Mor, Tal; Renner, Renato (2014). "Preface". Natural Computing. 13 (4): 447–452. doi:10.1007/s11047-014-9464-3. /wiki/Doi_(identifier)
Published January 1, 1983.[2][3] 1968 is the year Wiesner developed a new coding in the Columbia University timeline[4] and of the relevant publication in Charles H. Bennett (2021) citing Bennett CH, Bessette F, Brassard G, Salvail L, Smolin J (1992) "Experimental quantum cryptography." J Cryptol 5(1): 3–28. In Bennett, Bessette et al. (1992) the year of "manuscript written" by Wiesner is "circa 1970".[5]
Park, James (March 1970). "The concept of transition in quantum mechanics". Foundations of Physics. 1 (1): 23–33. Bibcode:1970FoPh....1...23P. CiteSeerX 10.1.1.623.5267. doi:10.1007/BF00708652. S2CID 55890485. /wiki/Bibcode_(identifier)
James Park. "The Concept of Transition in Quantum Mechanics" (PDF). quantum-thermodynamics.unibs.it. University of Brescia. Retrieved February 19, 2025. https://quantum-thermodynamics.unibs.it/Park-FoundPhys-1-23-1970.pdf
Bertlmann, Reinhold A.; Friis, Nicolai (2023). "21.5.Impossible Operations - No cloning". Modern Quantum Theory From Quantum Mechanics to Entanglement and Quantum Information. United States of America: Oxford Academic (published November 23, 2023). p. 721. ISBN 9780199683338. Retrieved February 19, 2025 – via Google Books. 9780199683338
Some sources state that: an idea in Park's paper was used as[9] information for what was later undertood by proof as the no-cloning theorem circa 1982.[8][9] An alternative position is: the no-cloning theorem was discovered in 1982 without mentioning 1969/1970.[10][11] Sources state Park proved mathematically no-cloning explicitly as a reality[12][13] though his paper makes no mention explicitly of the term as it is now known.[7][14] An alternative position: simply, Park 1970 was the origin of the no-cloning theorem without mentioning 1982.[15] One further position states Park was first to show the existence of no-cloning - this quantum mechanical reality was rediscovered in 1982 and 2013.[16]
Holevo's paper is the first published on the subject of quantum information according to the Stanford Encyclopedia of Philosophy (Michael Cuffaro)[17] /wiki/Quantum_information
Холево (Holevo), А. С. (A. S.) (1973). "НЕКОТОРЫЕ ОЦЕНКИ ДЛЯ КОЛИЧЕСТВА ИНФОРМАЦИИ, ПЕРЕДАВАЕМОГО КВАНТОВЫМ КАНАЛОМ СВЯЗИ" [Bounds for the quantity of information transmitted by a quantum communication channel]. ПРОБЛЕМЫ ПЕРЕДАЧ И ИНФОРМАЦИИ [Problemy Peredachi Informatsii] (in Russian). 9 (3): 177–183 – via www.mathnet.ru: Steklov Mathematical Institute of the Russian Academy of Sciences. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=903&option_lang=eng
Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo (January 3, 2012). "Achieving the Holevo bound via sequential measurements" (PDF). Physical Review A. 85 (1). Scuola Normale Superiore and Istituto Nanoscienze–CNR, Department of Mechanical Engineering - Massachusetts Institute of Technology, Dipartimento Fisica "A. Volta" - INFN Sezione Pavia - Università di Pavia: American Physical Society :mit.edu: 012302-1: 1.Introduction. arXiv:1012.0386. Bibcode:2012PhRvA..85a2302G. doi:10.1103/PhysRevA.85.012302 – via Umesh Vazirani: people.eecs.berkeley.edu/~vazirani/s07quantum/notes/lec17/lec17.pdf: "Holevo's bound". quantumexplainer.com/holevo-bound-holevos-theorem. https://dspace.mit.edu/bitstream/handle/1721.1/69151/Giovannetti-2012-Achieving%20the%20Holevo%20bound%20via%20sequential%20measurements.pdf?sequence=2
Bennett, C. (November 1973). "Logical Reversibility of Computation" (PDF). IBM Journal of Research and Development. 17 (6): 525–532. doi:10.1147/rd.176.0525. https://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2013W/Bennett_Reversibiity.pdf
Poplavskii, R. P. (1975). "Thermodynamical models of information processing". Uspekhi Fizicheskikh Nauk (in Russian). 115 (3): 465–501. doi:10.3367/UFNr.0115.197503d.0465. https://doi.org/10.3367%2FUFNr.0115.197503d.0465
Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/bf01011339. S2CID 122949592. /wiki/Bibcode_(identifier)
Manin, Yu I (1980). Vychislimoe i nevychislimoe (Computable and Noncomputable) (in Russian). Soviet Radio. pp. 13–15. Archived from the original on May 10, 2013. Retrieved March 4, 2013. https://web.archive.org/web/20130510173823/http://publ.lib.ru/ARCHIVES/M/MANIN_Yuriy_Ivanovich/Manin_Yu.I._Vychislimoe_i_nevychislimoe.%281980%29.%5Bdjv%5D.zip
Technical Report MIT/LCS/TM-151 (1980) and an adapted and condensed version: Toffoli, Tommaso (1980). "Reversible computing" (PDF). In J. W. de Bakker and J. van Leeuwen (ed.). Automata, Languages and Programming. Automata, Languages and Programming, Seventh Colloquium. Lecture Notes in Computer Science. Vol. 85. Noordwijkerhout, Netherlands: Springer Verlag. pp. 632–644. doi:10.1007/3-540-10003-2_104. ISBN 3-540-10003-2. Archived from the original (PDF) on April 15, 2010. 3-540-10003-2
Garfinkel, Simson (April 27, 2021). "Tomorrow's computer, yesterday: Four decades ago at Endicott House, an MIT professor convened a conference that launched quantum computing". MIT News. p. 10. https://www.technologyreview.com/2021/04/27/1021714/tomorrows-computer-yesterday/
Benioff, Paul A. (April 1, 1982). "Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: Application to Turing machines". International Journal of Theoretical Physics. 21 (3): 177–201. Bibcode:1982IJTP...21..177B. doi:10.1007/BF01857725. ISSN 1572-9575. S2CID 122151269. /wiki/Bibcode_(identifier)
"Simulating physics with computers" (PDF). Archived from the original (PDF) on August 30, 2019. Retrieved July 5, 2023. https://web.archive.org/web/20190830190404/https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf
Submission received by the IJoTP: May 7, 1981 /wiki/International_Journal_of_Theoretical_Physics
Feynman, Richard (1982). "Simulating physics with computers" (PDF). International Journal of Theoretical Physics. 21 (6). (Southern Methodist University: smu.edu): 467–488. Bibcode:1982IJTP...21..467F. doi:10.1007/BF02650179. /wiki/Richard_Feynman
Stein, Jonas. "History of quantum computing". qarlab.de. Oettingenstraße 67 80538 Munich: Ludwig-Maximilians-Universität München. Archived from the original on March 10, 2025. Retrieved March 9, 2025.{{cite web}}: CS1 maint: location (link) https://archive.today/20250310000355/https://qarlab.de/en/history-of-quantum-computing/
Hirvensalo, Mika (2004). "1. Introduction 1.1 A Brief History of Quantum Computing". Written at University of Turku. In Rozenberg, G.; Eiben, A.E. (eds.). Quantum Computing. NATURAL COMPUTING SERIES (2 ed.). Berlin Heidelberg New York: Springer-Verlag. p. 1. ISBN 978-3-662-09636-9. Retrieved March 18, 2025 – via Google Books. 978-3-662-09636-9
Benioff, Paul A. (1982). "Quantum mechanical hamiltonian models of turing machines". Journal of Statistical Physics. 29 (3): 515–546. Bibcode:1982JSP....29..515B. doi:10.1007/BF01342185. S2CID 14956017. /wiki/Bibcode_(identifier)
Wootters, William K.; Zurek, Wojciech H. (1982). "A single quantum cannot be cloned". Nature. 299 (5886): 802–803. Bibcode:1982Natur.299..802W. doi:10.1038/299802a0. S2CID 4339227. /wiki/Bibcode_(identifier)
Dieks, Dennis (1982). "Communication by EPR devices". Physics Letters A. 92 (6): 271–272. Bibcode:1982PhLA...92..271D. CiteSeerX 10.1.1.654.7183. doi:10.1016/0375-9601(82)90084-6. /wiki/Bibcode_(identifier)
Bennett, C. H.; Brassard, G. (1984). "Quantum cryptography: Public key distribution and coin tossing". Proceedings of the International Conference on Computers, Systems & Signal Processing, Bangalore, India. Vol. 1. New York: IEEE. pp. 175–179. Reprinted as Bennett, C. H.; Brassard, G. (December 4, 2014). "Quantum cryptography: Public key distribution and coin tossing". Theoretical Computer Science. Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84. 560 (1): 7–11. arXiv:2003.06557. doi:10.1016/j.tcs.2014.05.025. https://doi.org/10.1016%2Fj.tcs.2014.05.025
Peres, Asher (1985). "SReversible Logic and Quantum Compzters". Physical Review A. 32 (6): 3266–3276. Bibcode:1985PhRvA..32.3266P. doi:10.1103/PhysRevA.32.3266. PMID 9896493. /wiki/Bibcode_(identifier)
Igeta, K.; Yamamoto, Yoshihisa (July 18, 1988). "Quantum mechanical computers with single atom and photon fields". International Conference on Quantum Electronics (1988), Paper TuI4. Optica Publishing Group: TuI4. https://opg.optica.org/abstract.cfm?uri=IQEC-1988-TuI4
Milburn, Gerard J. (May 1, 1989). "Quantum optical Fredkin gate". Physical Review Letters. 62 (18): 2124–2127. Bibcode:1989PhRvL..62.2124M. doi:10.1103/PhysRevLett.62.2124. PMID 10039862. https://link.aps.org/doi/10.1103/PhysRevLett.62.2124
Ray, P.; Chakrabarti, B. K.; Chakrabarti, A. (1989). "Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations". Physical Review B. 39 (16): 11828–11832. Bibcode:1989PhRvB..3911828R. doi:10.1103/PhysRevB.39.11828. PMID 9948016. /wiki/Bibcode_(identifier)
Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation". Rev. Mod. Phys. 80 (3): 1061–1081. arXiv:0801.2193. Bibcode:2008RvMP...80.1061D. CiteSeerX 10.1.1.563.9990. doi:10.1103/RevModPhys.80.1061. S2CID 14255125. /wiki/Reviews_of_Modern_Physics
Ekert, A. K. (1991). "Quantum cryptography based on Bell's theorem". Physical Review Letters. 67 (6): 661–663. Bibcode:1991PhRvL..67..661E. doi:10.1103/PhysRevLett.67.661. PMID 10044956. S2CID 27683254. /wiki/Bibcode_(identifier)
