/channel/fundamentals/quantum-world/dn12887-light-trap-is-a-step-towards-quantum-memory-.html

  113. "World's First 28 qubit Quantum Computer Demonstrated Online at Supercomputing 2007 Conference". Nanowerk.com. November 12, 2007. Archived from the original on August 30, 2018. Retrieved December 30, 2007. https://web.archive.org/web/20180830041346/https://www.nanowerk.com/news/newsid=3274.php

  114. "Desktop device generates and traps rare ultracold molecules". PhysOrg.com. December 12, 2007. Archived from the original on December 15, 2007. Retrieved December 31, 2007. https://web.archive.org/web/20071215075835/http://www.physorg.com/news116696579.html

  115. Luke, Kim (December 19, 2007). "U of T scientists make quantum computing leap Research is step toward building first quantum computers". University of Toronto. Archived from the original on December 28, 2007. Retrieved December 31, 2007. https://web.archive.org/web/20071228170511/http://www.news.utoronto.ca/bin6/071219-3563.asp

  116. Trauzettel, Björn; Bulaev, Denis V.; Loss, Daniel; Burkard, Guido (February 18, 2007). "Spin qubits in graphene quantum dots". Nature Physics. 3 (3): 192–196. arXiv:cond-mat/0611252. Bibcode:2007NatPh...3..192T. doi:10.1038/nphys544. S2CID 119431314. /wiki/ArXiv_(identifier)

  117. Harrow, Aram W.; Hassidim, Avinatan; Lloyd, Seth (2008). "Quantum algorithm for solving linear systems of equations". Physical Review Letters. 103 (15): 150502. arXiv:0811.3171. Bibcode:2009PhRvL.103o0502H. doi:10.1103/PhysRevLett.103.150502. PMID 19905613. S2CID 5187993. /wiki/ArXiv_(identifier)

  118. Marquit, Miranda (January 15, 2008). "Graphene quantum dot may solve some quantum computing problems". Archived from the original on January 17, 2008. Retrieved January 16, 2008. https://web.archive.org/web/20080117230333/http://www.physorg.com/news119632225.html

  119. "Scientists succeed in storing quantum bit". EE Times Europe. January 25, 2008. Retrieved February 5, 2008. http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=205918527

  120. Zyga, Lisa (February 26, 2008). "Physicists demonstrate qubit-qutrit entanglement". PhysOrg.com. Archived from the original on February 29, 2008. Retrieved February 27, 2008. https://web.archive.org/web/20080229001836/http://www.physorg.com/news123244300.html

  121. "Analog logic for quantum computing". ScienceDaily. February 26, 2008. Retrieved February 27, 2008. https://www.sciencedaily.com/releases/2008/02/080221101910.htm

  122. Kotala, Zenaida Gonzalez (March 5, 2008). "Future 'quantum computers' will offer increased efficiency... and risks". Eurekalert.org. Retrieved March 5, 2008. http://www.eurekalert.org/pub_releases/2008-03/uocf-fc030508.php

  123. Kurzweil, Ray (March 6, 2008). "Entangled memory is a first". Retrieved March 8, 2008. http://www.kurzweilai.net/news/frame.html?main=news_single.html?id%3D8142

  124. Fryer, Joann (March 27, 2008). "Silicon chips for optical quantum technologies". Eurekalert.org. Retrieved March 29, 2008. http://www.eurekalert.org/pub_releases/2008-03/uob-scf032608.php

  125. Kurzweil, Ray (April 7, 2008). "Qutrit breakthrough brings quantum computers closer". Retrieved April 7, 2008. http://www.kurzweilai.net/news/frame.html?main=news_single.html?id%3D8354

  126. Greene, Kate (April 15, 2008). "Toward a quantum internet". Technology Review. Retrieved April 16, 2008. http://www.technologyreview.com/Infotech/20565/?a=f

  127. "Scientists discover exotic quantum state of matter". Princeton University. April 24, 2008. Archived from the original on April 30, 2008. Retrieved April 29, 2008. https://web.archive.org/web/20080430131534/http://physorg.com/news128261028.html

  128. Dumé, Belle (May 23, 2008). "Spin states endure in quantum dot". Physics World. Archived from the original on May 29, 2008. Retrieved June 3, 2008. https://web.archive.org/web/20080529004841/http://physicsworld.com/cws/article/news/34359

  129. Lee, Chris (May 27, 2008). "Molecular magnets in soap bubbles could lead to quantum RAM". ARSTechnica. Retrieved June 3, 2008. https://arstechnica.com/news.ars/post/20080527-molecular-magnets-in-soap-bubbles-could-lead-to-quantum-ram.html

  130. Weizmann Institute of Science (June 2, 2008). "Scientists find new 'quasiparticles'". PhysOrg.com. Retrieved June 3, 2008. http://physorg.com/news131631206.html

  131. Zyga, Lisa (June 23, 2008). "Physicists Store Images in Vapor". PhysOrg.com. Archived from the original on September 15, 2008. Retrieved June 26, 2008. https://web.archive.org/web/20080915130750/http://www.physorg.com/news133439288.html

  132. "Physicists Produce Quantum-Entangled Images". PhysOrg.com. June 25, 2008. Archived from the original on August 29, 2008. Retrieved June 26, 2008. https://web.archive.org/web/20080829225636/http://www.physorg.com/news133624014.html

  133. Tally, Steve (June 26, 2008). "Quantum computing breakthrough arises from unknown molecule". Purdue University. Archived from the original on February 2, 2019. Retrieved June 28, 2008. https://web.archive.org/web/20190202103204/https://news.uns.purdue.edu/x/2008a/080626KlimeckArsenic.html

  134. Rugani, Lauren (July 17, 2008). "Quantum Leap". Technology Review. Retrieved July 17, 2008. http://www.technologyreview.com/Infotech/21086/

  135. "Breakthrough In Quantum Mechanics: Superconducting Electronic Circuit Pumps Microwave Photons". ScienceDaily. August 5, 2008. Retrieved August 6, 2008. https://www.sciencedaily.com/releases/2008/08/080805150812.htm

  136. "New probe could aid quantum computing". PhysOrg.com. September 3, 2008. Archived from the original on September 5, 2008. Retrieved September 6, 2008. https://web.archive.org/web/20080905193420/http://www.physorg.com/news139665168.html

  137. "Novel Process Promises To Kick-start Quantum Technology Sector". ScienceDaily. September 25, 2008. Retrieved October 16, 2008. https://www.sciencedaily.com/releases/2008/09/080925144609.htm

  138. O'Brien, Jeremy L. (September 22, 2008). "Quantum computing over the rainbow". Retrieved October 16, 2008. http://physics.aps.org/articles/v1/23

  139. "Relationships Between Quantum Dots – Stability and Reproduction". Science Blog. October 20, 2008. Archived from the original on October 22, 2008. Retrieved October 20, 2008. https://web.archive.org/web/20081022201107/http://www.scienceblog.com/cms/blog/624-relationships-between-quantum-dots-stability-and-reproduction-17599.html

  140. Schultz, Steven (October 22, 2008). "Memoirs of a qubit: Hybrid memory solves key problem for quantum computing". Eurekalert.com. Retrieved October 23, 2008. http://www.eurekalert.org/pub_releases/2008-10/pues-smt102208.php

  141. "World's Smallest Storage Space ... the Nucleus of an Atom". National Science Foundation News. October 23, 2008. Retrieved October 27, 2008. https://www.nsf.gov/news/news_summ.jsp?cntn_id=112538&govDel=USNSF_51

  142. Stober, Dan (November 20, 2008). "Stanford: Quantum computing spins closer". Eurekalert.com. Retrieved November 22, 2008. http://www.eurekalert.org/pub_releases/2008-11/su-sqc112008.php

  143. Marquit, Miranda (December 5, 2008). "Quantum computing: Entanglement may not be necessary". PhysOrg.com. Archived from the original on December 8, 2008. Retrieved December 9, 2008. https://web.archive.org/web/20081208091811/http://www.physorg.com/news147698804.html

  144. "Dwave System's 128 qubit chip has been made". Next Big Future. December 19, 2008. Archived from the original on December 23, 2008. Retrieved December 20, 2008. https://web.archive.org/web/20081223060355/http://nextbigfuture.com/2008/12/dwave-systems-128-qubit-chip-has-been.html

  145. "Three Times Higher Carbon 12 Purity for Synthetic Diamond Enables Better Quantum Computing". Next Big Future. April 7, 2009. Archived from the original on April 11, 2009. Retrieved May 19, 2009. https://web.archive.org/web/20090411055856/http://nextbigfuture.com/2009/04/element-six-is-global-leader-europe.html

  146. Greene, Kate (April 23, 2009). "Extending the Life of Quantum Bits". Technology Review. Retrieved June 1, 2020. https://www.technologyreview.com/2009/04/23/213539/extending-the-life-of-quantum-bits/

  147. "Researchers make breakthrough in the quantum control of light". PhysOrg.com. May 29, 2009. Archived from the original on January 31, 2013. Retrieved May 30, 2009. https://archive.today/20130131221049/http://www.physorg.com/news162814379.html

  148. "Physicists demonstrate quantum entanglement in mechanical system". PhysOrg.com. June 3, 2009. Archived from the original on January 31, 2013. Retrieved June 13, 2009. https://archive.today/20130131084441/http://www.physorg.com/news163253992.html

  149. Moore, Nicole Casai (June 24, 2009). "Lasers can lengthen quantum bit memory by 1,000 times". Eurekalert.com. Retrieved June 27, 2009. http://www.eurekalert.org/pub_releases/2009-06/uom-lcl062309.php

  150. "First Electronic Quantum Processor Created". ScienceDaily. June 29, 2009. Retrieved June 29, 2009. https://www.sciencedaily.com/releases/2009/06/090628171949.htm

  151. Lu, C. Y.; Gao, W. B.; Gühne, O.; Zhou, X. Q.; Chen, Z. B.; Pan, J. W. (2009). "Demonstrating Anyonic Fractional Statistics with a Six-Qubit Quantum Simulator". Physical Review Letters. 102 (3): 030502. arXiv:0710.0278. Bibcode:2009PhRvL.102c0502L. doi:10.1103/PhysRevLett.102.030502. PMID 19257336. S2CID 11788852. /wiki/ArXiv_(identifier)

  152. Borghino, Dario (July 6, 2009). "Quantum computer closer: Optical transistor made from single molecule". Gizmag. Retrieved July 8, 2009. http://www.gizmag.com/optical-transistor-made-from-single-molecule/12157/

  153. Johnson, R. Colin (July 8, 2009). "NIST advances quantum computing". EE Times. Retrieved July 9, 2009. http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=218401022

  154. Greene, Kate (August 7, 2009). "Scaling Up a Quantum Computer". Technology Review. Retrieved August 8, 2009. http://www.technologyreview.com/computing/23137/

  155. Devitt, S. J.; Fowler, A. G.; Stephens, A. M.; Greentree, A. D.; Hollenberg, L. C. L.; Munro, W. J.; Nemoto, K. (August 11, 2009). "Architectural design for a topological cluster state quantum computer". New Journal of Physics. 11 (83032): 1221. arXiv:0808.1782. Bibcode:2009NJPh...11h3032D. doi:10.1088/1367-2630/11/8/083032. S2CID 56195929. /wiki/Kae_Nemoto

  156. Home, J. P.; Hanneke, D.; Jost, J. D.; Amini, J. M.; Leibfried, D.; Wineland, D. J. (September 4, 2009). "Complete Methods Set for Scalable Ion Trap Quantum Information Processing". Science. 325 (5945): 1227–1230. arXiv:0907.1865. Bibcode:2009Sci...325.1227H. doi:10.1126/science.1177077. PMID 19661380. S2CID 24468918. /wiki/ArXiv_(identifier)

  157. Politi, A.; Matthews, J. C.; O'Brien, J. L. (2009). "Shor's Quantum Factoring Algorithm on a Photonic Chip". Science. 325 (5945): 1221. arXiv:0911.1242. Bibcode:2009Sci...325.1221P. doi:10.1126/science.1173731. PMID 19729649. S2CID 17259222. /wiki/ArXiv_(identifier)

  158. Wesenberg, J. H.; Ardavan, A.; Briggs, G. A. D.; Morton, J. J. L.; Schoelkopf, R. J.; Schuster, D. I.; Mølmer, K. (2009). "Quantum Computing with an Electron Spin Ensemble". Physical Review Letters. 103 (7): 070502. arXiv:0903.3506. Bibcode:2009PhRvL.103g0502W. doi:10.1103/PhysRevLett.103.070502. PMID 19792625. S2CID 6990125. /wiki/ArXiv_(identifier)

  159. Barras, Colin (September 25, 2009). "Photon 'machine gun' could power quantum computers". New Scientist. Retrieved September 26, 2009. https://www.newscientist.com/article/mg20327275.700-photon-machine-gun-could-power-quantum-computers.html?DCMP=OTC-rss&nsref=online-news

  160. "First universal programmable quantum computer unveiled". New Scientist. November 15, 2009. Retrieved November 16, 2009. https://www.newscientist.com/article/dn18154-first-universal-programmable-quantum-computer-unveiled.html

  161. "UCSB physicists move 1 step closer to quantum computing". ScienceBlog. November 20, 2009. Archived from the original on November 23, 2009. Retrieved November 23, 2009. https://web.archive.org/web/20091123213145/http://www.scienceblog.com/cms/ucsb-physicists-move-1-step-closer-quantum-computing-27431.html

  162. Hsu, Jeremy (December 11, 2009). "Google Demonstrates Quantum Algorithm Promising Superfast Search". Retrieved December 14, 2009. http://www.popsci.com/technology/article/2009-12/google-algorithm-uses-quantum-computing-sort-images-faster-ever