Waki, I.; Kassner, S.; Birkl, G.; Walther, H. (March 30, 1992). "Observation of ordered structures of laser-cooled ions in a quadrupole storage ring". Physical Review Letters. 68 (13): 2007–2010. Bibcode:1992PhRvL..68.2007W. doi:10.1103/PhysRevLett.68.2007. PMID 10045280. https://link.aps.org/doi/10.1103/PhysRevLett.68.2007
Birkl, G.; Kassner, S.; Walther, H. (May 28, 1992). "Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring". Nature. 357 (6376): 310–313. doi:10.1038/357310a0. https://doi.org/10.1038/357310a0
Raizen, M. G.; Gilligan, J. M.; Bergquist, J. C.; Itano, W. M.; Wineland, D. J. (May 1, 1992). "Ionic crystals in a linear Paul trap". Physical Review A. 45 (9): 6493–6501. Bibcode:1992PhRvA..45.6493R. doi:10.1103/PhysRevA.45.6493. PMID 9907772. https://link.aps.org/doi/10.1103/PhysRevA.45.6493
Chuang, Isaac L.; Yamamoto, Yoshihisa (1995). "Simple quantum computer". Physical Review A. 52 (5): 3489–3496. arXiv:quant-ph/9505011. Bibcode:1995PhRvA..52.3489C. doi:10.1103/PhysRevA.52.3489. PMID 9912648. /wiki/ArXiv_(identifier)
Cirac, J. I.; Zoller, P. (May 15, 1995). "Quantum Computations with Cold Trapped Ions". Physical Review Letters. 74 (20): 4091–4094. Bibcode:1995PhRvL..74.4091C. doi:10.1103/PhysRevLett.74.4091. ISSN 0031-9007. PMID 10058410. https://link.aps.org/doi/10.1103/PhysRevLett.74.4091
Shor, Peter W. (1995). "Scheme for reducing decoherence in quantum computer memory". Physical Review A. 52 (4): R2493 – R2496. Bibcode:1995PhRvA..52.2493S. doi:10.1103/PhysRevA.52.R2493. PMID 9912632. /wiki/Peter_W._Shor
Monroe, C.; Meekhof, D. M.; King, B. E.; Itano, W. M.; Wineland, D. J. (December 18, 1995). "Demonstration of a Fundamental Quantum Logic Gate" (PDF). Physical Review Letters. 75 (25): 4714–4717. Bibcode:1995PhRvL..75.4714M. doi:10.1103/PhysRevLett.75.4714. PMID 10059979. Retrieved December 29, 2007. http://tf.nist.gov/general/pdf/140.pdf
Kak, S. C. (1995). "Quantum Neural Computing". Advances in Imaging and Electron Physics. 94: 259–313. Bibcode:1995AdIEP..94..259K. doi:10.1016/S1076-5670(08)70147-2. ISBN 9780120147366. 9780120147366
Chrisley, R. (1995). Pyllkkänen, P.; Pyllkkö, P. (eds.). "Quantum learning". New Directions in Cognitive Science. Finnish Society for Artificial Intelligence. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a4051e9f560742b9d28afb78da4622141ec4db89
Steane, Andrew (1996). "Multiple-Particle Interference and Quantum Error Correction". Proceedings of the Royal Society of London A. 452 (1954): 2551–2577. arXiv:quant-ph/9601029. Bibcode:1996RSPSA.452.2551S. doi:10.1098/rspa.1996.0136. S2CID 8246615. Archived from the original on May 19, 2006. Retrieved April 5, 2020. /wiki/Andrew_Steane
DiVincenzo, David P. (1996). "Topics in Quantum Computers". arXiv:cond-mat/9612126. Bibcode:1996cond.mat.12126D. /wiki/ArXiv_(identifier)
Lloyd, Lloyd (1996). "Universal Quantum Simulators". Science. 273 (5278): 1073–1078. Bibcode:1996Sci...273.1073L. doi:10.1126/science.273.5278.1073. PMID 8688088. /wiki/Seth_Lloyd
Kitaev, A. Yu (2003). "Fault-tolerant quantum computation by anyons". Annals of Physics. 303 (1): 2–30. arXiv:quant-ph/9707021. Bibcode:2003AnPhy.303....2K. doi:10.1016/S0003-4916(02)00018-0. S2CID 119087885. /wiki/ArXiv_(identifier)
Loss, Daniel; DiVincenzo, David P. (January 1, 1998). "Quantum Computation with Quantum Dots". Physical Review A. 57 (1): 120–126. arXiv:cond-mat/9701055. Bibcode:1998PhRvA..57..120L. doi:10.1103/PhysRevA.57.120. ISSN 1050-2947. S2CID 13152124. /wiki/ArXiv_(identifier)
Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Mark (April 13, 1998). "Experimental Implementation of Fast Quantum Searching". Physical Review Letters. 80 (15): 3408–3411. Bibcode:1998PhRvL..80.3408C. doi:10.1103/PhysRevLett.80.3408. S2CID 13891055. /wiki/Bibcode_(identifier)
Kane, B. E. (May 14, 1998). "A silicon-based nuclear spin quantum computer". Nature. 393 (6681): 133–137. Bibcode:1998Natur.393..133K. doi:10.1038/30156. ISSN 0028-0836. S2CID 8470520. /wiki/Bibcode_(identifier)
Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Markdoi (April 1998). "Experimental Implementation of Fast Quantum Searching". Physical Review Letters. 80 (15). American Physical Society: 3408–3411. Bibcode:1998PhRvL..80.3408C. doi:10.1103/PhysRevLett.80.3408. /wiki/Isaac_Chuang
"Hidetoshi Nishimori – Applying quantum annealing to computers". Tokyo Institute of Technology. Retrieved September 8, 2022. https://www.titech.ac.jp/english/public-relations/research/stories/faces13-nishimori
Gottesman, Daniel (1999). "The Heisenberg Representation of Quantum Computers". In Corney, S. P.; Delbourgo, R.; Jarvis, P. D. (eds.). Proceedings of the Xxii International Colloquium on Group Theoretical Methods in Physics. Vol. 22. Cambridge, Massachusetts: International Press. pp. 32–43. arXiv:quant-ph/9807006v1. Bibcode:1998quant.ph..7006G. /wiki/Daniel_Gottesman
Braunstein, S. L.; Caves, C. M.; Jozsa, R.; Linden, N.; Popescu, S.; Schack, R. (1999). "Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing". Physical Review Letters. 83 (5): 1054–1057. arXiv:quant-ph/9811018. Bibcode:1999PhRvL..83.1054B. doi:10.1103/PhysRevLett.83.1054. S2CID 14429986. /wiki/ArXiv_(identifier)
Nakamura, Y.; Pashkin, Yu A.; Tsai, J. S. (April 1999). "Coherent control of macroscopic quantum states in a single-Cooper-pair box". Nature. 398 (6730): 786–788. arXiv:cond-mat/9904003. Bibcode:1999Natur.398..786N. doi:10.1038/19718. ISSN 1476-4687. S2CID 4392755. https://www.nature.com/articles/19718
Linden, Noah; Popescu, Sandu (2001). "Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?". Physical Review Letters. 87 (4): 047901. arXiv:quant-ph/9906008. Bibcode:2001PhRvL..87d7901L. doi:10.1103/PhysRevLett.87.047901. PMID 11461646. S2CID 10533287. /wiki/ArXiv_(identifier)
Raussendorf, R.; Briegel, H. J. (2001). "A One-Way Quantum Computer". Physical Review Letters. 86 (22): 5188–91. Bibcode:2001PhRvL..86.5188R. CiteSeerX 10.1.1.252.5345. doi:10.1103/PhysRevLett.86.5188. PMID 11384453. /wiki/Physical_Review_Letters
"Quick facts | Institute for Quantum Computing | University of Waterloo". Institute for Quantum Computing. May 7, 2019. Archived from the original on May 7, 2019. Retrieved December 24, 2024. https://web.archive.org/web/20190507063322/https://uwaterloo.ca/institute-for-quantum-computing/about/quick-facts
Dumke, R.; Volk, M.; Müther, T.; Buchkremer, F. B. J.; Birkl, G.; Ertmer, W. (August 8, 2002). "Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits". Physical Review Letters. 89 (9): 097903. arXiv:quant-ph/0110140. Bibcode:2002PhRvL..89i7903D. doi:10.1103/PhysRevLett.89.097903. PMID 12190441. https://link.aps.org/doi/10.1103/PhysRevLett.89.097903
Gulde, S.; Riebe, M.; Lancaster, G. P. T.; Becher, C.; Eschner, J.; Häffner, H.; Schmidt-Kaler, F.; Chuang, I. L.; Blatt, R. (January 2, 2003). "Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer". Nature. 421 (6918): 48–50. Bibcode:2003Natur.421...48G. doi:10.1038/nature01336. PMID 12511949. S2CID 4401708. /wiki/Nature_(journal)
Pittman, T. B.; Fitch, M. J.; Jacobs, B. C.; Franson, J. D. (2003). "Experimental controlled-not logic gate for single photons in the coincidence basis". Physical Review A. 68 (3): 032316. arXiv:quant-ph/0303095. Bibcode:2003PhRvA..68c2316P. doi:10.1103/physreva.68.032316. S2CID 119476903. /wiki/ArXiv_(identifier)
O'Brien, J. L.; Pryde, G. J.; White, A. G.; Ralph, T. C.; Branning, D. (2003). "Demonstration of an all-optical quantum controlled-NOT gate". Nature. 426 (6964): 264–267. arXiv:quant-ph/0403062. Bibcode:2003Natur.426..264O. doi:10.1038/nature02054. PMID 14628045. S2CID 9883628. /wiki/ArXiv_(identifier)
Schmidt-Kaler, F.; Häffner, H.; Riebe, M.; Gulde, S.; Lancaster, G. P. T.; Deutschle, T.; Becher, C.; Roos, C. F.; Eschner, J.; Blatt, R. (March 27, 2003). "Realization of the Cirac-Zoller controlled-NOT quantum gate". Nature. 422 (6930): 408–411. Bibcode:2003Natur.422..408S. doi:10.1038/nature01494. PMID 12660777. S2CID 4401898. /wiki/Nature_(journal)
Riebe, M.; Häffner, H.; Roos, C. F.; Hänsel, W.; Benhelm, J.; Lancaster, G. P. T.; Körber, T. W.; Becher, C.; Schmidt-Kaler, F.; James, D. F. V.; Blatt, R. (June 17, 2004). "Deterministic quantum teleportation with atoms". Nature. 429 (6993): 734–737. Bibcode:2004Natur.429..734R. doi:10.1038/nature02570. PMID 15201903. S2CID 4397716. /wiki/Nature_(journal)
Zhao, Z.; Chen, Y. A.; Zhang, A. N.; Yang, T.; Briegel, H. J.; Pan, J. W. (2004). "Experimental demonstration of five-photon entanglement and open-destination teleportation". Nature. 430 (6995): 54–58. arXiv:quant-ph/0402096. Bibcode:2004Natur.430...54Z. doi:10.1038/nature02643. PMID 15229594. S2CID 4336020. /wiki/ArXiv_(identifier)
Dumé, Belle (November 22, 2005). "Breakthrough for quantum measurement". PhysicsWeb. Retrieved August 10, 2018. https://physicsworld.com/a/breakthrough-for-quantum-measurement/
Häffner, H.; Hänsel, W.; Roos, C. F.; Benhelm, J.; Chek-Al-Kar, D.; Chwalla, M.; Körber, T.; Rapol, U. D.; Riebe, M.; Schmidt, P. O.; Becher, C.; Gühne, O.; Dür, W.; Blatt, R. (December 1, 2005). "Scalable multiparticle entanglement of trapped ions". Nature. 438 (7068): 643–646. arXiv:quant-ph/0603217. Bibcode:2005Natur.438..643H. doi:10.1038/nature04279. PMID 16319886. S2CID 4411480. /wiki/ArXiv_(identifier)
"Bang-bang: a step closer to quantum supercomputers". England: University of Oxford. January 4, 2006. Archived from the original on August 30, 2018. Retrieved December 29, 2007. https://web.archive.org/web/20180830005255/http://www.admin.ox.ac.uk/po/news/2005-06/jan/04a.shtml
Dowling, Jonathan P. (2006). "To Compute or Not to Compute?". Nature. 439 (7079): 919–920. Bibcode:2006Natur.439..919D. doi:10.1038/439919a. PMID 16495978. S2CID 4327844. /wiki/Jonathan_P._Dowling
Dumé, Belle (February 23, 2007). "Entanglement heats up". Physics World. Archived from the original on October 19, 2007. https://web.archive.org/web/20071019032222/http://physicsworld.com/cws/article/news/24285
"Captain Kirk's clone and the eavesdropper" (Press release). England: University of York. February 16, 2006. Archived from the original on February 7, 2007. Retrieved December 29, 2007. https://web.archive.org/web/20070207105035/http://www.york.ac.uk/admin/presspr/pressreleases/kirkclone.htm
"Soft Machines – Some personal views on nanotechnology, science and science policy from Richard Jones". June 23, 2023. Retrieved July 5, 2023. http://www.softmachines.org/wordpress/
Simonite, Tom (June 8, 2010). "Error-check breakthrough in quantum computing". New Scientist. Retrieved May 20, 2010. http://www.newscientisttech.com/article/dn9301-errorcheck-breakthrough-in-quantum-computing.html
"12-qubits Reached In Quantum Information Quest". ScienceDaily. May 8, 2006. Retrieved May 20, 2010. https://www.sciencedaily.com/releases/2006/05/060508164700.htm
Simonite, Tom (July 7, 2010). "Flat 'ion trap' holds quantum computing promise". New Scientist. Retrieved May 20, 2010. http://www.newscientisttech.com/article/dn9502-flat-ion-trap-holds-quantum-computing-promise.html
Luerweg, Frank (July 12, 2006). "Quantum Computer: Laser tweezers sort atoms". PhysOrg.com. Archived from the original on December 15, 2007. Retrieved December 29, 2007. https://web.archive.org/web/20071215041757/http://www.physorg.com/news71935118.html
"'Electron-spin' trick boosts quantum computing". New Scientist. August 16, 2006. Archived from the original on November 22, 2006. Retrieved December 29, 2007. https://web.archive.org/web/20061122102719/http://www.newscientisttech.com/article.ns?id=dn9768
Berger, Michael (August 16, 2006). "Quantum Dot Molecules – One Step Further Towards Quantum Computing". Newswire Today. Retrieved December 29, 2007. http://www.newswiretoday.com/news/7723/
"Spinning new theory on particle spin brings science closer to quantum computing". PhysOrg.com. September 7, 2006. Archived from the original on January 17, 2008. Retrieved December 29, 2007. https://web.archive.org/web/20080117223659/http://www.physorg.com/news76863086.html
Merali, Zeeya (October 4, 2006). "Spooky steps to a quantum network". New Scientist. 192 (2572): 12. doi:10.1016/s0262-4079(06)60639-8. Retrieved December 29, 2007. http://www.newscientisttech.com/article/dn10226-spooky-steps-to-a-quantum-network.html
Zyga, Lisa (October 24, 2006). "Scientists present method for entangling macroscopic objects". PhysOrg.com. Archived from the original on October 13, 2007. Retrieved December 29, 2007. https://web.archive.org/web/20071013014512/http://physorg.com/news80896839.html
Kloeppel, James E. (November 2, 2006). "Quantum coherence possible in incommensurate electronic systems". Champaign-Urbana, Illinois: University of Illinois. Retrieved August 19, 2010. http://news.illinois.edu/news/06/1102quantum.html
"A Quantum (Computer) Step: Study Shows It's Feasible to Read Data Stored as Nuclear 'Spins'". PhysOrg.com. November 19, 2006. Archived from the original on September 29, 2007. Retrieved December 29, 2007. https://web.archive.org/web/20070929120422/http://physorg.com/news83163617.html
Hecht, Jeff (January 8, 2007). "Nanoscopic 'coaxial cable' transmits light". New Scientist. Retrieved December 30, 2007. http://www.newscientisttech.com/article/dn10911-nanoscopic-coaxial-cable-transmits-light.html
"Toshiba unveils quantum security". The Engineer. February 21, 2007. Archived from the original on March 4, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20070304090639/http://www.e4engineering.com/Articles/298360/Toshiba+unveils+quantum+security.htm
Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei (2007). "Experimental entanglement of six photons in graph states". Nature Physics. 3 (2): 91–95. arXiv:quant-ph/0609130. Bibcode:2007NatPh...3...91L. doi:10.1038/nphys507. S2CID 16319327. /wiki/ArXiv_(identifier)
Danos, V.; Kashefi, E.; Panangaden, P. (2007). "The measurement calculus". Journal of the Association for Computing Machinery. 54 (2): 8. arXiv:0704.1263. doi:10.1145/1219092.1219096. S2CID 5851623. /wiki/ArXiv_(identifier)
Marquit, Miranda (April 18, 2007). "First use of Deutsch's Algorithm in a cluster state quantum computer". PhysOrg.com. Archived from the original on January 17, 2008. Retrieved December 30, 2007. https://web.archive.org/web/20080117224207/http://www.physorg.com/news96107220.html
Merali, Zeeya (March 15, 2007). "The universe is a string-net liquid". New Scientist. Retrieved December 30, 2007. https://www.newscientist.com/article.ns?id=mg19325954.200&feedId=fundamentals_rss20
"A Single-Photon Server with Just One Atom" (Press release). Max Planck Society. March 12, 2007. Retrieved December 30, 2007. http://www.mpg.de/english/illustrationsDocumentation/documentation/pressReleases/2007/pressRelease200703091/index.html
Bush, Steve (April 19, 2007). "Cambridge team closer to working quantum computer". Electronics Weekly. Archived from the original on May 15, 2012. Retrieved December 30, 2007. https://archive.today/20120515222358/http://www.electronicsweekly.com/Articles/2007/04/19/41206/Cambridge+team+closer+to+working+quantum+computer.htm
Farivar, Cyrus (May 7, 2007). "It's the "Wiring" That's Tricky in Quantum Computing". Wired. Archived from the original on July 6, 2008. Retrieved December 30, 2007. https://web.archive.org/web/20080706171401/http://www.wired.com/science/discoveries/news/2007/05/quantumcoupling
"NEC, JST, and RIKEN Successfully Demonstrate World's First Controllably Coupled Qubits" (Press release). Media-Newswire.com. May 8, 2007. Retrieved December 30, 2007. http://media-newswire.com/release_1049194.html
Minkel, J. R. (May 16, 2007). "Spintronics Breaks the Silicon Barrier". Scientific American. Retrieved December 30, 2007. http://www.sciam.com/article.cfm?articleId=959FBD96-E7F2-99DF-341F959A7DA2A292&chanId=sa013&modsrc=most_popular
Zyga, Lisa (May 22, 2007). "Scientists demonstrate quantum state exchange between light and matter". PhysOrg.com. Archived from the original on March 7, 2008. Retrieved December 30, 2007. https://web.archive.org/web/20080307093926/http://www.physorg.com/news99050442.html
Dutt, M. V.; Childress, L.; Jiang, L.; Togan, E.; Maze, J.; Jelezko, F.; Zibrov, A. S.; Hemmer, P. R; Lukin, M. D. (June 1, 2007). "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond". Science. 316 (5829): 1312–1316. Bibcode:2007Sci...316.....D. doi:10.1126/science.1139831. PMID 17540898. S2CID 20697722. /wiki/Bibcode_(identifier)
Plantenberg, J. H.; De Groot, P. C.; Harmans, C. J. P. M.; Mooij, J. E. (June 14, 2007). "Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits". Nature. 447 (7146): 836–839. Bibcode:2007Natur.447..836P. doi:10.1038/nature05896. PMID 17568742. S2CID 3054763. /wiki/Bibcode_(identifier)
Inman, Mason (June 17, 2007). "Atom trap is a step towards a quantum computer". New Scientist. Retrieved December 30, 2007. http://www.newscientisttech.com/article/dn12082-atom-trap-is-a-step-towards-a-quantum-computer-.html
"Nanotechnology and Emerging Technologies News from Nanowerk". www.nanowerk.com. Retrieved July 5, 2023. https://www.nanowerk.com/
"Discovery Of 'Hidden' Quantum Order Improves Prospects For Quantum Super Computers". Science Daily. July 27, 2007. Retrieved December 30, 2007. https://www.sciencedaily.com/releases/2007/07/070726142010.htm
Marquit, Miranda (July 23, 2007). "Indium arsenide may provide clues to quantum information processing". PhysOrg.com. Archived from the original on September 26, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20070926220146/http://www.physorg.com/news104418332.html
"Thousands of Atoms Swap 'Spins' with Partners in Quantum Square Dance". National Institute of Standards and Technology. July 25, 2007. Archived from the original on December 18, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20071218224341/http://www.nist.gov/public_affairs/releases/quantum_gate.html
Zyga, Lisa (August 15, 2007). "Ultrafast quantum computer uses optically controlled electrons". PhysOrg.com. Archived from the original on January 2, 2008. Retrieved December 30, 2007. https://web.archive.org/web/20080102004025/http://www.physorg.com/news106395871.html
Bush, Steve (August 15, 2007). "Research points way to qubits on standard chips". Electronics Weekly. Retrieved December 30, 2007. http://www.electronicsweekly.com/Articles/2007/08/15/41988/research-points-way-to-qubits-on-standard-chips.htm
"Computing Breakthrough Could Elevate Security To Unprecedented Levels". ScienceDaily. August 17, 2007. Retrieved December 30, 2007. https://www.sciencedaily.com/releases/2007/08/070816143801.htm