  163. Harris, R.; Brito, F.; Berkley, A. J.; Johansson, J.; Johnson, M. W.; Lanting, T.; Bunyk, P.; Ladizinsky, E.; Bumble, B.; Fung, A.; Kaul, A.; Kleinsasser, A.; Han, S. (2009). "Synchronization of multiple coupled rf-SQUID flux qubits". New Journal of Physics. 11 (12): 123022. arXiv:0903.1884. Bibcode:2009NJPh...11l3022H. doi:10.1088/1367-2630/11/12/123022. S2CID 54065717. /wiki/ArXiv_(identifier)

  164. Monz, T.; Kim, K.; Villar, A. S.; Schindler, P.; Chwalla, M.; Riebe, M.; Roos, C. F.; Häffner, H.; Hänsel, W.; Hennrich, M.; Blatt, R (2009). "Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits". Physical Review Letters. 103 (20): 200503. arXiv:0909.3715. Bibcode:2009PhRvL.103t0503M. doi:10.1103/PhysRevLett.103.200503. PMID 20365970. S2CID 7632319. /wiki/ArXiv_(identifier)

  165. "A decade of Physics World breakthroughs: 2009 – the first quantum computer". Physics World. November 29, 2019. https://physicsworld.com/a/a-decade-of-physics-world-breakthroughs-2009-the-first-quantum-computer/

  166. "Making Light of Ion Traps". arXiv blog. January 20, 2010. Retrieved January 21, 2010. http://www.technologyreview.com/blog/arxiv/24685/?nlid=2678

  167. Petit, Charles (January 28, 2010). "Quantum Computer Simulates Hydrogen Molecule Just Right". Wired. Retrieved February 5, 2010. https://www.wired.com/wiredscience/2010/01/quantum-computer-hydrogen-simulation/

  168. Hardesty, Larry (February 4, 2010). "First germanium laser brings us closer to 'optical computers'". Archived from the original on December 24, 2011. Retrieved February 4, 2010. https://web.archive.org/web/20111224181702/http://www.physorg.com/news184493799.html

  169. "Quantum Computing Leap Forward: Altering a Lone Electron Without Disturbing Its Neighbors". Science Daily. February 6, 2010. Retrieved February 6, 2010. https://www.sciencedaily.com/releases/2010/02/100205162953.htm

  170. Palmer, Jason (March 17, 2010). "Team's quantum object is biggest by factor of billions". BBC News. Retrieved March 20, 2010. http://news.bbc.co.uk/2/hi/sci/tech/8570836.stm

  171. University of Cambridge. "Cambridge discovery could pave the way for quantum computing". Retrieved March 18, 2010.[dead link] https://go.gale.com/ps/i.do?id=GALE%7CA221455370&sid=sitemap&v=2.1&it=r&p=EAIM&sw=w&userGroupName=anon%7E3ab19270&aty=open-web-entry

  172. "Racetrack Ion Trap Is a Contender in Quantum Computing Quest". ScienceDaily. April 1, 2010. Retrieved April 3, 2010. https://www.sciencedaily.com/releases/2010/04/100401130336.htm

  173. Rice University (April 21, 2010). "Bizarre matter could find use in quantum computers". Retrieved August 29, 2018. https://phys.org/news/2010-04-bizarre-quantum-odd-electron-fault-tolerant.html

  174. Vetsch, E.; et al. (May 27, 2010). "German physicists develop a quantum interface between light and atoms". Archived from the original on December 19, 2011. Retrieved April 22, 2010. https://web.archive.org/web/20111219181729/http://www.physorg.com/news194169329.html

  175. Dumé, Isabelle (June 5, 2010). "Entangling photons with electricity". Physics World. Retrieved July 21, 2023. https://physicsworld.com/a/entangling-photons-with-electricity/

  176. Munro, W. J.; Harrison, K. A.; Stephens, A. M.; Devitt, S. J.; Nemoto, K. (August 29, 2010). "From quantum multiplexing to high-performance quantum networking". Nature Photonics. 4 (11): 792–796. arXiv:0910.4038. Bibcode:2010NaPho...4..792M. doi:10.1038/nphoton.2010.213. S2CID 119243884. /wiki/Kae_Nemoto

  177. Kurzweil accelerating intelligence (September 17, 2010). "Two-photon optical chip enables more complex quantum computing". Retrieved September 17, 2010. http://www.kurzweilai.net/two-photon-optical-chip-enables-more-complex-quantum-computing

  178. "Toward a Useful Quantum Computer: Researchers Design and test Microfabricated Planar Ion Traps". ScienceDaily. May 28, 2010. Retrieved September 20, 2010. https://www.sciencedaily.com/releases/2010/05/100526091044.htm

  179. "Quantum Future: Designing and Testing Microfabricated Planar Ion Traps". Georgia Tech Research Institute. Retrieved September 20, 2010. http://www.gtri.gatech.edu/casestudy/microfabricated-planar-ion-traps

  180. Aaronson, Scott; Arkhipov, Alex (2011). "The Computational Complexity of Linear Optics". Proceedings of the 43rd annual ACM symposium on Theory of computing – STOC '11. 43rd Annual ACM Symposium on Theory of Computing. New York, New York, USA: ACM Press. pp. 333–342. arXiv:1011.3245. doi:10.1145/1993636.1993682. ISBN 978-1-4503-0691-1. 978-1-4503-0691-1

  181. TU Delft (December 23, 2010). "TU scientists in Nature: Better control of building blocks for quantum computer". Archived from the original on December 24, 2010. Retrieved December 26, 2010. https://web.archive.org/web/20101224162118/http://www.tudelft.nl/live/pagina.jsp?id=2136915a-f72a-441a-8783-b0b0e91cb48f&lang=en

  182. Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L. W; Itoh, Kohei M; Morton, John J. L (2011). "Entanglement in a solid-state spin ensemble". Nature. 470 (7332): 69–72. arXiv:1010.0107. Bibcode:2011Natur.470...69S. doi:10.1038/nature09696. PMID 21248751. S2CID 4322097. /wiki/ArXiv_(identifier)

  183. University of California, Santa Barbara, Office of Public Affairs (February 14, 2011). "International Team of Scientists Says It's High 'Noon' for Microwave Photons". Retrieved February 16, 2011.{{cite news}}: CS1 maint: multiple names: authors list (link) http://www.ia.ucsb.edu/pa/display.aspx?pkey=2428

  184. Kurzweil Accelerating Intelligence (February 24, 2011). "'Quantum antennas' enable exchange of quantum information between two memory cells". Retrieved February 24, 2011. http://www.kurzweilai.net/quantum-antennas-enable-exchange-of-quantum-information-between-two-memory-cells

  185. Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L (2011). "Multimode quantum interference of photons in multiport integrated devices". Nature Communications. 2: 224. arXiv:1007.1372. Bibcode:2011NatCo...2..224P. doi:10.1038/ncomms1228. PMC 3072100. PMID 21364563. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072100

  186. KFC (March 7, 2011). "New Magnetic Resonance Technique Could Revolutionise Quantum Computing". Retrieved June 1, 2020. https://www.technologyreview.com/2011/03/07/196521/new-magnetic-resonance-technique-could-revolutionise-quantum-computing/

  187. Weitenberg, Christof; Endres, Manuel; Sherson, Jacob F.; Cheneau, Marc; Schauß, Peter; Fukuhara, Takeshi; Bloch, Immanuel & Kuhr, Stefan (March 17, 2011). "A Quantum Pen for Single Atoms". Archived from the original on March 18, 2011. Retrieved March 19, 2011. https://web.archive.org/web/20110318143231/http://www.mpq.mpg.de/cms/mpq/en/news/press/11_03_17.html

  188. "German research brings us one step closer to quantum computing". Cordisnews. March 21, 2011. Archived from the original on October 11, 2012. Retrieved March 22, 2011. https://web.archive.org/web/20121011161855/http://cordis.europa.eu/fetch?CALLER=EN_NEWS&ACTION=D&SESSION=&RCN=33212

  189. Monz, T.; Schindler, P.; Barreiro, J. T.; Chwalla, M.; Nigg, D.; Coish, W. A.; Harlander, M.; Hänsel, W.; Hennrich, M.; Blatt, R. (2011). "14-Qubit Entanglement: Creation and Coherence". Physical Review Letters. 106 (13): 130506. arXiv:1009.6126. Bibcode:2011PhRvL.106m0506M. doi:10.1103/PhysRevLett.106.130506. PMID 21517367. S2CID 8155660. /wiki/Physical_Review_Letters

  190. "Quantum-computing firm opens the box". Physicsworld.com. May 12, 2011. Archived from the original on May 15, 2011. Retrieved May 17, 2011. https://web.archive.org/web/20110515083848/http://physicsworld.com/cws/article/news/45960

  191. "Repetitive error correction demonstrated in a quantum processor". physorg.com. May 26, 2011. Archived from the original on January 7, 2012. Retrieved May 26, 2011. https://web.archive.org/web/20120107024333/http://www.physorg.com/news/2011-05-quantum-repetitive-error-processor.html

  192. University of California, Santa Barbara (June 27, 2011). "International Team Demonstrates Subatomic Quantum Memory in Diamond". Retrieved June 29, 2011. http://www.ia.ucsb.edu/pa/display.aspx?pkey=2519

  193. "Quantum computing breakthrough in the creation of massive numbers of entangled qubits". Nanowerk News. July 15, 2011. Retrieved July 18, 2011. http://www.nanowerk.com/news/newsid=22133.php

  194. "Scientists take the next major step toward quantum computing". Nanowerk News. July 20, 2011. Retrieved July 20, 2011. http://www.nanowerk.com/news/newsid=22174.php

  195. "Dramatic simplification paves the way for building a quantum computer". Nanowerk News. August 2, 2011. Retrieved August 3, 2011. http://www.nanowerk.com/news/newsid=22292.php

  196. Ospelkaus, C.; Warring, U.; Colombe, Y.; Brown, K. R.; Amini, J. M.; Leibfried, D.; Wineland, D. J. (2011). "Microwave quantum logic gates for trapped ions". Nature. 476 (7359): 181–184. arXiv:1104.3573. Bibcode:2011Natur.476..181O. doi:10.1038/nature10290. PMID 21833084. S2CID 2902510. /wiki/ArXiv_(identifier)

  197. Ost, Laura (August 30, 2011). "NIST Achieves Record-Low Error Rate for Quantum Information Processing with One Qubit". Retrieved September 3, 2011. https://www.nist.gov/pml/div688/qubit-083011.cfm

  198. Mariantoni, M.; Wang, H.; Yamamoto, T.; Neeley, M.; Bialczak, R. C.; Chen, Y.; Lenander, M.; Lucero, E.; O'Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yin, Y.; Zhao, J.; Korotkov, A. N.; Cleland, A. N; Martinis, J. M (September 1, 2011). "Implementing the Quantum von Neumann Architecture with Superconducting Circuits". Science. 334 (6052): 61–65. arXiv:1109.3743. Bibcode:2011Sci...334...61M. doi:10.1126/science.1208517. PMID 21885732. S2CID 11483576. /wiki/ArXiv_(identifier)

  199. Jablonski, Chris (October 4, 2011). "One step closer to quantum computers". ZDnet. Retrieved August 29, 2018. https://www.zdnet.com/article/one-step-closer-to-quantum-computers/

  200. Moskowitz, Clara; Walmsley, Ian; Sprague, Michael (December 2, 2011). "Two Diamonds Linked by Strange Quantum Entanglement". Retrieved December 2, 2011. /wiki/Clara_Moskowitz

  201. Bian, Z.; Chudak, F.; MacReady, W. G.; Clark, L.; Gaitan, F. (2013). "Experimental determination of Ramsey numbers with quantum annealing". Physical Review Letters. 111 (13): 130505. arXiv:1201.1842. Bibcode:2013PhRvL.111m0505B. doi:10.1103/PhysRevLett.111.130505. PMID 24116761. S2CID 1303361. /wiki/ArXiv_(identifier)

  202. Fuechsle, M.; Miwa, J. A.; Mahapatra, S.; Ryu, H.; Lee, S.; Warschkow, O.; Hollenberg, L. C.; Klimeck, G.; Simmons, M. Y. (February 19, 2012). "A single-atom transistor". Nature Nanotechnology. 7 (4): 242–246. Bibcode:2012NatNa...7..242F. doi:10.1038/nnano.2012.21. PMID 22343383. S2CID 14952278. /wiki/Bibcode_(identifier)

  203. Markoff, John (February 19, 2012). "Physicists Create a Working Transistor From a Single Atom". The New York Times. Retrieved February 19, 2012. https://www.nytimes.com/2012/02/20/science/physicists-create-a-working-transistor-from-a-single-atom.html?partner=rss&emc=rss

  204. Grotz, Bernhard; Hauf, Moritz V.; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg; Stutzmann, Martin; Reinhard, Friedemann; Garrido, Jose A. (2012). "Charge state manipulation of qubits in diamond". Nature Communications. 3: 729. Bibcode:2012NatCo...3..729G. doi:10.1038/ncomms1729. PMC 3316888. PMID 22395620. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316888

  205. Britton, J. W.; Sawyer, B. C.; Keith, A. C.; Wang, C. C.; Freericks, J. K.; Uys, H.; Biercuk, M. J.; Bollinger, J. J. (April 26, 2012). "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins". Nature. 484 (7395): 489–492. arXiv:1204.5789. Bibcode:2012Natur.484..489B. doi:10.1038/nature10981. PMID 22538611. S2CID 4370334. /wiki/ArXiv_(identifier)

  206. Sherriff, Lucy. "300 atom quantum simulator smashes qubit record". Retrieved February 9, 2015. https://www.zdnet.com/article/300-atom-quantum-simulator-smashes-qubit-record/

  207. Yao, Xing-Can; Wang, Tian-Xiong; Chen, Hao-Ze; Gao, Wei-Bo; Fowler, Austin G; Raussendorf, Robert; Chen, Zeng-Bing; Liu, Nai-Le; Lu, Chao-Yang; Deng, You-Jin; Chen, Yu-Ao; Pan, Jian-Wei (2012). "Experimental demonstration of topological error correction". Nature. 482 (7386): 489–494. arXiv:0905.1542. Bibcode:2012Natur.482..489Y. doi:10.1038/nature10770. PMID 22358838. S2CID 4307662. /wiki/ArXiv_(identifier)