Battersby, Stephen (August 21, 2007). "Blueprints drawn up for quantum computer RAM". New Scientist. Retrieved December 30, 2007. https://www.newscientist.com/article/dn12516-blueprints-drawn-up-for-quantum-computer-ram.html
"Photon-transistors for the supercomputers of the future". PhysOrg.com. August 26, 2007. Archived from the original on January 1, 2008. Retrieved December 30, 2007. https://web.archive.org/web/20080101165713/http://physorg.com/news107357370.html
"Physicists establish "spooky" quantum communication". University of Michigan. September 5, 2007. Archived from the original on December 28, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20071228220630/http://www.ns.umich.edu/htdocs/releases/story.php?id=6016
"Qubits poised to reveal our secrets". huliq.com. September 13, 2007. Retrieved December 30, 2007. http://www.huliq.com/34160/qubits-poised-to-reveal-our-secrets
Das, Saswato (September 26, 2007). "Quantum chip rides on superconducting bus". New Scientist. Retrieved December 30, 2007. https://www.newscientist.com/article/dn12696-quantum-chip-rides-on-superconducting-bus.html
"Superconducting Quantum Computing Cable Created". ScienceDaily. September 27, 2007. Retrieved December 30, 2007. https://www.sciencedaily.com/releases/2007/09/070926172232.htm
Bush, Steve (October 11, 2007). "Qubit transmission signals quantum computing advance". Electronics Weekly. Archived from the original on October 12, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20071012144831/http://www.electronicsweekly.com/Articles/2007/10/11/42346/qubit+transmission+signals+quantum+computing+advance.htm
Hodgin, Rick C. (October 8, 2007). "New material breakthrough brings quantum computers one step closer". TG Daily. Archived from the original on December 12, 2007. Retrieved December 30, 2007. https://web.archive.org/web/20071212162540/http://www.tgdaily.com/content/view/34244/113/
"Single electron-spin memory with a semiconductor quantum dot". Optics.org. October 19, 2007. Retrieved December 30, 2007. http://optics.org/cws/article/journals/31503
Battersby, Stephen (November 7, 2007). "'Light trap' is a step towards quantum memory". New Scientist. Retrieved December 30, 2007. https://www.newscientist.com/channel/fundamentals/quantum-world/dn12887-light-trap-is-a-step-towards-quantum-memory-.html
"World's First 28 qubit Quantum Computer Demonstrated Online at Supercomputing 2007 Conference". Nanowerk.com. November 12, 2007. Archived from the original on August 30, 2018. Retrieved December 30, 2007. https://web.archive.org/web/20180830041346/https://www.nanowerk.com/news/newsid=3274.php
"Desktop device generates and traps rare ultracold molecules". PhysOrg.com. December 12, 2007. Archived from the original on December 15, 2007. Retrieved December 31, 2007. https://web.archive.org/web/20071215075835/http://www.physorg.com/news116696579.html
Luke, Kim (December 19, 2007). "U of T scientists make quantum computing leap Research is step toward building first quantum computers". University of Toronto. Archived from the original on December 28, 2007. Retrieved December 31, 2007. https://web.archive.org/web/20071228170511/http://www.news.utoronto.ca/bin6/071219-3563.asp
Trauzettel, Björn; Bulaev, Denis V.; Loss, Daniel; Burkard, Guido (February 18, 2007). "Spin qubits in graphene quantum dots". Nature Physics. 3 (3): 192–196. arXiv:cond-mat/0611252. Bibcode:2007NatPh...3..192T. doi:10.1038/nphys544. S2CID 119431314. /wiki/ArXiv_(identifier)
Harrow, Aram W.; Hassidim, Avinatan; Lloyd, Seth (2008). "Quantum algorithm for solving linear systems of equations". Physical Review Letters. 103 (15): 150502. arXiv:0811.3171. Bibcode:2009PhRvL.103o0502H. doi:10.1103/PhysRevLett.103.150502. PMID 19905613. S2CID 5187993. /wiki/ArXiv_(identifier)
Marquit, Miranda (January 15, 2008). "Graphene quantum dot may solve some quantum computing problems". Archived from the original on January 17, 2008. Retrieved January 16, 2008. https://web.archive.org/web/20080117230333/http://www.physorg.com/news119632225.html
"Scientists succeed in storing quantum bit". EE Times Europe. January 25, 2008. Retrieved February 5, 2008. http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=205918527
Zyga, Lisa (February 26, 2008). "Physicists demonstrate qubit-qutrit entanglement". PhysOrg.com. Archived from the original on February 29, 2008. Retrieved February 27, 2008. https://web.archive.org/web/20080229001836/http://www.physorg.com/news123244300.html
"Analog logic for quantum computing". ScienceDaily. February 26, 2008. Retrieved February 27, 2008. https://www.sciencedaily.com/releases/2008/02/080221101910.htm
Kotala, Zenaida Gonzalez (March 5, 2008). "Future 'quantum computers' will offer increased efficiency... and risks". Eurekalert.org. Retrieved March 5, 2008. http://www.eurekalert.org/pub_releases/2008-03/uocf-fc030508.php
Kurzweil, Ray (March 6, 2008). "Entangled memory is a first". Retrieved March 8, 2008. http://www.kurzweilai.net/news/frame.html?main=news_single.html?id%3D8142
Fryer, Joann (March 27, 2008). "Silicon chips for optical quantum technologies". Eurekalert.org. Retrieved March 29, 2008. http://www.eurekalert.org/pub_releases/2008-03/uob-scf032608.php
Kurzweil, Ray (April 7, 2008). "Qutrit breakthrough brings quantum computers closer". Retrieved April 7, 2008. http://www.kurzweilai.net/news/frame.html?main=news_single.html?id%3D8354
Greene, Kate (April 15, 2008). "Toward a quantum internet". Technology Review. Retrieved April 16, 2008. http://www.technologyreview.com/Infotech/20565/?a=f
"Scientists discover exotic quantum state of matter". Princeton University. April 24, 2008. Archived from the original on April 30, 2008. Retrieved April 29, 2008. https://web.archive.org/web/20080430131534/http://physorg.com/news128261028.html
Dumé, Belle (May 23, 2008). "Spin states endure in quantum dot". Physics World. Archived from the original on May 29, 2008. Retrieved June 3, 2008. https://web.archive.org/web/20080529004841/http://physicsworld.com/cws/article/news/34359
Lee, Chris (May 27, 2008). "Molecular magnets in soap bubbles could lead to quantum RAM". ARSTechnica. Retrieved June 3, 2008. https://arstechnica.com/news.ars/post/20080527-molecular-magnets-in-soap-bubbles-could-lead-to-quantum-ram.html
Weizmann Institute of Science (June 2, 2008). "Scientists find new 'quasiparticles'". PhysOrg.com. Retrieved June 3, 2008. http://physorg.com/news131631206.html
Zyga, Lisa (June 23, 2008). "Physicists Store Images in Vapor". PhysOrg.com. Archived from the original on September 15, 2008. Retrieved June 26, 2008. https://web.archive.org/web/20080915130750/http://www.physorg.com/news133439288.html
"Physicists Produce Quantum-Entangled Images". PhysOrg.com. June 25, 2008. Archived from the original on August 29, 2008. Retrieved June 26, 2008. https://web.archive.org/web/20080829225636/http://www.physorg.com/news133624014.html
Tally, Steve (June 26, 2008). "Quantum computing breakthrough arises from unknown molecule". Purdue University. Archived from the original on February 2, 2019. Retrieved June 28, 2008. https://web.archive.org/web/20190202103204/https://news.uns.purdue.edu/x/2008a/080626KlimeckArsenic.html
Rugani, Lauren (July 17, 2008). "Quantum Leap". Technology Review. Retrieved July 17, 2008. http://www.technologyreview.com/Infotech/21086/
"Breakthrough In Quantum Mechanics: Superconducting Electronic Circuit Pumps Microwave Photons". ScienceDaily. August 5, 2008. Retrieved August 6, 2008. https://www.sciencedaily.com/releases/2008/08/080805150812.htm
"New probe could aid quantum computing". PhysOrg.com. September 3, 2008. Archived from the original on September 5, 2008. Retrieved September 6, 2008. https://web.archive.org/web/20080905193420/http://www.physorg.com/news139665168.html
"Novel Process Promises To Kick-start Quantum Technology Sector". ScienceDaily. September 25, 2008. Retrieved October 16, 2008. https://www.sciencedaily.com/releases/2008/09/080925144609.htm
O'Brien, Jeremy L. (September 22, 2008). "Quantum computing over the rainbow". Retrieved October 16, 2008. http://physics.aps.org/articles/v1/23
"Relationships Between Quantum Dots – Stability and Reproduction". Science Blog. October 20, 2008. Archived from the original on October 22, 2008. Retrieved October 20, 2008. https://web.archive.org/web/20081022201107/http://www.scienceblog.com/cms/blog/624-relationships-between-quantum-dots-stability-and-reproduction-17599.html
Schultz, Steven (October 22, 2008). "Memoirs of a qubit: Hybrid memory solves key problem for quantum computing". Eurekalert.com. Retrieved October 23, 2008. http://www.eurekalert.org/pub_releases/2008-10/pues-smt102208.php
"World's Smallest Storage Space ... the Nucleus of an Atom". National Science Foundation News. October 23, 2008. Retrieved October 27, 2008. https://www.nsf.gov/news/news_summ.jsp?cntn_id=112538&govDel=USNSF_51
Stober, Dan (November 20, 2008). "Stanford: Quantum computing spins closer". Eurekalert.com. Retrieved November 22, 2008. http://www.eurekalert.org/pub_releases/2008-11/su-sqc112008.php
Marquit, Miranda (December 5, 2008). "Quantum computing: Entanglement may not be necessary". PhysOrg.com. Archived from the original on December 8, 2008. Retrieved December 9, 2008. https://web.archive.org/web/20081208091811/http://www.physorg.com/news147698804.html