  208. 1QBit. "1QBit Website".{{cite news}}: CS1 maint: numeric names: authors list (link) http://www.1qbit.com/

  209. Munro, W. J.; Stephens, A. M.; Devitt, S. J.; Harrison, K. A.; Nemoto, K. (October 14, 2012). "Quantum communication without the necessity of quantum memories". Nature Photonics. 6 (11): 777–781. arXiv:1306.4137. Bibcode:2012NaPho...6..777M. doi:10.1038/nphoton.2012.243. S2CID 5056130. /wiki/Kae_Nemoto

  210. Maurer, P. C.; Kucsko, G.; Latta, C.; Jiang, L.; Yao, N. Y.; Bennett, S. D.; Pastawski, F.; Hunger, D.; Chisholm, N.; Markham, M.; Twitchen, D. J.; Cirac, J. I.; Lukin, M. D. (June 8, 2012). "Room-Temperature Quantum Bit Memory Exceeding One Second". Science (Submitted manuscript). 336 (6086): 1283–1286. Bibcode:2012Sci...336.1283M. doi:10.1126/science.1220513. PMID 22679092. S2CID 2684102. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12132060

  211. Peckham, Matt (July 6, 2012). "Quantum Computing at Room Temperature – Now a Reality". Magazine/Periodical. Time Magazine (Techland) Time Inc. p. 1. Retrieved August 5, 2012. https://techland.time.com/2012/07/06/quantum-computing-at-room-temperature-now-a-reality/

  212. Koh, Dax Enshan; Hall, Michael J. W.; Setiawan; Pope, James E.; Marletto, Chiara; Kay, Alastair; Scarani, Valerio; Ekert, Artur (2012). "Effects of Reduced Measurement Independence on Bell-Based Randomness Expansion". Physical Review Letters. 109 (16): 160404. arXiv:1202.3571. Bibcode:2012PhRvL.109p0404K. doi:10.1103/PhysRevLett.109.160404. PMID 23350071. S2CID 18935137. /wiki/ArXiv_(identifier)

  213. Horsman, C.; Fowler, A. G.; Devitt, S. J.; Van Meter, R. (December 7, 2012). "Surface code quantum computing by lattice surgery". New J. Phys. 14 (12): 123011. arXiv:1111.4022. Bibcode:2012NJPh...14l3011H. doi:10.1088/1367-2630/14/12/123011. S2CID 119212756. /wiki/ArXiv_(identifier)

  214. Kastrenakes, Jacob (November 14, 2013). "Researchers smash through quantum computer storage record". Webzine. The Verge. Retrieved November 20, 2013. https://www.theverge.com/2013/11/14/5104668/qubits-stored-for-39-minutes-quantum-computer-new-record

  215. "Quantum Computer Breakthrough 2013". November 24, 2013. Archived from the original on October 2, 2018. Retrieved October 2, 2018. https://web.archive.org/web/20181002141518/http://welldonestuff.com/quantum-computer-breakthrough-2013/

  216. Devitt, S. J.; Stephens, A. M.; Munro, W. J.; Nemoto, K. (October 10, 2013). "Requirements for fault-tolerant factoring on an atom-optics quantum computer". Nature Communications. 4: 2524. arXiv:1212.4934. Bibcode:2013NatCo...4.2524D. doi:10.1038/ncomms3524. PMID 24088785. S2CID 7229103. /wiki/Kae_Nemoto

  217. "Penetrating Hard Targets project". Archived from the original on August 30, 2017. Retrieved September 16, 2017. https://web.archive.org/web/20170830105417/https://apps.washingtonpost.com/g/page/world/a-description-of-the-penetrating-hard-targets-project/691/

  218. "NSA seeks to develop quantum computer to crack nearly every kind of encryption « Kurzweil". https://www.kurzweilai.net/nsa-seeks-to-develop-quantum-computer-to-crack-nearly-every-kind-of-encryption

  219. NSA seeks to build quantum computer that could crack most types of encryption – Washington Post. https://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html

  220. Dockterman, Eliana (January 2, 2014). "The NSA Is Building a Computer to Crack Almost Any Code". Time – via nation.time.com. https://nation.time.com/2014/01/02/the-nsa-is-building-a-computer-to-crack-almost-any-code/

  221. Nemoto, K.; Trupke, M.; Devitt, S. J.; Stephens, A. M.; Scharfenberger, B.; Buczak, K.; Nobauer, T.; Everitt, M. S.; Schmiedmayer, J.; Munro, W. J. (August 4, 2014). "Photonic architecture for scalable quantum information processing in diamond". Physical Review X. 4 (3): 031022. arXiv:1309.4277. Bibcode:2014PhRvX...4c1022N. doi:10.1103/PhysRevX.4.031022. S2CID 118418371. /wiki/Kae_Nemoto

  222. Nigg, D.; Müller, M.; Martinez, M. A.; Schindler, P.; Hennrich, M.; Monz, T.; Martin-Delgado, M. A.; Blatt, R. (July 18, 2014). "Quantum computations on a topologically encoded qubit". Science. 345 (6194): 302–305. arXiv:1403.5426. Bibcode:2014Sci...345..302N. doi:10.1126/science.1253742. PMID 24925911. S2CID 9677048. /wiki/Science_(journal)

  223. Markoff, John (May 29, 2014). "Scientists Report Finding Reliable Way to Teleport Data". The New York Times. Retrieved May 29, 2014. https://www.nytimes.com/2014/05/30/science/scientists-report-finding-reliable-way-to-teleport-data.html

  224. Pfaff, W.; Hensen, B. J.; Bernien, H.; Van Dam, S. B.; Blok, M. S.; Taminiau, T. H.; Tiggelman, M. J.; Schouten, R. N.; Markham, M.; Twitchen, D. J.; Hanson, R. (May 29, 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". Science. 345 (6196): 532–535. arXiv:1404.4369. Bibcode:2014Sci...345..532P. doi:10.1126/science.1253512. PMID 25082696. S2CID 2190249. /wiki/Science_(journal)

  225. Zhong, Manjin; Hedges, Morgan P.; Ahlefeldt, Rose L.; Bartholomew, John G.; Beavan, Sarah E.; Wittig, Sven M.; Longdell, Jevon J.; Sellars, Matthew J. (2015). "Optically addressable nuclear spins in a solid with a six-hour coherence time". Nature. 517 (7533): 177–180. Bibcode:2015Natur.517..177Z. doi:10.1038/nature14025. PMID 25567283. S2CID 205241727. /wiki/Bibcode_(identifier)

  226. "Breakthrough opens door to affordable quantum computers". April 13, 2015. Retrieved April 16, 2015. http://newsroom.unsw.edu.au/news/science-tech/breakthrough-opens-door-affordable-quantum-computers

  227. Córcoles, A. D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M. (2015). "Demonstration of a quantum error detection code using a square lattice of four superconducting qubits". Nature Communications. 6: 6979. arXiv:1410.6419. Bibcode:2015NatCo...6.6979C. doi:10.1038/ncomms7979. PMC 4421819. PMID 25923200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421819

  228. "D-Wave Systems Inc., the world's first quantum computing company, today announced that it has broken the 1000 qubit barrier". June 22, 2015. Archived from the original on January 15, 2018. Retrieved June 22, 2015. https://web.archive.org/web/20180115184711/https://www.dwavesys.com/press-releases/d-wave-systems-breaks-1000-qubit-quantum-computing-barrier

  229. October 6, 2015 "Crucial hurdle overcome in quantum computing". Retrieved October 6, 2015. http://www.newsroom.unsw.edu.au/news/science-tech/crucial-hurdle-overcome-quantum-computing

  230. Monz, T.; Nigg, D.; Martinez, E. A.; Brandl, M. F.; Schindler, P.; Rines, R.; Wang, S. X.; Chuang, I. L.; Blatt, R.; et al. (March 4, 2016). "Realization of a scalable Shor algorithm". Science. 351 (6277): 1068–1070. arXiv:1507.08852. Bibcode:2016Sci...351.1068M. doi:10.1126/science.aad9480. PMID 26941315. S2CID 17426142. /wiki/ArXiv_(identifier)

  231. Devitt, S. J. (September 29, 2016). "Performing quantum computing experiments in the cloud". Physical Review A. 94 (3): 032329. arXiv:1605.05709. Bibcode:2016PhRvA..94c2329D. doi:10.1103/PhysRevA.94.032329. S2CID 119217150. /wiki/ArXiv_(identifier)

  232. Alsina, D.; Latorre, J. I. (2016). "Experimental test of Mermin inequalities on a five-qubit quantum computer". Physical Review A. 94 (1): 012314. arXiv:1605.04220. Bibcode:2016PhRvA..94a2314A. doi:10.1103/PhysRevA.94.012314. S2CID 119189277. /wiki/ArXiv_(identifier)

  233. o'Malley, P. J. J.; Babbush, R.; Kivlichan, I. D.; Romero, J.; McClean, J. R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. G; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J. Y; Neeley, M; Neill, C; Quintana, C; Sank, D; Vainsencher, A; Wenner, J; White, T. C; Coveney, P. V; Love, P. J; Neven, H; et al. (July 18, 2016). "Scalable Quantum Simulation of Molecular Energies". Physical Review X. 6 (3): 031007. arXiv:1512.06860. Bibcode:2016PhRvX...6c1007O. doi:10.1103/PhysRevX.6.031007. S2CID 4884151. /wiki/ArXiv_(identifier)

  234. Devitt, S. J.; Greentree, A. D.; Stephens, A. M.; Van Meter, R. (November 2, 2016). "High-speed quantum networking by ship". Scientific Reports. 6: 36163. arXiv:1605.05709. Bibcode:2016NatSR...636163D. doi:10.1038/srep36163. PMC 5090252. PMID 27805001. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090252

  235. "D-Wave Announces D-Wave 2000Q Quantum Computer and First System Order | D-Wave Systems". www.dwavesys.com. Archived from the original on January 27, 2017. Retrieved January 26, 2017. https://web.archive.org/web/20170127044404/http://www.dwavesys.com/press-releases/d-wave%C2%A0announces%C2%A0d-wave-2000q-quantum-computer-and-first-system-order

  236. Lekitsch, B; Weidt, S; Fowler, A. G; Mølmer, K; Devitt, S. J; Wunderlich, C; Hensinger, W. K (February 1, 2017). "Blueprint for a microwave trapped ion quantum computer". Science Advances. 3 (2): e1601540. arXiv:1508.00420. Bibcode:2017SciA....3E1540L. doi:10.1126/sciadv.1601540. PMC 5287699. PMID 28164154. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287699

  237. Meredith Rutland Bauer (May 17, 2017). "IBM Just Made a 17 Qubit Quantum Processor, Its Most Powerful One Yet". Motherboard. https://www.vice.com/en/article/ibm-17-qubit-quantum-processor-computer-google/

  238. "Qudits: The Real Future of Quantum Computing?". IEEE Spectrum. June 28, 2017. Retrieved June 29, 2017. https://spectrum.ieee.org/qudits-the-real-future-of-quantum-computing

  239. "Microsoft makes play for next wave of computing with quantum computing toolkit". arstechnica.com. September 25, 2017. Retrieved October 5, 2017. https://arstechnica.com/gadgets/2017/09/microsoft-quantum-toolkit/

  240. "IBM Raises the Bar with a 50-Qubit Quantum Computer". MIT Technology Review. Retrieved December 13, 2017. https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/

  241. Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing (August 9, 2017). "Ground-to-satellite quantum teleportation". Nature. 549 (7670): 70–73. arXiv:1707.00934. Bibcode:2017Natur.549...70R. doi:10.1038/nature23675. ISSN 1476-4687. PMID 28825708. S2CID 4468803. https://www.nature.com/articles/nature23675/

  242. Preskill, John (August 6, 2018). "Quantum Computing in the NISQ era and beyond". Quantum. 2: 79. arXiv:1801.00862. Bibcode:2018Quant...2...79P. doi:10.22331/q-2018-08-06-79. ISSN 2521-327X. https://quantum-journal.org/papers/q-2018-08-06-79/

  243. Hignett, Katherine (February 16, 2018). "Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution". Newsweek. Retrieved February 17, 2018. http://www.newsweek.com/photons-light-physics-808862

  244. Liang, Q. Y; Venkatramani, A. V; Cantu, S. H; Nicholson, T. L; Gullans, M. J; Gorshkov, A. V; Thompson, J. D; Chin, C; Lukin, M. D; Vuletić, V (February 16, 2018). "Observation of three-photon bound states in a quantum nonlinear medium". Science. 359 (6377): 783–786. arXiv:1709.01478. Bibcode:2018Sci...359..783L. doi:10.1126/science.aao7293. PMC 6467536. PMID 29449489. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467536

  245. "Scientists make major quantum computing breakthrough". Independent.co.uk. March 2018. Archived from the original on May 7, 2022. https://www.independent.co.uk/life-style/gadgets-and-tech/news/quantum-computing-logic-gates-oxford-university-breakthrough-latest-discovery-a8235281.html

  246. Giles, Martin (February 15, 2018). "Old-fashioned silicon might be the key to building ubiquitous quantum computers". MIT Technology Review. Retrieved July 5, 2018. https://www.technologyreview.com/s/610273/old-fashioned-silicon-might-be-the-key-to-building-ubiquitous-quantum-computers/

  247. Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K. (March 29, 2018). "A programmable two-qubit quantum processor in silicon". Nature. 555 (7698): 633–637. arXiv:1708.04214. Bibcode:2018Natur.555..633W. doi:10.1038/nature25766. ISSN 1476-4687. PMID 29443962. https://www.nature.com/articles/nature25766

  248. Emily Conover (March 5, 2018). "Google moves toward quantum supremacy with 72-qubit computer". Science News. Retrieved August 28, 2018. https://www.sciencenews.org/article/google-moves-toward-quantum-supremacy-72-qubit-computer

  249. Forrest, Conner (June 12, 2018). "Why Intel's smallest spin qubit chip could be a turning point in quantum computing". TechRepublic. Retrieved July 12, 2018. https://www.techrepublic.com/article/why-intels-smallest-spin-qubit-chip-could-be-a-turning-point-in-quantum-computing/

  250. Pillarisetty, R.; Thomas, N.; George, H.C.; Singh, K.; Roberts, J.; Lampert, L.; Amin, P.; Watson, T.F.; Zheng, G.; Torres, J.; Metz, M.; Kotlyar, R.; Keys, P.; Boter, J.M.; Dehollain, J.P. (January 17, 2019). "Qubit Device Integration Using Advanced Semiconductor Manufacturing Process Technology". 2018 IEEE International Electron Devices Meeting (IEDM). IEEE. pp. 6.3.1–6.3.4. doi:10.1109/IEDM.2018.8614624. ISBN 978-1-7281-1987-8. 978-1-7281-1987-8

  251. Hsu, Jeremy (January 9, 2018). "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". Institute of Electrical and Electronics Engineers. Retrieved July 5, 2018. https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy

  252. Nagata, K; Kuramitani, K; Sekiguchi, Y; Kosaka, H (August 13, 2018). "Universal holonomic quantum gates over geometric spin qubits with polarised microwaves". Nature Communications. 9 (3227): 3227. Bibcode:2018NatCo...9.3227N. doi:10.1038/s41467-018-05664-w. PMC 6089953. PMID 30104616. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089953

  253. Lenzini, Francesco (December 7, 2018). "Integrated photonic platform for quantum information with continuous variables". Science Advances. 4 (12): eaat9331. arXiv:1804.07435. Bibcode:2018SciA....4.9331L. doi:10.1126/sciadv.aat9331. PMC 6286167. PMID 30539143. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286167

  254. "Ion-based commercial quantum computer is a first". Physics World. December 17, 2018. https://physicsworld.com/a/ion-based-commercial-quantum-computer-is-a-first/

  255. "IonQ". https://ionq.com/

  256. 115th Congress (2018) (June 26, 2018). "H.R. 6227 (115th)". Legislation. GovTrack.us. Retrieved February 11, 2019. National Quantum Initiative Act{{cite web}}: CS1 maint: numeric names: authors list (link) https://www.govtrack.us/congress/bills/115/hr6227

  257. "President Trump has signed a $1.2 billon law to boost US quantum tech". MIT Technology Review. Retrieved February 11, 2019. https://www.technologyreview.com/the-download/612679/president-trump-has-signed-a-12-billon-law-to-boost-us-quantum-tech/

  258. "US National Quantum Initiative Act passed unanimously". The Stack. December 18, 2018. Retrieved February 11, 2019. https://thestack.com/data-centre/2018/12/18/us-national-quantum-initiative-act/

  259. Aron, Jacob (January 8, 2019). "IBM unveils its first commercial quantum computer". New Scientist. Retrieved January 8, 2019. https://www.newscientist.com/article/2189909-ibm-unveils-its-first-commercial-quantum-computer/

  260. "IBM unveils its first commercial quantum computer". TechCrunch. January 8, 2019. Retrieved February 18, 2019. https://techcrunch.com/2019/01/08/ibm-unveils-its-first-commercial-quantum-computer/

  261. Kokail, C; Maier, C; Van Bijnen, R; Brydges, T; Joshi, M. K; Jurcevic, P; Muschik, C. A; Silvi, P; Blatt, R; Roos, C; Zoller, P (May 15, 2019). "Self-verifying variational quantum simulation of lattice models". Science. 569 (7756): 355–360. arXiv:1810.03421. Bibcode:2019Natur.569..355K. doi:10.1038/s41586-019-1177-4. PMID 31092942. S2CID 53595106. /wiki/Nature_(journal)

  262. UNSW Media (May 23, 2019). "'Noise-cancelling headphones' for quantum computers: international collaboration launched". UNSW Newsroom. University of New South Wales. Retrieved April 16, 2022. https://newsroom.unsw.edu.au/news/science-tech/noise-cancelling-headphones%E2%80%99-quantum-computers-international-collaboration#:~:text=A%20new%20project%20to%20develop,quantum%20building%20blocks%2C%20or%20qubits.&text=Morello%27s%20team%20was%20the%20first,information%20in%20a%20silicon%20chip

  263. "Cancelling quantum noise". May 23, 2019. https://www.uts.edu.au/about/faculty-engineering-and-information-technology/news/cancelling-quantum-noise

  264. Unden, T.; Louzon, D.; Zwolak, M.; Zurek, W. H.; Jelezko, F. (October 1, 2019). "Revealing the Emergence of Classicality Using Nitrogen-Vacancy Centers". Physical Review Letters. 123 (140402): 140402. arXiv:1809.10456. Bibcode:2019PhRvL.123n0402U. doi:10.1103/PhysRevLett.123.140402. PMC 7003699. PMID 31702205. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003699

  265. Cho, A. (September 13, 2019). "Quantum Darwinism seen in diamond traps". Science. 365 (6458): 1070. Bibcode:2019Sci...365.1070C. doi:10.1126/science.365.6458.1070. PMID 31515367. S2CID 202567042. /wiki/Science_(journal)

  266. "Google may have taken a step towards quantum computing 'supremacy' (updated)". Engadget. September 23, 2019. Retrieved September 24, 2019. https://www.engadget.com/2019/09/23/google-quantum-supremacy/

  267. Porter, Jon (September 23, 2019). "Google may have just ushered in an era of 'quantum supremacy'". The Verge. Retrieved September 24, 2019. https://www.theverge.com/2019/9/23/20879485/google-quantum-supremacy-qubits-nasa

  268. Murgia, Waters, Madhumita, Richard (September 20, 2019). "Google claims to have reached quantum supremacy". Financial Times. Archived from the original on December 10, 2022. Retrieved September 24, 2019.{{cite web}}: CS1 maint: multiple names: authors list (link) https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebe1f17

  269. "Google Builds Circuit to Solve One of Quantum Computing's Biggest Problems – IEEE Spectrum". https://spectrum.ieee.org/google-team-builds-circuit-to-solve-one-of-quantum-computings-biggest-problems

  270. Garisto, Daniel. "Quantum Computer Made from Photons Achieves a New Record". Scientific American. Retrieved June 30, 2021. https://www.scientificamerican.com/article/quantum-computer-made-from-photons-achieves-a-new-record/

  271. z8826307 (April 16, 2020). "Hot qubits made in Sydney break one of the biggest constraints to practical quantum computers". UNSW Newsroom.{{cite web}}: CS1 maint: numeric names: authors list (link) https://newsroom.unsw.edu.au/news/science-tech/hot-qubits-made-sydney-break-one-biggest-constraints-practical-quantum-computers

  272. z8826307 (March 12, 2020). "Engineers crack 58-year-old puzzle on way to quantum breakthrough". UNSW Newsroom.{{cite web}}: CS1 maint: numeric names: authors list (link) https://newsroom.unsw.edu.au/news/science-tech/engineers-crack-58-year-old-puzzle-way-quantum-breakthrough

  273. "Wiring the quantum computer of the future: A novel simple build with existing technology". https://eurekalert.org/pub_releases/2020-04/tuos-wtq042320.php

  274. "Quantum researchers able to split one photon into three". phys.org. Retrieved March 9, 2020. https://phys.org/news/2020-02-quantum-photon.html

  275. Chang, C. W. Sandbo; Sabín, Carlos; Forn-Díaz, P.; Quijandría, Fernando; Vadiraj, A. M.; Nsanzineza, I.; Johansson, G.; Wilson, C. M. (January 16, 2020). "Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity". Physical Review X. 10 (1): 011011. arXiv:1907.08692. Bibcode:2020PhRvX..10a1011C. doi:10.1103/PhysRevX.10.011011. https://doi.org/10.1103%2FPhysRevX.10.011011

  276. "Artificial atoms create stable qubits for quantum computing". phys.org. Retrieved March 9, 2020. https://phys.org/news/2020-02-artificial-atoms-stable-qubits-quantum.html

  277. Leon, R. C. C.; Yang, C. H.; Hwang, J. C. C.; Lemyre, J. Camirand; Tanttu, T.; Huang, W.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Laucht, A.; Pioro-Ladrière, M.; Saraiva, A.; Dzurak, A. S. (February 11, 2020). "Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot". Nature Communications. 11 (1): 797. arXiv:1902.01550. Bibcode:2020NatCo..11..797L. doi:10.1038/s41467-019-14053-w. ISSN 2041-1723. PMC 7012832. PMID 32047151. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012832

  278. "Producing single photons from a stream of single electrons". phys.org. Retrieved March 8, 2020. https://phys.org/news/2020-02-photons-stream-electrons.html

  279. Hsiao, Tzu-Kan; Rubino, Antonio; Chung, Yousun; Son, Seok-Kyun; Hou, Hangtian; Pedrós, Jorge; Nasir, Ateeq; Éthier-Majcher, Gabriel; Stanley, Megan J.; Phillips, Richard T.; Mitchell, Thomas A.; Griffiths, Jonathan P.; Farrer, Ian; Ritchie, David A.; Ford, Christopher J. B. (February 14, 2020). "Single-photon emission from single-electron transport in a SAW-driven lateral light-emitting diode". Nature Communications. 11 (1): 917. arXiv:1901.03464. Bibcode:2020NatCo..11..917H. doi:10.1038/s41467-020-14560-1. ISSN 2041-1723. PMC 7021712. PMID 32060278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021712

  280. "Scientists 'film' a quantum measurement". phys.org. Retrieved March 9, 2020. https://phys.org/news/2020-02-scientists-quantum.html

  281. Pokorny, Fabian; Zhang, Chi; Higgins, Gerard; Cabello, Adán; Kleinmann, Matthias; Hennrich, Markus (February 25, 2020). "Tracking the Dynamics of an Ideal Quantum Measurement". Physical Review Letters. 124 (8): 080401. arXiv:1903.10398. Bibcode:2020PhRvL.124h0401P. doi:10.1103/PhysRevLett.124.080401. PMID 32167322. S2CID 85501331. /wiki/ArXiv_(identifier)

  282. "Scientists measure electron spin qubit without demolishing it". phys.org. Retrieved April 5, 2020. https://phys.org/news/2020-03-scientists-electron-qubit-demolishing.html

  283. Yoneda, J.; Takeda, K.; Noiri, A.; Nakajima, T.; Li, S.; Kamioka, J.; Kodera, T.; Tarucha, S. (March 2, 2020). "Quantum non-demolition readout of an electron spin in silicon". Nature Communications. 11 (1): 1144. arXiv:1910.11963. Bibcode:2020NatCo..11.1144Y. doi:10.1038/s41467-020-14818-8. ISSN 2041-1723. PMC 7052195. PMID 32123167. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052195

  284. "Engineers crack 58-year-old puzzle on way to quantum breakthrough". phys.org. Retrieved April 5, 2020. https://phys.org/news/2020-03-year-old-puzzle-quantum-breakthrough.html

  285. Asaad, Serwan; Mourik, Vincent; Joecker, Benjamin; Johnson, Mark A. I.; Baczewski, Andrew D.; Firgau, Hannes R.; Mądzik, Mateusz T.; Schmitt, Vivien; Pla, Jarryd J.; Hudson, Fay E.; Itoh, Kohei M.; McCallum, Jeffrey C.; Dzurak, Andrew S.; Laucht, Arne; Morello, Andrea (March 2020). "Coherent electrical control of a single high-spin nucleus in silicon". Nature. 579 (7798): 205–209. arXiv:1906.01086. Bibcode:2020Natur.579..205A. doi:10.1038/s41586-020-2057-7. PMID 32161384. S2CID 174797899. /wiki/ArXiv_(identifier)

  286. Laboratory, The Army Research. "Scientists create quantum sensor that covers entire radio frequency spectrum". phys.org. Retrieved April 14, 2024. https://phys.org/news/2020-03-scientists-quantum-sensor-entire-radio.html

  287. Meyer, David H; Castillo, Zachary A; Cox, Kevin C; Kunz, Paul D (January 10, 2020). "Assessment of Rydberg atoms for wideband electric field sensing". Journal of Physics B: Atomic, Molecular and Optical Physics. 53 (3): 034001. arXiv:1910.00646. Bibcode:2020JPhB...53c4001M. doi:10.1088/1361-6455/ab6051. ISSN 0953-4075. S2CID 203626886. /wiki/ArXiv_(identifier)

  288. "Researchers demonstrate the missing link for a quantum internet". phys.org. Retrieved April 7, 2020. https://phys.org/news/2020-03-link-quantum-internet.html

  289. Bhaskar, M. K.; Riedinger, R.; Machielse, B.; Levonian, D. S.; Nguyen, C. T.; Knall, E. N.; Park, H.; Englund, D.; Lončar, M.; Sukachev, D. D.; Lukin, M. D. (April 2020). "Experimental demonstration of memory-enhanced quantum communication". Nature. 580 (7801): 60–64. arXiv:1909.01323. Bibcode:2020Natur.580...60B. doi:10.1038/s41586-020-2103-5. PMID 32238931. S2CID 202539813. /wiki/ArXiv_(identifier)

  290. Delbert, Caroline (April 17, 2020). "Hot Qubits Could Deliver a Quantum Computing Breakthrough". Popular Mechanics. Retrieved May 16, 2020. https://www.popularmechanics.com/science/a32170397/hot-qubits-quantum-computing-breakthrough/

  291. "'Hot' qubits crack quantum computing temperature barrier – ABC News". www.abc.net.au. April 15, 2020. Retrieved May 16, 2020. https://www.abc.net.au/news/science/2020-04-16/hot-qubits-crack-quantum-computing-temperature-barrier/12132400

  292. "Hot qubits break one of the biggest constraints to practical quantum computers". phys.org. Retrieved May 16, 2020. https://phys.org/news/2020-04-hot-qubits-biggest-constraints-quantum.html