"Dwave System's 128 qubit chip has been made". Next Big Future. December 19, 2008. Archived from the original on December 23, 2008. Retrieved December 20, 2008. https://web.archive.org/web/20081223060355/http://nextbigfuture.com/2008/12/dwave-systems-128-qubit-chip-has-been.html
"Three Times Higher Carbon 12 Purity for Synthetic Diamond Enables Better Quantum Computing". Next Big Future. April 7, 2009. Archived from the original on April 11, 2009. Retrieved May 19, 2009. https://web.archive.org/web/20090411055856/http://nextbigfuture.com/2009/04/element-six-is-global-leader-europe.html
Greene, Kate (April 23, 2009). "Extending the Life of Quantum Bits". Technology Review. Retrieved June 1, 2020. https://www.technologyreview.com/2009/04/23/213539/extending-the-life-of-quantum-bits/
"Researchers make breakthrough in the quantum control of light". PhysOrg.com. May 29, 2009. Archived from the original on January 31, 2013. Retrieved May 30, 2009. https://archive.today/20130131221049/http://www.physorg.com/news162814379.html
"Physicists demonstrate quantum entanglement in mechanical system". PhysOrg.com. June 3, 2009. Archived from the original on January 31, 2013. Retrieved June 13, 2009. https://archive.today/20130131084441/http://www.physorg.com/news163253992.html
Moore, Nicole Casai (June 24, 2009). "Lasers can lengthen quantum bit memory by 1,000 times". Eurekalert.com. Retrieved June 27, 2009. http://www.eurekalert.org/pub_releases/2009-06/uom-lcl062309.php
"First Electronic Quantum Processor Created". ScienceDaily. June 29, 2009. Retrieved June 29, 2009. https://www.sciencedaily.com/releases/2009/06/090628171949.htm
Lu, C. Y.; Gao, W. B.; Gühne, O.; Zhou, X. Q.; Chen, Z. B.; Pan, J. W. (2009). "Demonstrating Anyonic Fractional Statistics with a Six-Qubit Quantum Simulator". Physical Review Letters. 102 (3): 030502. arXiv:0710.0278. Bibcode:2009PhRvL.102c0502L. doi:10.1103/PhysRevLett.102.030502. PMID 19257336. S2CID 11788852. /wiki/ArXiv_(identifier)
Borghino, Dario (July 6, 2009). "Quantum computer closer: Optical transistor made from single molecule". Gizmag. Retrieved July 8, 2009. http://www.gizmag.com/optical-transistor-made-from-single-molecule/12157/
Johnson, R. Colin (July 8, 2009). "NIST advances quantum computing". EE Times. Retrieved July 9, 2009. http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=218401022
Greene, Kate (August 7, 2009). "Scaling Up a Quantum Computer". Technology Review. Retrieved August 8, 2009. http://www.technologyreview.com/computing/23137/
Devitt, S. J.; Fowler, A. G.; Stephens, A. M.; Greentree, A. D.; Hollenberg, L. C. L.; Munro, W. J.; Nemoto, K. (August 11, 2009). "Architectural design for a topological cluster state quantum computer". New Journal of Physics. 11 (83032): 1221. arXiv:0808.1782. Bibcode:2009NJPh...11h3032D. doi:10.1088/1367-2630/11/8/083032. S2CID 56195929. /wiki/Kae_Nemoto
Home, J. P.; Hanneke, D.; Jost, J. D.; Amini, J. M.; Leibfried, D.; Wineland, D. J. (September 4, 2009). "Complete Methods Set for Scalable Ion Trap Quantum Information Processing". Science. 325 (5945): 1227–1230. arXiv:0907.1865. Bibcode:2009Sci...325.1227H. doi:10.1126/science.1177077. PMID 19661380. S2CID 24468918. /wiki/ArXiv_(identifier)
Politi, A.; Matthews, J. C.; O'Brien, J. L. (2009). "Shor's Quantum Factoring Algorithm on a Photonic Chip". Science. 325 (5945): 1221. arXiv:0911.1242. Bibcode:2009Sci...325.1221P. doi:10.1126/science.1173731. PMID 19729649. S2CID 17259222. /wiki/ArXiv_(identifier)
Wesenberg, J. H.; Ardavan, A.; Briggs, G. A. D.; Morton, J. J. L.; Schoelkopf, R. J.; Schuster, D. I.; Mølmer, K. (2009). "Quantum Computing with an Electron Spin Ensemble". Physical Review Letters. 103 (7): 070502. arXiv:0903.3506. Bibcode:2009PhRvL.103g0502W. doi:10.1103/PhysRevLett.103.070502. PMID 19792625. S2CID 6990125. /wiki/ArXiv_(identifier)
Barras, Colin (September 25, 2009). "Photon 'machine gun' could power quantum computers". New Scientist. Retrieved September 26, 2009. https://www.newscientist.com/article/mg20327275.700-photon-machine-gun-could-power-quantum-computers.html?DCMP=OTC-rss&nsref=online-news
"First universal programmable quantum computer unveiled". New Scientist. November 15, 2009. Retrieved November 16, 2009. https://www.newscientist.com/article/dn18154-first-universal-programmable-quantum-computer-unveiled.html
"UCSB physicists move 1 step closer to quantum computing". ScienceBlog. November 20, 2009. Archived from the original on November 23, 2009. Retrieved November 23, 2009. https://web.archive.org/web/20091123213145/http://www.scienceblog.com/cms/ucsb-physicists-move-1-step-closer-quantum-computing-27431.html
Hsu, Jeremy (December 11, 2009). "Google Demonstrates Quantum Algorithm Promising Superfast Search". Retrieved December 14, 2009. http://www.popsci.com/technology/article/2009-12/google-algorithm-uses-quantum-computing-sort-images-faster-ever
Harris, R.; Brito, F.; Berkley, A. J.; Johansson, J.; Johnson, M. W.; Lanting, T.; Bunyk, P.; Ladizinsky, E.; Bumble, B.; Fung, A.; Kaul, A.; Kleinsasser, A.; Han, S. (2009). "Synchronization of multiple coupled rf-SQUID flux qubits". New Journal of Physics. 11 (12): 123022. arXiv:0903.1884. Bibcode:2009NJPh...11l3022H. doi:10.1088/1367-2630/11/12/123022. S2CID 54065717. /wiki/ArXiv_(identifier)
Monz, T.; Kim, K.; Villar, A. S.; Schindler, P.; Chwalla, M.; Riebe, M.; Roos, C. F.; Häffner, H.; Hänsel, W.; Hennrich, M.; Blatt, R (2009). "Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits". Physical Review Letters. 103 (20): 200503. arXiv:0909.3715. Bibcode:2009PhRvL.103t0503M. doi:10.1103/PhysRevLett.103.200503. PMID 20365970. S2CID 7632319. /wiki/ArXiv_(identifier)
"A decade of Physics World breakthroughs: 2009 – the first quantum computer". Physics World. November 29, 2019. https://physicsworld.com/a/a-decade-of-physics-world-breakthroughs-2009-the-first-quantum-computer/
"Making Light of Ion Traps". arXiv blog. January 20, 2010. Retrieved January 21, 2010. http://www.technologyreview.com/blog/arxiv/24685/?nlid=2678
Petit, Charles (January 28, 2010). "Quantum Computer Simulates Hydrogen Molecule Just Right". Wired. Retrieved February 5, 2010. https://www.wired.com/wiredscience/2010/01/quantum-computer-hydrogen-simulation/
Hardesty, Larry (February 4, 2010). "First germanium laser brings us closer to 'optical computers'". Archived from the original on December 24, 2011. Retrieved February 4, 2010. https://web.archive.org/web/20111224181702/http://www.physorg.com/news184493799.html
"Quantum Computing Leap Forward: Altering a Lone Electron Without Disturbing Its Neighbors". Science Daily. February 6, 2010. Retrieved February 6, 2010. https://www.sciencedaily.com/releases/2010/02/100205162953.htm
Palmer, Jason (March 17, 2010). "Team's quantum object is biggest by factor of billions". BBC News. Retrieved March 20, 2010. http://news.bbc.co.uk/2/hi/sci/tech/8570836.stm
University of Cambridge. "Cambridge discovery could pave the way for quantum computing". Retrieved March 18, 2010.[dead link] https://go.gale.com/ps/i.do?id=GALE%7CA221455370&sid=sitemap&v=2.1&it=r&p=EAIM&sw=w&userGroupName=anon%7E3ab19270&aty=open-web-entry
"Racetrack Ion Trap Is a Contender in Quantum Computing Quest". ScienceDaily. April 1, 2010. Retrieved April 3, 2010. https://www.sciencedaily.com/releases/2010/04/100401130336.htm
Rice University (April 21, 2010). "Bizarre matter could find use in quantum computers". Retrieved August 29, 2018. https://phys.org/news/2010-04-bizarre-quantum-odd-electron-fault-tolerant.html
Vetsch, E.; et al. (May 27, 2010). "German physicists develop a quantum interface between light and atoms". Archived from the original on December 19, 2011. Retrieved April 22, 2010. https://web.archive.org/web/20111219181729/http://www.physorg.com/news194169329.html
Dumé, Isabelle (June 5, 2010). "Entangling photons with electricity". Physics World. Retrieved July 21, 2023. https://physicsworld.com/a/entangling-photons-with-electricity/
Munro, W. J.; Harrison, K. A.; Stephens, A. M.; Devitt, S. J.; Nemoto, K. (August 29, 2010). "From quantum multiplexing to high-performance quantum networking". Nature Photonics. 4 (11): 792–796. arXiv:0910.4038. Bibcode:2010NaPho...4..792M. doi:10.1038/nphoton.2010.213. S2CID 119243884. /wiki/Kae_Nemoto
Kurzweil accelerating intelligence (September 17, 2010). "Two-photon optical chip enables more complex quantum computing". Retrieved September 17, 2010. http://www.kurzweilai.net/two-photon-optical-chip-enables-more-complex-quantum-computing
"Toward a Useful Quantum Computer: Researchers Design and test Microfabricated Planar Ion Traps". ScienceDaily. May 28, 2010. Retrieved September 20, 2010. https://www.sciencedaily.com/releases/2010/05/100526091044.htm
"Quantum Future: Designing and Testing Microfabricated Planar Ion Traps". Georgia Tech Research Institute. Retrieved September 20, 2010. http://www.gtri.gatech.edu/casestudy/microfabricated-planar-ion-traps
Aaronson, Scott; Arkhipov, Alex (2011). "The Computational Complexity of Linear Optics". Proceedings of the 43rd annual ACM symposium on Theory of computing – STOC '11. 43rd Annual ACM Symposium on Theory of Computing. New York, New York, USA: ACM Press. pp. 333–342. arXiv:1011.3245. doi:10.1145/1993636.1993682. ISBN 978-1-4503-0691-1. 978-1-4503-0691-1