  293. Yang, C. H.; Leon, R. C. C.; Hwang, J. C. C.; Saraiva, A.; Tanttu, T.; Huang, W.; Camirand Lemyre, J.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Pioro-Ladrière, M.; Laucht, A.; Dzurak, A. S. (April 2020). "Operation of a silicon quantum processor unit cell above one kelvin". Nature. 580 (7803): 350–354. arXiv:1902.09126. Bibcode:2020Natur.580..350Y. doi:10.1038/s41586-020-2171-6. PMID 32296190. S2CID 119520750. /wiki/ArXiv_(identifier)

  294. "New discovery settles long-standing debate about photovoltaic materials". phys.org. Retrieved May 17, 2020. https://phys.org/news/2020-04-discovery-long-standing-debate-photovoltaic-materials.html

  295. Liu, Z.; Vaswani, C.; Yang, X.; Zhao, X.; Yao, Y.; Song, Z.; Cheng, D.; Shi, Y.; Luo, L.; Mudiyanselage, D.-H.; Huang, C.; Park, J.-M.; Kim, R. H. J.; Zhao, J.; Yan, Y.; Ho, K.-M.; Wang, J. (April 16, 2020). "Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite C H 3 N H 3 P b I 3 {\displaystyle {\mathrm {CH} }_{3}{\mathrm {NH} }_{3}{\mathrm {PbI} }_{3}} ". Physical Review Letters. 124 (15): 157401. arXiv:1905.12373. doi:10.1103/PhysRevLett.124.157401. PMID 32357060. S2CID 214606050. https://doi.org/10.1103%2FPhysRevLett.124.157401

  296. "Scientists demonstrate quantum radar prototype". phys.org. Retrieved June 12, 2020. https://phys.org/news/2020-05-scientists-quantum-radar-prototype.html

  297. "'Quantum radar' uses entangled photons to detect objects". New Atlas. May 12, 2020. Retrieved June 12, 2020. https://newatlas.com/physics/quantum-radar-entangled-photons/

  298. Barzanjeh, S.; Pirandola, S.; Vitali, D.; Fink, J. M. (May 1, 2020). "Microwave quantum illumination using a digital receiver". Science Advances. 6 (19): eabb0451. arXiv:1908.03058. Bibcode:2020SciA....6..451B. doi:10.1126/sciadv.abb0451. PMC 7272231. PMID 32548249. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272231

  299. "Scientists break the link between a quantum material's spin and orbital states". phys.org. Retrieved June 12, 2020. https://phys.org/news/2020-05-scientists-link-quantum-material-orbital.html

  300. Shen, L.; Mack, S. A.; Dakovski, G.; Coslovich, G.; Krupin, O.; Hoffmann, M.; Huang, S.-W.; Chuang, Y-D.; Johnson, J. A.; Lieu, S.; Zohar, S.; Ford, C.; Kozina, M.; Schlotter, W.; Minitti, M. P.; Fujioka, J.; Moore, R.; Lee, W-S.; Hussain, Z.; Tokura, Y.; Littlewood, P.; Turner, J. J. (May 12, 2020). "Decoupling spin–orbital correlations in a layered manganite amidst ultrafast hybridized charge-transfer band excitation". Physical Review B. 101 (20): 201103. arXiv:1912.10234. Bibcode:2020PhRvB.101t1103S. doi:10.1103/PhysRevB.101.201103. https://doi.org/10.1103%2FPhysRevB.101.201103

  301. "Photon discovery is a major step toward large-scale quantum technologies". phys.org. Retrieved June 14, 2020. https://phys.org/news/2020-05-photon-discovery-major-large-scale-quantum.html

  302. "Physicists develop integrated photon source for macro quantum-photonics". optics.org. Retrieved June 14, 2020. https://optics.org/news/11/5/44

  303. Paesani, S.; Borghi, M.; Signorini, S.; Maïnos, A.; Pavesi, L.; Laing, A. (May 19, 2020). "Near-ideal spontaneous photon sources in silicon quantum photonics". Nature Communications. 11 (1): 2505. arXiv:2005.09579. Bibcode:2020NatCo..11.2505P. doi:10.1038/s41467-020-16187-8. PMC 7237445. PMID 32427911. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237445

  304. Lachmann, Maike D.; Rasel, Ernst M. (June 11, 2020). "Quantum matter orbits Earth". Nature. 582 (7811): 186–187. Bibcode:2020Natur.582..186L. doi:10.1038/d41586-020-01653-6. PMID 32528088. https://doi.org/10.1038%2Fd41586-020-01653-6

  305. "Quantum 'fifth state of matter' observed in space for first time". phys.org. Retrieved July 4, 2020. https://phys.org/news/2020-06-quantum-state-space.html

  306. Aveline, David C.; Williams, Jason R.; Elliott, Ethan R.; Dutenhoffer, Chelsea; Kellogg, James R.; Kohel, James M.; Lay, Norman E.; Oudrhiri, Kamal; Shotwell, Robert F.; Yu, Nan; Thompson, Robert J. (June 2020). "Observation of Bose–Einstein condensates in an Earth-orbiting research lab". Nature. 582 (7811): 193–197. Bibcode:2020Natur.582..193A. doi:10.1038/s41586-020-2346-1. PMID 32528092. S2CID 219568565. /wiki/Bibcode_(identifier)

  307. "The smallest motor in the world". phys.org. Retrieved July 4, 2020. https://phys.org/news/2020-06-smallest-motor-world.html

  308. "Nano-motor of just 16 atoms runs at the boundary of quantum physics". New Atlas. June 17, 2020. Retrieved July 4, 2020. https://newatlas.com/physics/nano-motor-quantum-physics/

  309. Stolz, Samuel; Gröning, Oliver; Prinz, Jan; Brune, Harald; Widmer, Roland (June 15, 2020). "Molecular motor crossing the frontier of classical to quantum tunneling motion". Proceedings of the National Academy of Sciences. 117 (26): 14838–14842. Bibcode:2020PNAS..11714838S. doi:10.1073/pnas.1918654117. ISSN 0027-8424. PMC 7334648. PMID 32541061. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334648

  310. "New techniques improve quantum communication, entangle phonons". phys.org. Retrieved July 5, 2020. https://phys.org/news/2020-06-techniques-quantum-entangle-phonons.html

  311. Schirber, Michael (June 12, 2020). "Quantum Erasing with Phonons". Physics. Retrieved July 5, 2020. https://physics.aps.org/articles/v13/95

  312. Chang, H.-S.; Zhong, Y. P.; Bienfait, A.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 17, 2020). "Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System". Physical Review Letters. 124 (24): 240502. arXiv:2005.12334. Bibcode:2020PhRvL.124x0502C. doi:10.1103/PhysRevLett.124.240502. PMID 32639797. S2CID 218889298. /wiki/ArXiv_(identifier)

  313. Bienfait, A.; Zhong, Y. P.; Chang, H.-S.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 12, 2020). "Quantum Erasure Using Entangled Surface Acoustic Phonons". Physical Review X. 10 (2): 021055. arXiv:2005.09311. Bibcode:2020PhRvX..10b1055B. doi:10.1103/PhysRevX.10.021055. https://doi.org/10.1103%2FPhysRevX.10.021055

  314. "Honeywell claims to have world's highest performing quantum computer according to IBM's benchmark". ZDNet. https://www.zdnet.com/article/honeywell-claims-to-have-worlds-highest-performing-quantum-computer-according-to-ibms-benchmark

  315. "UChicago scientists discover way to make quantum states last 10,000 times longer". Argonne National Laboratory. August 13, 2020. Retrieved August 14, 2020. https://www.anl.gov/article/uchicago-scientists-discover-way-to-make-quantum-states-last-10000-times-longer

  316. Miao, Kevin C.; Blanton, Joseph P.; Anderson, Christopher P.; Bourassa, Alexandre; Crook, Alexander L.; Wolfowicz, Gary; Abe, Hiroshi; Ohshima, Takeshi; Awschalom, David D. (May 12, 2020). "Universal coherence protection in a solid-state spin qubit". Science. 369 (6510): 1493–1497. arXiv:2005.06082v1. Bibcode:2020Sci...369.1493M. doi:10.1126/science.abc5186. PMID 32792463. S2CID 218613907. /wiki/ArXiv_(identifier)

  317. "Quantum computers may be destroyed by high-energy particles from space". New Scientist. Retrieved September 7, 2020. https://www.newscientist.com/article/2252933-quantum-computers-may-be-destroyed-by-high-energy-particles-from-space/

  318. "Cosmic rays may soon stymie quantum computing". phys.org. Retrieved September 7, 2020. https://phys.org/news/2020-08-cosmic-rays-stymie-quantum.html

  319. Vepsäläinen, Antti P.; Karamlou, Amir H.; Orrell, John L.; Dogra, Akshunna S.; Loer, Ben; Vasconcelos, Francisca; Kim, David K.; Melville, Alexander J.; Niedzielski, Bethany M.; Yoder, Jonilyn L.; Gustavsson, Simon; Formaggio, Joseph A.; VanDevender, Brent A.; Oliver, William D. (August 2020). "Impact of ionizing radiation on superconducting qubit coherence". Nature. 584 (7822): 551–556. arXiv:2001.09190. Bibcode:2020Natur.584..551V. doi:10.1038/s41586-020-2619-8. ISSN 1476-4687. PMID 32848227. S2CID 210920566. Retrieved September 7, 2020. https://www.nature.com/articles/s41586-020-2619-8

  320. "Google conducts largest chemical simulation on a quantum computer to date". phys.org. Retrieved September 7, 2020. https://phys.org/news/2020-08-google-largest-chemical-simulation-quantum.html

  321. Savage, Neil. "Google's Quantum Computer Achieves Chemistry Milestone". Scientific American. Retrieved September 7, 2020. https://www.scientificamerican.com/article/googles-quantum-computer-achieves-chemistry-milestone/

  322. Arute, Frank; et al. (Google AI Quantum Collaborators) (August 28, 2020). "Hartree–Fock on a superconducting qubit quantum computer". Science. 369 (6507): 1084–1089. arXiv:2004.04174. Bibcode:2020Sci...369.1084.. doi:10.1126/science.abb9811. ISSN 0036-8075. PMID 32855334. S2CID 215548188. Retrieved September 7, 2020. https://www.science.org/doi/10.1126/science.abb9811

  323. "Multi-user communication network paves the way towards the quantum internet". Physics World. September 8, 2020. Retrieved October 8, 2020. https://physicsworld.com/a/multi-user-communication-network-paves-the-way-towards-the-quantum-internet/

  324. Joshi, Siddarth Koduru; Aktas, Djeylan; Wengerowsky, Sören; Lončarić, Martin; Neumann, Sebastian Philipp; Liu, Bo; Scheidl, Thomas; Lorenzo, Guillermo Currás; Samec, Željko; Kling, Laurent; Qiu, Alex; Razavi, Mohsen; Stipčević, Mario; Rarity, John G.; Ursin, Rupert (September 1, 2020). "A trusted node–free eight-user metropolitan quantum communication network". Science Advances. 6 (36): eaba0959. arXiv:1907.08229. Bibcode:2020SciA....6..959J. doi:10.1126/sciadv.aba0959. ISSN 2375-2548. PMC 7467697. PMID 32917585. Text and images are available under a Creative Commons Attribution 4.0 International License. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467697

  325. "First Photonic Quantum Computer on the Cloud – IEEE Spectrum". https://spectrum.ieee.org/photonic-quantum

  326. "Quantum entanglement realized between distant large objects". phys.org. Retrieved October 9, 2020. https://phys.org/news/2020-09-quantum-entanglement-distant-large.html

  327. Thomas, Rodrigo A.; Parniak, Michał; Østfeldt, Christoffer; Møller, Christoffer B.; Bærentsen, Christian; Tsaturyan, Yeghishe; Schliesser, Albert; Appel, Jürgen; Zeuthen, Emil; Polzik, Eugene S. (September 21, 2020). "Entanglement between distant macroscopic mechanical and spin systems". Nature Physics. 17 (2): 228–233. arXiv:2003.11310. doi:10.1038/s41567-020-1031-5. ISSN 1745-2481. S2CID 214641162. Retrieved October 9, 2020. https://www.nature.com/articles/s41567-020-1031-5

  328. "Chinese team unveils exceedingly fast quantum computer". China Daily. December 4, 2020. Retrieved December 5, 2020. http://global.chinadaily.com.cn/a/202012/04/WS5fc96deba31024ad0ba99abf.html

  329. "China Stakes Its Claim to Quantum Supremacy". Wired. December 3, 2020. Retrieved December 5, 2020. https://www.wired.com/story/china-stakes-claim-quantum-supremacy/

  330. Zhong, Han-Sen; Wang, Hui; Deng, Yu-Hao; Chen, Ming-Cheng; Peng, Li-Chao; Luo, Yi-Han; Qin, Jian; Wu, Dian; Ding, Xing; Hu, Yi; Hu, Peng; Yang, Xiao-Yan; Zhang, Wei-Jun; Li, Hao; Li, Yuxuan; Jiang, Xiao; Gan, Lin; Yang, Guangwen; You, Lixing; Wang, Zhen; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei (December 18, 2020). "Quantum computational advantage using photons". Science. 370 (6523): 1460–1463. arXiv:2012.01625. Bibcode:2020Sci...370.1460Z. doi:10.1126/science.abe8770. ISSN 0036-8075. PMID 33273064. S2CID 227254333. Retrieved January 22, 2021. https://www.science.org/doi/full/10.1126/science.abe8770

  331. "Honeywell introduces quantum computing as a service with subscription offering". ZDNet. https://www.zdnet.com/article/honeywell-introduces-quantum-computing-as-a-service-with-subscription-offering/#ftag=CAD-00-10aag7e

  332. "Three Frosty Innovations for Better Quantum Computers – IEEE Spectrum". https://spectrum.ieee.org/three-super-cold-devices-quantum-computers

  333. "Scientists Achieve Direct Counterfactual Quantum Communication For The First Time". Futurism. Retrieved January 16, 2021. https://futurism.com/scientists-achieve-direct-counterfactual-quantum-communication-for-the-first-time