TU Delft (December 23, 2010). "TU scientists in Nature: Better control of building blocks for quantum computer". Archived from the original on December 24, 2010. Retrieved December 26, 2010. https://web.archive.org/web/20101224162118/http://www.tudelft.nl/live/pagina.jsp?id=2136915a-f72a-441a-8783-b0b0e91cb48f&lang=en
Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L. W; Itoh, Kohei M; Morton, John J. L (2011). "Entanglement in a solid-state spin ensemble". Nature. 470 (7332): 69–72. arXiv:1010.0107. Bibcode:2011Natur.470...69S. doi:10.1038/nature09696. PMID 21248751. S2CID 4322097. /wiki/ArXiv_(identifier)
University of California, Santa Barbara, Office of Public Affairs (February 14, 2011). "International Team of Scientists Says It's High 'Noon' for Microwave Photons". Retrieved February 16, 2011.{{cite news}}: CS1 maint: multiple names: authors list (link) http://www.ia.ucsb.edu/pa/display.aspx?pkey=2428
Kurzweil Accelerating Intelligence (February 24, 2011). "'Quantum antennas' enable exchange of quantum information between two memory cells". Retrieved February 24, 2011. http://www.kurzweilai.net/quantum-antennas-enable-exchange-of-quantum-information-between-two-memory-cells
Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L (2011). "Multimode quantum interference of photons in multiport integrated devices". Nature Communications. 2: 224. arXiv:1007.1372. Bibcode:2011NatCo...2..224P. doi:10.1038/ncomms1228. PMC 3072100. PMID 21364563. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072100
KFC (March 7, 2011). "New Magnetic Resonance Technique Could Revolutionise Quantum Computing". Retrieved June 1, 2020. https://www.technologyreview.com/2011/03/07/196521/new-magnetic-resonance-technique-could-revolutionise-quantum-computing/
Weitenberg, Christof; Endres, Manuel; Sherson, Jacob F.; Cheneau, Marc; Schauß, Peter; Fukuhara, Takeshi; Bloch, Immanuel & Kuhr, Stefan (March 17, 2011). "A Quantum Pen for Single Atoms". Archived from the original on March 18, 2011. Retrieved March 19, 2011. https://web.archive.org/web/20110318143231/http://www.mpq.mpg.de/cms/mpq/en/news/press/11_03_17.html
"German research brings us one step closer to quantum computing". Cordisnews. March 21, 2011. Archived from the original on October 11, 2012. Retrieved March 22, 2011. https://web.archive.org/web/20121011161855/http://cordis.europa.eu/fetch?CALLER=EN_NEWS&ACTION=D&SESSION=&RCN=33212
Monz, T.; Schindler, P.; Barreiro, J. T.; Chwalla, M.; Nigg, D.; Coish, W. A.; Harlander, M.; Hänsel, W.; Hennrich, M.; Blatt, R. (2011). "14-Qubit Entanglement: Creation and Coherence". Physical Review Letters. 106 (13): 130506. arXiv:1009.6126. Bibcode:2011PhRvL.106m0506M. doi:10.1103/PhysRevLett.106.130506. PMID 21517367. S2CID 8155660. /wiki/Physical_Review_Letters
"Quantum-computing firm opens the box". Physicsworld.com. May 12, 2011. Archived from the original on May 15, 2011. Retrieved May 17, 2011. https://web.archive.org/web/20110515083848/http://physicsworld.com/cws/article/news/45960
"Repetitive error correction demonstrated in a quantum processor". physorg.com. May 26, 2011. Archived from the original on January 7, 2012. Retrieved May 26, 2011. https://web.archive.org/web/20120107024333/http://www.physorg.com/news/2011-05-quantum-repetitive-error-processor.html
University of California, Santa Barbara (June 27, 2011). "International Team Demonstrates Subatomic Quantum Memory in Diamond". Retrieved June 29, 2011. http://www.ia.ucsb.edu/pa/display.aspx?pkey=2519
"Quantum computing breakthrough in the creation of massive numbers of entangled qubits". Nanowerk News. July 15, 2011. Retrieved July 18, 2011. http://www.nanowerk.com/news/newsid=22133.php
"Scientists take the next major step toward quantum computing". Nanowerk News. July 20, 2011. Retrieved July 20, 2011. http://www.nanowerk.com/news/newsid=22174.php
"Dramatic simplification paves the way for building a quantum computer". Nanowerk News. August 2, 2011. Retrieved August 3, 2011. http://www.nanowerk.com/news/newsid=22292.php
Ospelkaus, C.; Warring, U.; Colombe, Y.; Brown, K. R.; Amini, J. M.; Leibfried, D.; Wineland, D. J. (2011). "Microwave quantum logic gates for trapped ions". Nature. 476 (7359): 181–184. arXiv:1104.3573. Bibcode:2011Natur.476..181O. doi:10.1038/nature10290. PMID 21833084. S2CID 2902510. /wiki/ArXiv_(identifier)
Ost, Laura (August 30, 2011). "NIST Achieves Record-Low Error Rate for Quantum Information Processing with One Qubit". Retrieved September 3, 2011. https://www.nist.gov/pml/div688/qubit-083011.cfm
Mariantoni, M.; Wang, H.; Yamamoto, T.; Neeley, M.; Bialczak, R. C.; Chen, Y.; Lenander, M.; Lucero, E.; O'Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yin, Y.; Zhao, J.; Korotkov, A. N.; Cleland, A. N; Martinis, J. M (September 1, 2011). "Implementing the Quantum von Neumann Architecture with Superconducting Circuits". Science. 334 (6052): 61–65. arXiv:1109.3743. Bibcode:2011Sci...334...61M. doi:10.1126/science.1208517. PMID 21885732. S2CID 11483576. /wiki/ArXiv_(identifier)
Jablonski, Chris (October 4, 2011). "One step closer to quantum computers". ZDnet. Retrieved August 29, 2018. https://www.zdnet.com/article/one-step-closer-to-quantum-computers/
Moskowitz, Clara; Walmsley, Ian; Sprague, Michael (December 2, 2011). "Two Diamonds Linked by Strange Quantum Entanglement". Retrieved December 2, 2011. /wiki/Clara_Moskowitz
Bian, Z.; Chudak, F.; MacReady, W. G.; Clark, L.; Gaitan, F. (2013). "Experimental determination of Ramsey numbers with quantum annealing". Physical Review Letters. 111 (13): 130505. arXiv:1201.1842. Bibcode:2013PhRvL.111m0505B. doi:10.1103/PhysRevLett.111.130505. PMID 24116761. S2CID 1303361. /wiki/ArXiv_(identifier)
Fuechsle, M.; Miwa, J. A.; Mahapatra, S.; Ryu, H.; Lee, S.; Warschkow, O.; Hollenberg, L. C.; Klimeck, G.; Simmons, M. Y. (February 19, 2012). "A single-atom transistor". Nature Nanotechnology. 7 (4): 242–246. Bibcode:2012NatNa...7..242F. doi:10.1038/nnano.2012.21. PMID 22343383. S2CID 14952278. /wiki/Bibcode_(identifier)
Markoff, John (February 19, 2012). "Physicists Create a Working Transistor From a Single Atom". The New York Times. Retrieved February 19, 2012. https://www.nytimes.com/2012/02/20/science/physicists-create-a-working-transistor-from-a-single-atom.html?partner=rss&emc=rss
Grotz, Bernhard; Hauf, Moritz V.; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg; Stutzmann, Martin; Reinhard, Friedemann; Garrido, Jose A. (2012). "Charge state manipulation of qubits in diamond". Nature Communications. 3: 729. Bibcode:2012NatCo...3..729G. doi:10.1038/ncomms1729. PMC 3316888. PMID 22395620. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316888
Britton, J. W.; Sawyer, B. C.; Keith, A. C.; Wang, C. C.; Freericks, J. K.; Uys, H.; Biercuk, M. J.; Bollinger, J. J. (April 26, 2012). "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins". Nature. 484 (7395): 489–492. arXiv:1204.5789. Bibcode:2012Natur.484..489B. doi:10.1038/nature10981. PMID 22538611. S2CID 4370334. /wiki/ArXiv_(identifier)
Sherriff, Lucy. "300 atom quantum simulator smashes qubit record". Retrieved February 9, 2015. https://www.zdnet.com/article/300-atom-quantum-simulator-smashes-qubit-record/
Yao, Xing-Can; Wang, Tian-Xiong; Chen, Hao-Ze; Gao, Wei-Bo; Fowler, Austin G; Raussendorf, Robert; Chen, Zeng-Bing; Liu, Nai-Le; Lu, Chao-Yang; Deng, You-Jin; Chen, Yu-Ao; Pan, Jian-Wei (2012). "Experimental demonstration of topological error correction". Nature. 482 (7386): 489–494. arXiv:0905.1542. Bibcode:2012Natur.482..489Y. doi:10.1038/nature10770. PMID 22358838. S2CID 4307662. /wiki/ArXiv_(identifier)
1QBit. "1QBit Website".{{cite news}}: CS1 maint: numeric names: authors list (link) http://www.1qbit.com/
Munro, W. J.; Stephens, A. M.; Devitt, S. J.; Harrison, K. A.; Nemoto, K. (October 14, 2012). "Quantum communication without the necessity of quantum memories". Nature Photonics. 6 (11): 777–781. arXiv:1306.4137. Bibcode:2012NaPho...6..777M. doi:10.1038/nphoton.2012.243. S2CID 5056130. /wiki/Kae_Nemoto
Maurer, P. C.; Kucsko, G.; Latta, C.; Jiang, L.; Yao, N. Y.; Bennett, S. D.; Pastawski, F.; Hunger, D.; Chisholm, N.; Markham, M.; Twitchen, D. J.; Cirac, J. I.; Lukin, M. D. (June 8, 2012). "Room-Temperature Quantum Bit Memory Exceeding One Second". Science (Submitted manuscript). 336 (6086): 1283–1286. Bibcode:2012Sci...336.1283M. doi:10.1126/science.1220513. PMID 22679092. S2CID 2684102. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12132060
Peckham, Matt (July 6, 2012). "Quantum Computing at Room Temperature – Now a Reality". Magazine/Periodical. Time Magazine (Techland) Time Inc. p. 1. Retrieved August 5, 2012. https://techland.time.com/2012/07/06/quantum-computing-at-room-temperature-now-a-reality/
Koh, Dax Enshan; Hall, Michael J. W.; Setiawan; Pope, James E.; Marletto, Chiara; Kay, Alastair; Scarani, Valerio; Ekert, Artur (2012). "Effects of Reduced Measurement Independence on Bell-Based Randomness Expansion". Physical Review Letters. 109 (16): 160404. arXiv:1202.3571. Bibcode:2012PhRvL.109p0404K. doi:10.1103/PhysRevLett.109.160404. PMID 23350071. S2CID 18935137. /wiki/ArXiv_(identifier)
Horsman, C.; Fowler, A. G.; Devitt, S. J.; Van Meter, R. (December 7, 2012). "Surface code quantum computing by lattice surgery". New J. Phys. 14 (12): 123011. arXiv:1111.4022. Bibcode:2012NJPh...14l3011H. doi:10.1088/1367-2630/14/12/123011. S2CID 119212756. /wiki/ArXiv_(identifier)
Kastrenakes, Jacob (November 14, 2013). "Researchers smash through quantum computer storage record". Webzine. The Verge. Retrieved November 20, 2013. https://www.theverge.com/2013/11/14/5104668/qubits-stored-for-39-minutes-quantum-computer-new-record
"Quantum Computer Breakthrough 2013". November 24, 2013. Archived from the original on October 2, 2018. Retrieved October 2, 2018. https://web.archive.org/web/20181002141518/http://welldonestuff.com/quantum-computer-breakthrough-2013/
Devitt, S. J.; Stephens, A. M.; Munro, W. J.; Nemoto, K. (October 10, 2013). "Requirements for fault-tolerant factoring on an atom-optics quantum computer". Nature Communications. 4: 2524. arXiv:1212.4934. Bibcode:2013NatCo...4.2524D. doi:10.1038/ncomms3524. PMID 24088785. S2CID 7229103. /wiki/Kae_Nemoto
"Penetrating Hard Targets project". Archived from the original on August 30, 2017. Retrieved September 16, 2017. https://web.archive.org/web/20170830105417/https://apps.washingtonpost.com/g/page/world/a-description-of-the-penetrating-hard-targets-project/691/
"NSA seeks to develop quantum computer to crack nearly every kind of encryption « Kurzweil". https://www.kurzweilai.net/nsa-seeks-to-develop-quantum-computer-to-crack-nearly-every-kind-of-encryption
NSA seeks to build quantum computer that could crack most types of encryption – Washington Post. https://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html
Dockterman, Eliana (January 2, 2014). "The NSA Is Building a Computer to Crack Almost Any Code". Time – via nation.time.com. https://nation.time.com/2014/01/02/the-nsa-is-building-a-computer-to-crack-almost-any-code/
Nemoto, K.; Trupke, M.; Devitt, S. J.; Stephens, A. M.; Scharfenberger, B.; Buczak, K.; Nobauer, T.; Everitt, M. S.; Schmiedmayer, J.; Munro, W. J. (August 4, 2014). "Photonic architecture for scalable quantum information processing in diamond". Physical Review X. 4 (3): 031022. arXiv:1309.4277. Bibcode:2014PhRvX...4c1022N. doi:10.1103/PhysRevX.4.031022. S2CID 118418371. /wiki/Kae_Nemoto
Nigg, D.; Müller, M.; Martinez, M. A.; Schindler, P.; Hennrich, M.; Monz, T.; Martin-Delgado, M. A.; Blatt, R. (July 18, 2014). "Quantum computations on a topologically encoded qubit". Science. 345 (6194): 302–305. arXiv:1403.5426. Bibcode:2014Sci...345..302N. doi:10.1126/science.1253742. PMID 24925911. S2CID 9677048. /wiki/Science_(journal)
Markoff, John (May 29, 2014). "Scientists Report Finding Reliable Way to Teleport Data". The New York Times. Retrieved May 29, 2014. https://www.nytimes.com/2014/05/30/science/scientists-report-finding-reliable-way-to-teleport-data.html
Pfaff, W.; Hensen, B. J.; Bernien, H.; Van Dam, S. B.; Blok, M. S.; Taminiau, T. H.; Tiggelman, M. J.; Schouten, R. N.; Markham, M.; Twitchen, D. J.; Hanson, R. (May 29, 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". Science. 345 (6196): 532–535. arXiv:1404.4369. Bibcode:2014Sci...345..532P. doi:10.1126/science.1253512. PMID 25082696. S2CID 2190249. /wiki/Science_(journal)
Zhong, Manjin; Hedges, Morgan P.; Ahlefeldt, Rose L.; Bartholomew, John G.; Beavan, Sarah E.; Wittig, Sven M.; Longdell, Jevon J.; Sellars, Matthew J. (2015). "Optically addressable nuclear spins in a solid with a six-hour coherence time". Nature. 517 (7533): 177–180. Bibcode:2015Natur.517..177Z. doi:10.1038/nature14025. PMID 25567283. S2CID 205241727. /wiki/Bibcode_(identifier)
"Breakthrough opens door to affordable quantum computers". April 13, 2015. Retrieved April 16, 2015. http://newsroom.unsw.edu.au/news/science-tech/breakthrough-opens-door-affordable-quantum-computers
Córcoles, A. D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M. (2015). "Demonstration of a quantum error detection code using a square lattice of four superconducting qubits". Nature Communications. 6: 6979. arXiv:1410.6419. Bibcode:2015NatCo...6.6979C. doi:10.1038/ncomms7979. PMC 4421819. PMID 25923200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421819
"D-Wave Systems Inc., the world's first quantum computing company, today announced that it has broken the 1000 qubit barrier". June 22, 2015. Archived from the original on January 15, 2018. Retrieved June 22, 2015. https://web.archive.org/web/20180115184711/https://www.dwavesys.com/press-releases/d-wave-systems-breaks-1000-qubit-quantum-computing-barrier
October 6, 2015
"Crucial hurdle overcome in quantum computing". Retrieved October 6, 2015. http://www.newsroom.unsw.edu.au/news/science-tech/crucial-hurdle-overcome-quantum-computing
Monz, T.; Nigg, D.; Martinez, E. A.; Brandl, M. F.; Schindler, P.; Rines, R.; Wang, S. X.; Chuang, I. L.; Blatt, R.; et al. (March 4, 2016). "Realization of a scalable Shor algorithm". Science. 351 (6277): 1068–1070. arXiv:1507.08852. Bibcode:2016Sci...351.1068M. doi:10.1126/science.aad9480. PMID 26941315. S2CID 17426142. /wiki/ArXiv_(identifier)
Devitt, S. J. (September 29, 2016). "Performing quantum computing experiments in the cloud". Physical Review A. 94 (3): 032329. arXiv:1605.05709. Bibcode:2016PhRvA..94c2329D. doi:10.1103/PhysRevA.94.032329. S2CID 119217150. /wiki/ArXiv_(identifier)
Alsina, D.; Latorre, J. I. (2016). "Experimental test of Mermin inequalities on a five-qubit quantum computer". Physical Review A. 94 (1): 012314. arXiv:1605.04220. Bibcode:2016PhRvA..94a2314A. doi:10.1103/PhysRevA.94.012314. S2CID 119189277. /wiki/ArXiv_(identifier)
o'Malley, P. J. J.; Babbush, R.; Kivlichan, I. D.; Romero, J.; McClean, J. R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. G; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J. Y; Neeley, M; Neill, C; Quintana, C; Sank, D; Vainsencher, A; Wenner, J; White, T. C; Coveney, P. V; Love, P. J; Neven, H; et al. (July 18, 2016). "Scalable Quantum Simulation of Molecular Energies". Physical Review X. 6 (3): 031007. arXiv:1512.06860. Bibcode:2016PhRvX...6c1007O. doi:10.1103/PhysRevX.6.031007. S2CID 4884151. /wiki/ArXiv_(identifier)
Devitt, S. J.; Greentree, A. D.; Stephens, A. M.; Van Meter, R. (November 2, 2016). "High-speed quantum networking by ship". Scientific Reports. 6: 36163. arXiv:1605.05709. Bibcode:2016NatSR...636163D. doi:10.1038/srep36163. PMC 5090252. PMID 27805001. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090252
"D-Wave Announces D-Wave 2000Q Quantum Computer and First System Order | D-Wave Systems". www.dwavesys.com. Archived from the original on January 27, 2017. Retrieved January 26, 2017. https://web.archive.org/web/20170127044404/http://www.dwavesys.com/press-releases/d-wave%C2%A0announces%C2%A0d-wave-2000q-quantum-computer-and-first-system-order
Lekitsch, B; Weidt, S; Fowler, A. G; Mølmer, K; Devitt, S. J; Wunderlich, C; Hensinger, W. K (February 1, 2017). "Blueprint for a microwave trapped ion quantum computer". Science Advances. 3 (2): e1601540. arXiv:1508.00420. Bibcode:2017SciA....3E1540L. doi:10.1126/sciadv.1601540. PMC 5287699. PMID 28164154. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287699
Meredith Rutland Bauer (May 17, 2017). "IBM Just Made a 17 Qubit Quantum Processor, Its Most Powerful One Yet". Motherboard. https://www.vice.com/en/article/ibm-17-qubit-quantum-processor-computer-google/
"Qudits: The Real Future of Quantum Computing?". IEEE Spectrum. June 28, 2017. Retrieved June 29, 2017. https://spectrum.ieee.org/qudits-the-real-future-of-quantum-computing
"Microsoft makes play for next wave of computing with quantum computing toolkit". arstechnica.com. September 25, 2017. Retrieved October 5, 2017. https://arstechnica.com/gadgets/2017/09/microsoft-quantum-toolkit/
"IBM Raises the Bar with a 50-Qubit Quantum Computer". MIT Technology Review. Retrieved December 13, 2017. https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/
Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing (August 9, 2017). "Ground-to-satellite quantum teleportation". Nature. 549 (7670): 70–73. arXiv:1707.00934. Bibcode:2017Natur.549...70R. doi:10.1038/nature23675. ISSN 1476-4687. PMID 28825708. S2CID 4468803. https://www.nature.com/articles/nature23675/
Preskill, John (August 6, 2018). "Quantum Computing in the NISQ era and beyond". Quantum. 2: 79. arXiv:1801.00862. Bibcode:2018Quant...2...79P. doi:10.22331/q-2018-08-06-79. ISSN 2521-327X. https://quantum-journal.org/papers/q-2018-08-06-79/
Hignett, Katherine (February 16, 2018). "Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution". Newsweek. Retrieved February 17, 2018. http://www.newsweek.com/photons-light-physics-808862
Liang, Q. Y; Venkatramani, A. V; Cantu, S. H; Nicholson, T. L; Gullans, M. J; Gorshkov, A. V; Thompson, J. D; Chin, C; Lukin, M. D; Vuletić, V (February 16, 2018). "Observation of three-photon bound states in a quantum nonlinear medium". Science. 359 (6377): 783–786. arXiv:1709.01478. Bibcode:2018Sci...359..783L. doi:10.1126/science.aao7293. PMC 6467536. PMID 29449489. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467536
"Scientists make major quantum computing breakthrough". Independent.co.uk. March 2018. Archived from the original on May 7, 2022. https://www.independent.co.uk/life-style/gadgets-and-tech/news/quantum-computing-logic-gates-oxford-university-breakthrough-latest-discovery-a8235281.html