  334. "Elementary particles part ways with their properties". phys.org. Retrieved January 16, 2021. https://phys.org/news/2020-12-elementary-particles-ways-properties.html

  335. McRae, Mike. "In a Mind-Bending New Paper, Physicists Give Schrodinger's Cat a Cheshire Grin". ScienceAlert. Retrieved January 16, 2021. https://www.sciencealert.com/schrodinger-s-cat-gets-a-cheshire-grin-in-a-mind-bending-quantum-physics-analysis

  336. Aharonov, Yakir; Rohrlich, Daniel (December 21, 2020). "What Is Nonlocal in Counterfactual Quantum Communication?". Physical Review Letters. 125 (26): 260401. arXiv:2011.11667. Bibcode:2020PhRvL.125z0401A. doi:10.1103/PhysRevLett.125.260401. PMID 33449741. S2CID 145994494. Retrieved January 16, 2021. Available under CC BY 4.0. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.260401

  337. "The world's first integrated quantum communication network". phys.org. Retrieved February 11, 2021. https://phys.org/news/2021-01-world-quantum-network.html

  338. Chen, Yu-Ao; Zhang, Qiang; Chen, Teng-Yun; Cai, Wen-Qi; Liao, Sheng-Kai; Zhang, Jun; Chen, Kai; Yin, Juan; Ren, Ji-Gang; Chen, Zhu; Han, Sheng-Long; Yu, Qing; Liang, Ken; Zhou, Fei; Yuan, Xiao; Zhao, Mei-Sheng; Wang, Tian-Yin; Jiang, Xiao; Zhang, Liang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Lu, Chao-Yang; Shu, Rong; Wang, Jian-Yu; Li, Li; Liu, Nai-Le; Xu, Feihu; Wang, Xiang-Bin; Peng, Cheng-Zhi; Pan, Jian-Wei (January 2021). "An integrated space-to-ground quantum communication network over 4,600 kilometres". Nature. 589 (7841): 214–219. Bibcode:2021Natur.589..214C. doi:10.1038/s41586-020-03093-8. ISSN 1476-4687. PMID 33408416. S2CID 230812317. Retrieved February 11, 2021. https://www.nature.com/articles/s41586-020-03093-8

  339. "Error-protected quantum bits entangled for the first time". phys.org. Retrieved August 30, 2021. https://phys.org/news/2021-01-error-protected-quantum-bits-entangled.html

  340. Erhard, Alexander; Poulsen Nautrup, Hendrik; Meth, Michael; Postler, Lukas; Stricker, Roman; Stadler, Martin; Negnevitsky, Vlad; Ringbauer, Martin; Schindler, Philipp; Briegel, Hans J.; Blatt, Rainer; Friis, Nicolai; Monz, Thomas (January 2021). "Entangling logical qubits with lattice surgery". Nature. 589 (7841): 220–224. arXiv:2006.03071. Bibcode:2021Natur.589..220E. doi:10.1038/s41586-020-03079-6. ISSN 1476-4687. PMID 33442044. S2CID 219401398. Retrieved August 30, 2021. https://www.nature.com/articles/s41586-020-03079-6

  341. "Using drones to create local quantum networks". phys.org. Retrieved February 12, 2021. https://phys.org/news/2021-01-drones-local-quantum-networks.html

  342. Liu, Hua-Ying; Tian, Xiao-Hui; Gu, Changsheng; Fan, Pengfei; Ni, Xin; Yang, Ran; Zhang, Ji-Ning; Hu, Mingzhe; Guo, Jian; Cao, Xun; Hu, Xiaopeng; Zhao, Gang; Lu, Yan-Qing; Gong, Yan-Xiao; Xie, Zhenda; Zhu, Shi-Ning (January 15, 2021). "Optical-Relayed Entanglement Distribution Using Drones as Mobile Nodes". Physical Review Letters. 126 (2): 020503. Bibcode:2021PhRvL.126b0503L. doi:10.1103/PhysRevLett.126.020503. PMID 33512193. S2CID 231761406. Retrieved February 12, 2021. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.020503

  343. "BMW explores quantum computing to boost supply chain efficiencies". ZDNet. https://www.zdnet.com/article/bmw-explores-quantum-computing-to-boost-supply-chain-efficiencies/#ftag=CAD-00-10aag7e

  344. "Physicists develop record-breaking source for single photons". phys.org. Retrieved February 12, 2021. https://phys.org/news/2021-01-physicists-record-breaking-source-photons.html

  345. Tomm, Natasha; Javadi, Alisa; Antoniadis, Nadia Olympia; Najer, Daniel; Löbl, Matthias Christian; Korsch, Alexander Rolf; Schott, Rüdiger; Valentin, Sascha René; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John (January 28, 2021). "A bright and fast source of coherent single photons". Nature Nanotechnology. 16 (4): 399–403. arXiv:2007.12654. Bibcode:2021NatNa..16..399T. doi:10.1038/s41565-020-00831-x. ISSN 1748-3395. PMID 33510454. S2CID 220769410. Retrieved February 12, 2021. https://www.nature.com/articles/s41565-020-00831-x

  346. "You can now try out a quantum computer with Microsoft's Azure cloud service". https://www.cnet.com/tech/computing/microsoft-opens-its-azure-quantum-computer-cloud-service-to-the-public/

  347. "Quantum systems learn joint computing". phys.org. Retrieved March 7, 2021. https://phys.org/news/2021-02-quantum-joint.html

  348. Daiss, Severin; Langenfeld, Stefan; Welte, Stephan; Distante, Emanuele; Thomas, Philip; Hartung, Lukas; Morin, Olivier; Rempe, Gerhard (February 5, 2021). "A quantum-logic gate between distant quantum-network modules". Science. 371 (6529): 614–617. arXiv:2103.13095. Bibcode:2021Sci...371..614D. doi:10.1126/science.abe3150. ISSN 0036-8075. PMID 33542133. S2CID 231808141. Retrieved March 7, 2021. https://www.science.org/doi/10.1126/science.abe3150

  349. "Quantum computing: Honeywell just quadrupled the power of its computer". ZDNet. https://www.zdnet.com/article/quantum-computing-honeywell-just-quadrupled-the-power-of-its-computer/

  350. "We could detect alien civilizations through their interstellar quantum communication". phys.org. Retrieved May 9, 2021. https://phys.org/news/2021-04-alien-civilizations-interstellar-quantum.html

  351. Hippke, Michael (April 13, 2021). "Searching for Interstellar Quantum Communications". The Astronomical Journal. 162 (1): 1. arXiv:2104.06446. Bibcode:2021AJ....162....1H. doi:10.3847/1538-3881/abf7b7. S2CID 233231350. https://doi.org/10.3847%2F1538-3881%2Fabf7b7

  352. "Vibrating drumheads are entangled quantum mechanically". Physics World. May 17, 2021. Retrieved June 14, 2021. https://physicsworld.com/a/vibrating-drumheads-are-entangled-quantum-mechanically/

  353. Lépinay, Laure Mercier de; Ockeloen-Korppi, Caspar F.; Woolley, Matthew J.; Sillanpää, Mika A. (May 7, 2021). "Quantum mechanics–free subsystem with mechanical oscillators". Science. 372 (6542): 625–629. arXiv:2009.12902. Bibcode:2021Sci...372..625M. doi:10.1126/science.abf5389. hdl:1959.4/unsworks_79394. ISSN 0036-8075. PMID 33958476. S2CID 221971015. Retrieved June 14, 2021. https://www.science.org/doi/10.1126/science.abf5389

  354. Kotler, Shlomi; Peterson, Gabriel A.; Shojaee, Ezad; Lecocq, Florent; Cicak, Katarina; Kwiatkowski, Alex; Geller, Shawn; Glancy, Scott; Knill, Emanuel; Simmonds, Raymond W.; Aumentado, José; Teufel, John D. (May 7, 2021). "Direct observation of deterministic macroscopic entanglement". Science. 372 (6542): 622–625. arXiv:2004.05515. Bibcode:2021Sci...372..622K. doi:10.1126/science.abf2998. ISSN 0036-8075. PMID 33958475. S2CID 233872863. Retrieved June 14, 2021. https://www.science.org/doi/10.1126/science.abf2998

  355. "TOSHIBA ANNOUNCES BREAKTHROUGH IN LONG DISTANCE QUANTUM COMMUNICATION". Toshiba. June 12, 2021. Retrieved June 12, 2021. https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/toshiba-announces-breakthrough-in-long-distance-quantum-communication

  356. "Researchers create an 'un-hackable' quantum network over hundreds of kilometers using optical fiber". ZDNet. June 8, 2021. Retrieved June 12, 2021. https://www.zdnet.com/article/researchers-created-an-un-hackable-quantum-network-over-hundreds-of-kilometers-using-optical-fiber/

  357. Pittaluga, Mirko; Minder, Mariella; Lucamarini, Marco; Sanzaro, Mirko; Woodward, Robert I.; Li, Ming-Jun; Yuan, Zhiliang; Shields, Andrew J. (July 2021). "600-km repeater-like quantum communications with dual-band stabilization". Nature Photonics. 15 (7): 530–535. arXiv:2012.15099. Bibcode:2021NaPho..15..530P. doi:10.1038/s41566-021-00811-0. ISSN 1749-4893. S2CID 229923162. Retrieved July 19, 2021. https://www.nature.com/articles/s41566-021-00811-0

  358. "Quantum computer is smallest ever, claim physicists". Physics World. July 7, 2021. Retrieved July 11, 2021. https://physicsworld.com/a/quantum-computer-is-smallest-ever-claim-physicists/

  359. Pogorelov, I.; Feldker, T.; Marciniak, Ch. D.; Postler, L.; Jacob, G.; Krieglsteiner, O.; Podlesnic, V.; Meth, M.; Negnevitsky, V.; Stadler, M.; Höfer, B.; Wächter, C.; Lakhmanskiy, K.; Blatt, R.; Schindler, P.; Monz, T. (June 17, 2021). "Compact Ion-Trap Quantum Computing Demonstrator". PRX Quantum. 2 (2): 020343. arXiv:2101.11390. Bibcode:2021PRXQ....2b0343P. doi:10.1103/PRXQuantum.2.020343. S2CID 231719119. Retrieved July 11, 2021. https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.020343

  360. "IBM researchers demonstrate the advantage that quantum computers have over classical computers". ZDNet. https://www.zdnet.com/article/ibm-researchers-demonstrate-the-advantage-that-quantum-computers-have-over-classical-computers/?ftag=TRE-03-10aaa6b&bhid=28974009886604832149562936007498&mid=13420444&cid=2193388821&eh=70013a02f0e22ff3dec6ccb58d5e95e4e57150473218ab3ecaf4d84e5143828a

  361. "Bigger quantum computers, faster: This new idea could be the quickest route to real world apps". ZDNet. https://www.zdnet.com/article/quantum-computing-this-new-approach-could-be-the-fastest-path-to-real-applications/?ftag=TRE-03-10aaa6b&bhid=28974009886604832149562936007498&mid=13420444&cid=2193388821&eh=70013a02f0e22ff3dec6ccb58d5e95e4e57150473218ab3ecaf4d84e5143828a

  362. "Harvard-led physicists take big step in race to quantum computing". Scienmag: Latest Science and Health News. July 9, 2021. Retrieved August 14, 2021. https://scienmag.com/harvard-led-physicists-take-big-step-in-race-to-quantum-computing/

  363. Ebadi, Sepehr; Wang, Tout T.; Levine, Harry; Keesling, Alexander; Semeghini, Giulia; Omran, Ahmed; Bluvstein, Dolev; Samajdar, Rhine; Pichler, Hannes; Ho, Wen Wei; Choi, Soonwon; Sachdev, Subir; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (July 2021). "Quantum phases of matter on a 256-atom programmable quantum simulator". Nature. 595 (7866): 227–232. arXiv:2012.12281. Bibcode:2021Natur.595..227E. doi:10.1038/s41586-021-03582-4. ISSN 1476-4687. PMID 34234334. S2CID 229363764. /wiki/ArXiv_(identifier)

  364. Scholl, Pascal; Schuler, Michael; Williams, Hannah J.; Eberharter, Alexander A.; Barredo, Daniel; Schymik, Kai-Niklas; Lienhard, Vincent; Henry, Louis-Paul; Lang, Thomas C.; Lahaye, Thierry; Läuchli, Andreas M. (July 7, 2021). "Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms". Nature. 595 (7866): 233–238. arXiv:2012.12268. Bibcode:2021Natur.595..233S. doi:10.1038/s41586-021-03585-1. ISSN 1476-4687. PMID 34234335. S2CID 229363462. https://www.nature.com/articles/s41586-021-03585-1

  365. "China quantum computers are 1 million times more powerful Google's". TechHQ. October 28, 2021. Retrieved November 16, 2021. https://techhq.com/2021/10/china-has-quantum-computers-that-are-a-million-times-more-powerful-than-googles/

  366. "China's quantum computing efforts surpasses the West's again". Tech Wire Asia. November 3, 2021. Retrieved November 16, 2021. https://techwireasia.com/2021/11/chinas-quantum-computing-efforts-surpasses-the-wests-yet-again/

  367. "Canadian researchers achieve first quantum simulation of baryons". University of Waterloo. November 11, 2021. Retrieved November 12, 2021. https://uwaterloo.ca/news/media/canadian-researchers-achieve-first-quantum-simulation

  368. Atas, Yasar Y.; Zhang, Jinglei; Lewis, Randy; Jahanpour, Amin; Haase, Jan F.; Muschik, Christine A. (November 11, 2021). "SU(2) hadrons on a quantum computer via a variational approach". Nature Communications. 12 (1): 6499. Bibcode:2021NatCo..12.6499A. doi:10.1038/s41467-021-26825-4. ISSN 2041-1723. PMC 8586147. PMID 34764262. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586147

  369. "IBM creates largest ever superconducting quantum computer". New Scientist. Retrieved February 12, 2022. https://www.newscientist.com/article/2297583-ibm-creates-largest-ever-superconducting-quantum-computer/

  370. "IBM Unveils Breakthrough 127-Qubit Quantum Processor". IBM Newsroom. Retrieved January 12, 2022. https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor

  371. "Europe's First Quantum Computer with More Than 5K Qubits Launched at Jülich". HPC Wire. January 18, 2022. Archived from the original on January 20, 2022. Retrieved January 20, 2022. https://www.hpcwire.com/off-the-wire/europes-first-quantum-computer-with-more-than-5k-qubits-launched-at-julich/

  372. "Artificial neurons go quantum with photonic circuits". University of Vienna. Retrieved April 19, 2022. https://phys.org/news/2022-03-artificial-neurons-quantum-photonic-circuits.html

  373. Spagnolo, Michele; Morris, Joshua; Piacentini, Simone; Antesberger, Michael; Massa, Francesco; Crespi, Andrea; Ceccarelli, Francesco; Osellame, Roberto; Walther, Philip (April 2022). "Experimental photonic quantum memristor". Nature Photonics. 16 (4): 318–323. arXiv:2105.04867. Bibcode:2022NaPho..16..318S. doi:10.1038/s41566-022-00973-5. ISSN 1749-4893. S2CID 234358015. /wiki/ArXiv_(identifier)

  374. Zwerver, A. M. J.; Krähenmann, T.; Watson, T. F.; Lampert, L.; George, H. C.; Pillarisetty, R.; Bojarski, S. A.; Amin, P.; Amitonov, S. V.; Boter, J. M.; Caudillo, R.; Correas-Serrano, D.; Dehollain, J. P.; Droulers, G.; Henry, E. M.; Kotlyar, R.; Lodari, M.; Luthi, F.; Michalak, D. J.; Mueller, B. K.; Neyens, S.; Roberts, J.; Samkharadze, N.; Zheng, G.; Zietz, O. K.; Scappucci, G.; Vandersypen, L. M. K.; Clarke, J. S. (March 29, 2022). "Qubits made by advanced semiconductor manufacturing". Nature Electronics. 5 (3): 184–190. arXiv:2101.12650. doi:10.1038/s41928-022-00727-9. ISSN 2520-1131. https://wwwnature.com/articles/s41928-022-00727-9

  375. "Quantinuum Announces Quantum Volume 4096 Achievement". www.quantinuum.com. April 14, 2022. Retrieved May 2, 2022. https://www.quantinuum.com/pressrelease/quantinuum-announces-quantum-volume-4096-achievement

  376. Universität Innsbruck (May 27, 2022). "Error-Free Quantum Computing Gets Real". www.uibk.ac.at. Retrieved February 13, 2023. https://www.uibk.ac.at/en/newsroom/2022/error-free-quantum-computing-gets-real/

  377. "A Huge Step Forward in Quantum Computing Was Just Announced: The First-Ever Quantum Circuit". Science Alert. June 22, 2022. Retrieved June 23, 2022. https://www.sciencealert.com/a-huge-step-forward-in-quantum-computing-was-just-announced-the-first-ever-quantum-circuit

  378. Kiczynski, M.; Gorman, S. K.; Geng, H.; Donnelly, M. B.; Chung, Y.; He, Y.; Keizer, J. G.; Simmons, M. Y. (June 2022). "Engineering topological states in atom-based semiconductor quantum dots". Nature. 606 (7915): 694–699. Bibcode:2022Natur.606..694K. doi:10.1038/s41586-022-04706-0. ISSN 1476-4687. PMC 9217742. PMID 35732762. Press release: z3525214 (June 23, 2022). "UNSW quantum scientists deliver world's first integrated circuit at the atomic scale". University of New South Wales. Retrieved June 23, 2022.{{cite web}}: CS1 maint: numeric names: authors list (link) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217742

  379. Conover, Emily (July 5, 2022). "Aliens could send quantum messages to Earth, calculations suggest". Science News. Retrieved July 13, 2022. https://www.sciencenews.org/article/alien-quantum-communication-extraterrestrial-communication-signal

  380. Berera, Arjun; Calderón-Figueroa, Jaime (June 28, 2022). "Viability of quantum communication across interstellar distances". Physical Review D. 105 (12): 123033. arXiv:2205.11816. Bibcode:2022PhRvD.105l3033B. doi:10.1103/PhysRevD.105.123033. S2CID 249017926. /wiki/ArXiv_(identifier)

  381. Universität Innsbruck (July 21, 2022). "Quantum computer works with more than zero and one". www.uibk.ac.at. Retrieved February 13, 2023. https://www.uibk.ac.at/en/newsroom/2022/quantum-computer-works-with-more-than-zero-and-one/

  382. Purdue University (August 15, 2022). "2D array of electron and nuclear spin qubits opens new frontier in quantum science". Phys.org. /wiki/Purdue_University

  383. Max Planck Society (August 24, 2022). "Physicists entangle more than a dozen photons efficiently". Nature. 608 (7924). Phys.org: 677–681. arXiv:2205.12736. Bibcode:2022Natur.608..677T. doi:10.1038/s41586-022-04987-5. PMC 9402438. PMID 36002484. Retrieved August 25, 2022. /wiki/Max_Planck_Society

  384. Ritter, Florian; Max Planck Society. "Metasurfaces offer new possibilities for quantum research". Phys.org. /wiki/Max_Planck_Society

  385. McRae, Mike (August 31, 2022). "Quantum Physicists Set New Record For Entangling Photons Together". Science Alert. https://www.sciencealert.com/quantum-physicists-set-new-record-for-entangling-photons-together

  386. National Institute of Information and Communications Technology (September 2, 2022). "New method to systematically find optimal quantum operation sequences for quantum computers". Phys.org. Archived from the original on September 4, 2022. Retrieved September 8, 2023.{{cite web}}: CS1 maint: bot: original URL status unknown (link) /wiki/National_Institute_of_Information_and_Communications_Technology

  387. University of New South Wales (September 30, 2022). "For the longest time: Quantum computing engineers set new standard in silicon chip performance". Science Advances. 7 (33). Australia: Phys.org. doi:10.1126/sciadv.abg9158. PMC 8363148. PMID 34389538. Archived from the original on October 1, 2022. Retrieved September 8, 2023.{{cite journal}}: CS1 maint: bot: original URL status unknown (link) https://archive.today/20221001222634/https://phys.org/news/2022-09-longest-quantum-standard-silicon-chip.amp

  388. "IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two". IBM. November 9, 2022. Retrieved November 10, 2022. https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

  389. "IBM unveils its 433 qubit Osprey quantum computer". Tech Crunch. November 9, 2022. Retrieved November 10, 2022. https://techcrunch.com/2022/11/09/ibm-unveils-its-433-qubit-osprey-quantum-computer/

  390. "SpinQ Introduces Trio of Portable Quantum Computers". December 15, 2022. Retrieved December 15, 2022. https://www.tomshardware.com/news/spinq-introduces-trio-of-portable-quantum-computers

  391. "World's first portable quantum computers on sale in Japan: Prices start at $8,700". https://tech.news.am/eng/news/510/worlds-first-portable-quantum-computers-on-sale-in-japan-prices-start-at-$8700.html

  392. "Il futuro è ora: I primi computer quantistici portatili arrivano sul mercato" [The future is now: The first portable quantum computers hit the market] (in Italian). May 19, 2023. https://www.futuroprossimo.it/2021/06/amperage-mini-yacht-elettrico-con-terrazza-fotovoltaica-e-sauna-vabbe

  393. Universität Innsbruck (February 3, 2023). "Entangled atoms across the Innsbruck quantum network". www.uibk.ac.at. Retrieved February 13, 2023. https://www.uibk.ac.at/en/newsroom/2023/entangled-atoms-across-the-innsbruck-quantum-network/

  394. "State of Quantum Computing in Europe: AQT pushing performance with a Quantum Volume of 128". AQT | ALPINE QUANTUM TECHNOLOGIES. February 8, 2023. Retrieved February 13, 2023. https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/

  395. Bartolucci, Sara; Birchall, Patrick; Bombín, Hector; Cable, Hugo; Dawson, Chris; Gimeno-Segovia, Mercedes; Johnston, Eric; Kieling, Konrad; Nickerson, Naomi; Pant, Mihir; Pastawski, Fernando; Rudolph, Terry; Sparrow, Chris (February 17, 2023). "Fusion-based quantum computation". Nature Communications. 14 (1): 912. Bibcode:2023NatCo..14..912B. doi:10.1038/s41467-023-36493-1. ISSN 2041-1723. PMC 9938229. PMID 36805650. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938229

  396. "India's first quantum computing-based telecom network link now operational: Ashwini Vaishnaw". The Economic Times. March 27, 2023. https://economictimes.indiatimes.com/industry/telecom/telecom-news/indias-first-quantum-computing-based-telecom-network-link-now-operational-ashwini-vaishnaw/articleshow/99026697.cms

  397. Chang, Kenneth (June 14, 2023). "Quantum Computing Advance Begins New Era, IBM Says – A quantum computer came up with better answers to a physics problem than a conventional supercomputer". The New York Times. Archived from the original on June 14, 2023. Retrieved June 15, 2023. https://www.nytimes.com/2023/06/14/science/ibm-quantum-computing.html

  398. Kim, Youngseok; et al. (June 14, 2023). "Evidence for the utility of quantum computing before fault tolerance". Nature. 618 (7965): 500–505. Bibcode:2023Natur.618..500K. doi:10.1038/s41586-023-06096-3. PMC 10266970. PMID 37316724. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266970

  399. Lardinois, Frederic (June 21, 2023). "Microsoft expects to build a quantum supercomputer within 10 years". Tech Crunch. https://techcrunch.com/2023/06/21/microsoft-expects-to-build-a-quantum-supercomputer-within-10-years/?guccounter=1&guce_referrer=aHR0cHM6Ly9lZGdlOS5od3VwZ3JhZGUuaXQv&guce_referrer_sig=AQAAACXAB0qvUPp2WTkuGfdLz7J6WL84C0dFSnA7-JlfcbG-NlUc5Wr_rDCfeBFqRnEGLozBpwYqrxqWUim6CgPzx5HnmrvLTOgBuO9C3fptgIUZ2JvHF1205F6FgMmcC-qSSHXDFx_aNts3TXoSyHy7ovW9ixtgT47y8ID7RHz8bMUj

  400. Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Bonilla Ataides, J. Pablo; Maskara, Nishad; Cong, Iris; Gao, Xun; Sales Rodriguez, Pedro; Karolyshyn, Thomas; Semeghini, Giulia; Gullans, Michael J.; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (2024). "Logical quantum processor based on reconfigurable atom arrays". Nature. 626 (7997): 58–65. arXiv:2312.03982. Bibcode:2024Natur.626...58B. doi:10.1038/s41586-023-06927-3. PMC 10830422. PMID 38056497. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830422

  401. Pause, L.; Sturm, L.; Mittenbühler, M.; Amann, S.; Preuschoff, T.; Schäffner, D.; Schlosser, S.; Birkl, G. (2024). "Supercharged two-dimensional tweezer array with more than 1000 atomic qubits". Optica. 11 (2): 222–226. arXiv:2310.09191. Bibcode:2024Optic..11..222P. doi:10.1364/OPTICA.513551. https://opg.optica.org/optica/abstract.cfm?URI=optica-11-2-222

  402. Dumke, R.; Volk, M.; Müther, T.; Buchkremer, F. B. J.; Birkl, G.; Ertmer, W. (August 8, 2002). "Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits". Physical Review Letters. 89 (9): 097903. arXiv:quant-ph/0110140. Bibcode:2002PhRvL..89i7903D. doi:10.1103/PhysRevLett.89.097903. PMID 12190441. https://link.aps.org/doi/10.1103/PhysRevLett.89.097903

  403. "Quantum startup Atom Computing first to exceed 1,000 qubits". Boulder, Colorado. October 24, 2023. https://atom-computing.com/quantum-startup-atom-computing-first-to-exceed-1000-qubits/

  404. Russell, John (October 24, 2023). "Atom Computing Wins the Race to 1000 Qubits". HPC Wire. https://www.hpcwire.com/2023/10/24/atom-computing-wins-the-race-to-1000-qubits/

  405. McDowell, Steve. "IBM Advances Quantum Computing with New Processors & Platforms". Forbes. Retrieved December 27, 2023. https://www.forbes.com/sites/stevemcdowell/2023/12/05/ibm-advances-quantum-computing-with-new-processors--platforms/

  406. "IBM Quantum Computing Blog | The hardware and software for the era of quantum utility is here". www.ibm.com. Retrieved December 27, 2023. https://www.ibm.com/quantum/blog/quantum-roadmap-2033

  407. "IBM's roadmap for scaling quantum technology". IBM Research Blog. February 9, 2021. Retrieved December 27, 2023. https://research.ibm.com/blog/ibm-quantum-roadmap

  408. Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Bonilla Ataides, J. Pablo; Maskara, Nishad; Cong, Iris; Gao, Xun; Sales Rodriguez, Pedro; Karolyshyn, Thomas; Semeghini, Giulia; Gullans, Michael J.; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (2024). "Logical quantum processor based on reconfigurable atom arrays". Nature. 626 (7997): 58–65. arXiv:2312.03982. Bibcode:2024Natur.626...58B. doi:10.1038/s41586-023-06927-3. PMC 10830422. PMID 38056497. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830422

  409. "Fundamental Quantum Technologies Laboratory". UNSW. https://www.unsw.edu.au/research/fqt/our-research/high-dimensional-nuclear-spins-in-silicon1

  410. Yu, Xi; et al. (2025). "Schrödinger cat states of a nuclear spin qudit in silicon". Nature Physics. 21 (3): 362–367. arXiv:2405.15494. Bibcode:2025NatPh..21..362Y. doi:10.1038/s41567-024-02745-0. /wiki/ArXiv_(identifier)

  411. Fernández de Fuentes, I., Botzem, T., Johnson, M.A.I.; et al. (2024). "Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields". Nat Commun. 15 (1380): 1380. arXiv:2306.07453. Bibcode:2024NatCo..15.1380F. doi:10.1038/s41467-024-45368-y. PMC 11258329. PMID 38355747.{{cite journal}}: CS1 maint: multiple names: authors list (link) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258329

  412. Stock, Taylor J. Z.; et al. (February 21, 2024). "Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication". Advanced Materials. 36 (24). arXiv:2311.05752. Bibcode:2024AdM....3612282S. doi:10.1002/adma.202312282. PMID 38380859. /wiki/ArXiv_(identifier)

  413. Krutyanskiy, Vladislav; et al. (February 27, 2025). "Multiplexed entanglement of multi-emitter quantum network nodes". Nature. 638 (8050): 54–59. Bibcode:2025Natur.639...54R. doi:10.1038/s41586-024-08537-z. PMID 40011776. /wiki/Bibcode_(identifier)

  414. Beaulieu, Guillaume; et al. (March 10, 2025). "Observation of first- and second-order dissipative phase transitions in a two-photon driven Kerr resonator". Nature. 16 (1954): 1954. Bibcode:2025NatCo..16.1954B. doi:10.1038/s41467-025-56830-w. PMC 11893805. PMID 40064847. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893805

  415. Neyens, Samuel; Zietz, Otto K.; Watson, Thomas F.; Luthi, Florian; Nethwewala, Aditi; George, Hubert C.; Henry, Eric; Islam, Mohammad; Wagner, Andrew J.; Borjans, Felix; Connors, Elliot J.; Corrigan, J.; Curry, Matthew J.; Keith, Daniel; Kotlyar, Roza; Lampert, L.; Madzik, M. T.; Millard, K.; Mohiyaddin, F. A.; Pellerano, S.; Pillarisetty, R.; Ramsey, M.; Savytskyy, R.; Schaal, S.; Zheng, G.; Ziegler, J.; Bishop, N. C.; Bojarski, S.; Roberts, J.; Clarke, J.S. (May 1, 2024). "Probing single electrons across 300-mm spin qubit wafers". Nature. 629 (8010): 80–85. arXiv:2307.04812. Bibcode:2024Natur.629...80N. doi:10.1038/s41586-024-07275-6. ISSN 1476-4687. PMC 11062914. PMID 38693414. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062914

  416. Thomas, Philip; Ruscio, Leonardo; Morin, Olivier; Rempe, Gerhard (May 16, 2024). "Fusion of deterministically generated photonic graph states". Nature. 629 (8012): 567–572. arXiv:2403.11950. Bibcode:2024Natur.629..567T. doi:10.1038/s41586-024-07357-5. ISSN 0028-0836. PMC 11096110. PMID 38720079. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096110

  417. Andersen, T.I.; et al. (February 5, 2025). "Thermalization and criticality on an analogue–digital quantum simulator". Nature. 638 (8049): 79–85. arXiv:2405.17385. Bibcode:2025Natur.638...79A. doi:10.1038/s41586-024-08460-3. PMC 11798852. PMID 39910386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798852

  418. Publisher received: 10 May 2024

  419. "Photonic Inc. Demonstrates Distributed Entanglement Between Two Modules Separated by 40 Meters of Fiber". www.quantumcomputingreport.com. May 30, 2024. Retrieved September 3, 2024. https://quantumcomputingreport.com/photonic-inc-demonstrates-distributed-entanglement-between-two-modules-separated-by-40-meters-of-fiber/

  420. Main, D.; et al. (February 5, 2025). "Distributed quantum computing across an optical network link". Nature. 638 (8050): 383–388. arXiv:2407.00835. Bibcode:2025Natur.638..383M. doi:10.1038/s41586-024-08404-x. PMC 11821536. PMID 39910308. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821536

  421. Zhang, Naiyuan J.; et al. (2025). "Excitons in the fractional quantum Hall effect". Nature. 637 (8045): 327–332. arXiv:2407.18224. Bibcode:2025Natur.637..327Z. doi:10.1038/s41586-024-08274-3. PMID 39780005. /wiki/ArXiv_(identifier)

  422. Thomas, Jordan M.; et al. (2024). "Quantum teleportation coexisting with classical communications in optical fiber". Optica. 11 (12): 1700–1707. arXiv:2404.10738. Bibcode:2024Optic..11.1700T. doi:10.1364/OPTICA.540362. /wiki/ArXiv_(identifier)

  423. Zhao, Chenxiao; et al. (2025). "Spin excitations in nanographene-based antiferromagnetic spin-1/2 Heisenberg chains". Nature. 24 (5): 722–727. arXiv:2408.10045. Bibcode:2025NatMa..24..722Z. doi:10.1038/s41563-025-02166-1. PMC 12048352. PMID 40087538. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048352

  424. Hentschinski, Martin; et al. (2024). "QCD evolution of entanglement entropy". IOP Publishing. 87 (12). arXiv:2408.01259. Bibcode:2024RPPh...87l0501H. doi:10.1088/1361-6633/ad910b. PMID 39527914. /wiki/ArXiv_(identifier)

  425. Acharya, Rajeev; et al. (December 9, 2024). "Quantum error correction below the surface code threshold". Nature. 638 (8052): 920–926. arXiv:2408.13687. doi:10.1038/s41586-024-08449-y. PMC 11864966. PMID 39653125. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864966

  426. Leswing, Kif (December 10, 2024). "Alphabet shares jump 6% after Google touts 'breakthrough' quantum chip". CNBC. Retrieved December 25, 2024. https://www.cnbc.com/2024/12/10/alphabet-shares-jump-5percent-after-google-touts-breakthrough-quantum-chip-.html

  427. "Quantum Networking Breakthrough As Entangled Photons Transmit Without Interruption for 30+ Hours". scitechdaily.com. OAK RIDGE NATIONAL LABORATORY. February 12, 2025. Archived from the original on February 13, 2025. Retrieved February 16, 2025. https://scitechdaily.com/quantum-networking-breakthrough-as-entangled-photons-transmit-without-interruption-for-30-hours/

  428. Chapman, Joseph C.; Alshowkan, Muneer; Reaz, Kazi; Li, Tian; Kiran, Mariam (2024). "Continuous automatic polarization channel stabilization from heterodyne detection of coexisting dim reference signals". Optics Express. 32 (26). OPTICA PUBLISHING GROUP: 47589–47619. arXiv:2411.15135. Bibcode:2024OExpr..3247589C. doi:10.1364/OE.543704. /wiki/ArXiv_(identifier)

  429. Scitechdaily (OAK RIDGE NATIONAL LABORATORY) indicates publication date 15 December 2024

  430. George, Hubert C.; Mądzik, Mateusz T.; Henry, Eric M.; Wagner, Andrew J.; Islam, Mohammad M.; Borjans, Felix; Connors, Elliot J.; Corrigan, J.; Curry, Matthew; Harper, Michael K.; Keith, Daniel; Lampert, Lester; Luthi, Florian; Mohiyaddin, Fahd A.; Murcia, Sandra (January 15, 2025). "12-Spin-Qubit Arrays Fabricated on a 300 mm Semiconductor Manufacturing Line". Nano Letters. 25 (2): 793–799. Bibcode:2025NanoL..25..793G. doi:10.1021/acs.nanolett.4c05205. ISSN 1530-6984. PMC 11741134. PMID 39721970. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741134

  431. Philips, Stephan G. J.; Mądzik, Mateusz T.; Amitonov, Sergey V.; de Snoo, Sander L.; Russ, Maximilian; Kalhor, Nima; Volk, Christian; Lawrie, William I. L.; Brousse, Delphine; Tryputen, Larysa; Wuetz, Brian Paquelet; Sammak, Amir; Veldhorst, Menno; Scappucci, Giordano; Vandersypen, Lieven M. K. (July 15, 2022). "Universal control of a six-qubit quantum processor in silicon". Nature. 609 (7929): 919–924. arXiv:2202.09252. Bibcode:2022Natur.609..919P. doi:10.1038/s41586-022-05117-x. ISSN 1476-4687. PMC 9519456. PMID 36171383. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519456

  432. Nishikawa, Yunori; Yoshioka, Tomoki (January 7, 2025). "Quantum entanglement in a pure state of strongly correlated quantum impurity systems". Physical Review B. 111 (3): 035112. arXiv:2404.18387. Bibcode:2025PhRvB.111c5112N. doi:10.1103/PhysRevB.111.035112. /wiki/ArXiv_(identifier)

  433. Björkman, Isak; Kuzmanović, Marko; Paraoanu, Gheorghe Sorin (February 14, 2025). "Observation of the Two-Photon Landau-Zener-Stückelberg-Majorana Effect". Phys. Rev. Lett. 134 (60602): 060602. arXiv:2402.10833. Bibcode:2025PhRvL.134f0602B. doi:10.1103/PhysRevLett.134.060602. PMID 40021142 – via Ville Heirola (Aalto University): scitechdaily.com/a-1932-discovery-is-rewriting-the-future-of-quantum-computing/ (February 22, 2025). /wiki/ArXiv_(identifier)

  434. Stueckelberg, E.C.G. (1932). "Theorie der unelastischen Stösse zwischen Atomen". Helvetica Physica Acta. 5 (VI): 369. doi:10.5169/seals-110177. English translation https://doi.org/10.5169%2Fseals-110177

  435. Ivakhnenko, Oleh V.; Shevchenko, Sergey N.; Nori, Franco (2023). "Nonadiabatic Landau-Zener-Stückelberg-Majorana transitions, dynamics, and interference". Phys. Rep. 995: 1–89. arXiv:2203.16348. Bibcode:2023PhR...995....1I. doi:10.1016/j.physrep.2022.10.002. /wiki/ArXiv_(identifier)

  436. Zener, Clarence (September 1, 1932). "Non-adiabatic crossing of energy levels". Proc. R. Soc. Lond. A. 137 (833). royalsocietypublishing.org: 696–702. Bibcode:1932RSPSA.137..696Z. doi:10.1098/rspa.1932.0165 – via Björkman, Kuzmanović, Paraoanu doi:10.1103/PhysRevLett.134.060602. /wiki/Bibcode_(identifier)

  437. Björkman, Isak; Kuzmanović, Marko; Paraoanu, Gheorghe Sorin (February 14, 2025). "Observation of the Two-Photon Landau-Zener-Stückelberg-Majorana Effect". Phys. Rev. Lett. 134 (60602): 060602. arXiv:2402.10833. Bibcode:2025PhRvL.134f0602B. doi:10.1103/PhysRevLett.134.060602. PMID 40021142 – via Ville Heirola (Aalto University): scitechdaily.com/a-1932-discovery-is-rewriting-the-future-of-quantum-computing/ (February 22, 2025). /wiki/ArXiv_(identifier)

  438. Nguyen, Bich Ha (November 4, 2010). "Lamb and ac Stark shifts in cavity quantum electrodynamics". Advances in Natural Sciences: Nanoscience and Nanotechnology. 1 (3): 035008. Bibcode:2010ANSNN...1c5008N. doi:10.1088/2043-6262/1/3/035008. https://doi.org/10.1088%2F2043-6262%2F1%2F3%2F035008

  439. Koetsier, John (February 19, 2025). "Massive Microsoft Quantum Computer Breakthrough Uses New State Of Matter". Forbes. Retrieved February 19, 2025. https://www.forbes.com/sites/johnkoetsier/2025/02/19/massive-microsoft-quantum-computer-breakthrough-uses-new-state-of-matter/

  440. Vallance, Chris (February 19, 2025). "Powerful quantum computers in years not decades, says Microsoft". BBC. Retrieved February 26, 2025. https://www.bbc.com/news/articles/cj3e3252gj8o

  441. Aghaee, Morteza (February 19, 2025). "Interferometric single-shot parity measurement in InAs–Al hybrid devices". Nature. 638 (8051): 651–655. arXiv:2401.09549. Bibcode:2025Natur.638..651M. doi:10.1038/s41586-024-08445-2. PMC 11839464. PMID 39972225. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839464

  442. "Amazon announces Ocelot quantum chip". Amazon Science. February 27, 2025. Retrieved March 13, 2025. https://www.amazon.science/blog/amazon-announces-ocelot-quantum-chip

  443. Noh, Kyungjoo; Putterman, Harald; Aghaeimeibodi, Shahriar; Lee, Menyoung; et al. (Amazon Center for Quantum Computing) (February 26, 2025). "Hardware-efficient quantum error correction via concatenated bosonic qubits". Nature. 638 (8052): 927–935. arXiv:2409.13025. Bibcode:2025Natur.638..927P. doi:10.1038/s41586-025-08642-7. ISSN 1476-4687. PMC 11864976. PMID 40011723. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864976

  444. Liu, Minzhao; Shaydulin, Ruslan; Niroula, Pradeep; DeCross, Matthew; Hung, Shih-Han; Kon, Wen Yu; Cervero-Martín, Enrique; Chakraborty, Kaushik; Amer, Omar; Aaronson, Scott; Acharya, Atithi; Alexeev, Yuri; Berg, K. Jordan; Chakrabarti, Shouvanik; Curchod, Florian; Dreiling, Joan; Erickson, Neal; Foltz, Cameron; Foss-Feig, Michael; Hayes, David; Humble, Travis; Kumar, Niraj; Larson, Jeffrey; Lykov, Danylo; Mills, Michael; Moses, Steven; Neyenhuis, Brian; Eloul, Shaltiel; Siegfried, Peter; Walker, James; Lim, Charles; Pistoia, Marco (April 10, 2025). "Certified randomness using a trapped-ion quantum processor". Nature. 640 (8058): 343–348. arXiv:2503.20498. Bibcode:2025Natur.640..343L. doi:10.1038/s41586-025-08737-1. ISSN 1476-4687. PMC 11981928. PMID 40140579. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981928

  445. Niroula, Pradeep (March 26, 2025). "Certified Randomness from a Quantum Computer". Bits & Qubits. Retrieved April 20, 2025. https://pradeepniroula.com/certified-randomness/