Giles, Martin (February 15, 2018). "Old-fashioned silicon might be the key to building ubiquitous quantum computers". MIT Technology Review. Retrieved July 5, 2018. https://www.technologyreview.com/s/610273/old-fashioned-silicon-might-be-the-key-to-building-ubiquitous-quantum-computers/
Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K. (March 29, 2018). "A programmable two-qubit quantum processor in silicon". Nature. 555 (7698): 633–637. arXiv:1708.04214. Bibcode:2018Natur.555..633W. doi:10.1038/nature25766. ISSN 1476-4687. PMID 29443962. https://www.nature.com/articles/nature25766
Emily Conover (March 5, 2018). "Google moves toward quantum supremacy with 72-qubit computer". Science News. Retrieved August 28, 2018. https://www.sciencenews.org/article/google-moves-toward-quantum-supremacy-72-qubit-computer
Forrest, Conner (June 12, 2018). "Why Intel's smallest spin qubit chip could be a turning point in quantum computing". TechRepublic. Retrieved July 12, 2018. https://www.techrepublic.com/article/why-intels-smallest-spin-qubit-chip-could-be-a-turning-point-in-quantum-computing/
Pillarisetty, R.; Thomas, N.; George, H.C.; Singh, K.; Roberts, J.; Lampert, L.; Amin, P.; Watson, T.F.; Zheng, G.; Torres, J.; Metz, M.; Kotlyar, R.; Keys, P.; Boter, J.M.; Dehollain, J.P. (January 17, 2019). "Qubit Device Integration Using Advanced Semiconductor Manufacturing Process Technology". 2018 IEEE International Electron Devices Meeting (IEDM). IEEE. pp. 6.3.1–6.3.4. doi:10.1109/IEDM.2018.8614624. ISBN 978-1-7281-1987-8. 978-1-7281-1987-8
Hsu, Jeremy (January 9, 2018). "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". Institute of Electrical and Electronics Engineers. Retrieved July 5, 2018. https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy
Nagata, K; Kuramitani, K; Sekiguchi, Y; Kosaka, H (August 13, 2018). "Universal holonomic quantum gates over geometric spin qubits with polarised microwaves". Nature Communications. 9 (3227): 3227. Bibcode:2018NatCo...9.3227N. doi:10.1038/s41467-018-05664-w. PMC 6089953. PMID 30104616. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089953
Lenzini, Francesco (December 7, 2018). "Integrated photonic platform for quantum information with continuous variables". Science Advances. 4 (12): eaat9331. arXiv:1804.07435. Bibcode:2018SciA....4.9331L. doi:10.1126/sciadv.aat9331. PMC 6286167. PMID 30539143. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286167
"Ion-based commercial quantum computer is a first". Physics World. December 17, 2018. https://physicsworld.com/a/ion-based-commercial-quantum-computer-is-a-first/
"IonQ". https://ionq.com/
115th Congress (2018) (June 26, 2018). "H.R. 6227 (115th)". Legislation. GovTrack.us. Retrieved February 11, 2019. National Quantum Initiative Act{{cite web}}: CS1 maint: numeric names: authors list (link) https://www.govtrack.us/congress/bills/115/hr6227
"President Trump has signed a $1.2 billon law to boost US quantum tech". MIT Technology Review. Retrieved February 11, 2019. https://www.technologyreview.com/the-download/612679/president-trump-has-signed-a-12-billon-law-to-boost-us-quantum-tech/
"US National Quantum Initiative Act passed unanimously". The Stack. December 18, 2018. Retrieved February 11, 2019. https://thestack.com/data-centre/2018/12/18/us-national-quantum-initiative-act/
Aron, Jacob (January 8, 2019). "IBM unveils its first commercial quantum computer". New Scientist. Retrieved January 8, 2019. https://www.newscientist.com/article/2189909-ibm-unveils-its-first-commercial-quantum-computer/
"IBM unveils its first commercial quantum computer". TechCrunch. January 8, 2019. Retrieved February 18, 2019. https://techcrunch.com/2019/01/08/ibm-unveils-its-first-commercial-quantum-computer/
Kokail, C; Maier, C; Van Bijnen, R; Brydges, T; Joshi, M. K; Jurcevic, P; Muschik, C. A; Silvi, P; Blatt, R; Roos, C; Zoller, P (May 15, 2019). "Self-verifying variational quantum simulation of lattice models". Science. 569 (7756): 355–360. arXiv:1810.03421. Bibcode:2019Natur.569..355K. doi:10.1038/s41586-019-1177-4. PMID 31092942. S2CID 53595106. /wiki/Nature_(journal)
UNSW Media (May 23, 2019). "'Noise-cancelling headphones' for quantum computers: international collaboration launched". UNSW Newsroom. University of New South Wales. Retrieved April 16, 2022. https://newsroom.unsw.edu.au/news/science-tech/noise-cancelling-headphones%E2%80%99-quantum-computers-international-collaboration#:~:text=A%20new%20project%20to%20develop,quantum%20building%20blocks%2C%20or%20qubits.&text=Morello%27s%20team%20was%20the%20first,information%20in%20a%20silicon%20chip
"Cancelling quantum noise". May 23, 2019. https://www.uts.edu.au/about/faculty-engineering-and-information-technology/news/cancelling-quantum-noise
Unden, T.; Louzon, D.; Zwolak, M.; Zurek, W. H.; Jelezko, F. (October 1, 2019). "Revealing the Emergence of Classicality Using Nitrogen-Vacancy Centers". Physical Review Letters. 123 (140402): 140402. arXiv:1809.10456. Bibcode:2019PhRvL.123n0402U. doi:10.1103/PhysRevLett.123.140402. PMC 7003699. PMID 31702205. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003699
Cho, A. (September 13, 2019). "Quantum Darwinism seen in diamond traps". Science. 365 (6458): 1070. Bibcode:2019Sci...365.1070C. doi:10.1126/science.365.6458.1070. PMID 31515367. S2CID 202567042. /wiki/Science_(journal)
"Google may have taken a step towards quantum computing 'supremacy' (updated)". Engadget. September 23, 2019. Retrieved September 24, 2019. https://www.engadget.com/2019/09/23/google-quantum-supremacy/
Porter, Jon (September 23, 2019). "Google may have just ushered in an era of 'quantum supremacy'". The Verge. Retrieved September 24, 2019. https://www.theverge.com/2019/9/23/20879485/google-quantum-supremacy-qubits-nasa
Murgia, Waters, Madhumita, Richard (September 20, 2019). "Google claims to have reached quantum supremacy". Financial Times. Archived from the original on December 10, 2022. Retrieved September 24, 2019.{{cite web}}: CS1 maint: multiple names: authors list (link) https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebe1f17
"Google Builds Circuit to Solve One of Quantum Computing's Biggest Problems – IEEE Spectrum". https://spectrum.ieee.org/google-team-builds-circuit-to-solve-one-of-quantum-computings-biggest-problems
Garisto, Daniel. "Quantum Computer Made from Photons Achieves a New Record". Scientific American. Retrieved June 30, 2021. https://www.scientificamerican.com/article/quantum-computer-made-from-photons-achieves-a-new-record/
z8826307 (April 16, 2020). "Hot qubits made in Sydney break one of the biggest constraints to practical quantum computers". UNSW Newsroom.{{cite web}}: CS1 maint: numeric names: authors list (link) https://newsroom.unsw.edu.au/news/science-tech/hot-qubits-made-sydney-break-one-biggest-constraints-practical-quantum-computers
z8826307 (March 12, 2020). "Engineers crack 58-year-old puzzle on way to quantum breakthrough". UNSW Newsroom.{{cite web}}: CS1 maint: numeric names: authors list (link) https://newsroom.unsw.edu.au/news/science-tech/engineers-crack-58-year-old-puzzle-way-quantum-breakthrough
"Wiring the quantum computer of the future: A novel simple build with existing technology". https://eurekalert.org/pub_releases/2020-04/tuos-wtq042320.php
"Quantum researchers able to split one photon into three". phys.org. Retrieved March 9, 2020. https://phys.org/news/2020-02-quantum-photon.html
Chang, C. W. Sandbo; Sabín, Carlos; Forn-Díaz, P.; Quijandría, Fernando; Vadiraj, A. M.; Nsanzineza, I.; Johansson, G.; Wilson, C. M. (January 16, 2020). "Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity". Physical Review X. 10 (1): 011011. arXiv:1907.08692. Bibcode:2020PhRvX..10a1011C. doi:10.1103/PhysRevX.10.011011. https://doi.org/10.1103%2FPhysRevX.10.011011
"Artificial atoms create stable qubits for quantum computing". phys.org. Retrieved March 9, 2020. https://phys.org/news/2020-02-artificial-atoms-stable-qubits-quantum.html
Leon, R. C. C.; Yang, C. H.; Hwang, J. C. C.; Lemyre, J. Camirand; Tanttu, T.; Huang, W.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Laucht, A.; Pioro-Ladrière, M.; Saraiva, A.; Dzurak, A. S. (February 11, 2020). "Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot". Nature Communications. 11 (1): 797. arXiv:1902.01550. Bibcode:2020NatCo..11..797L. doi:10.1038/s41467-019-14053-w. ISSN 2041-1723. PMC 7012832. PMID 32047151. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012832
"Producing single photons from a stream of single electrons". phys.org. Retrieved March 8, 2020. https://phys.org/news/2020-02-photons-stream-electrons.html
Hsiao, Tzu-Kan; Rubino, Antonio; Chung, Yousun; Son, Seok-Kyun; Hou, Hangtian; Pedrós, Jorge; Nasir, Ateeq; Éthier-Majcher, Gabriel; Stanley, Megan J.; Phillips, Richard T.; Mitchell, Thomas A.; Griffiths, Jonathan P.; Farrer, Ian; Ritchie, David A.; Ford, Christopher J. B. (February 14, 2020). "Single-photon emission from single-electron transport in a SAW-driven lateral light-emitting diode". Nature Communications. 11 (1): 917. arXiv:1901.03464. Bibcode:2020NatCo..11..917H. doi:10.1038/s41467-020-14560-1. ISSN 2041-1723. PMC 7021712. PMID 32060278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021712
"Scientists 'film' a quantum measurement". phys.org. Retrieved March 9, 2020. https://phys.org/news/2020-02-scientists-quantum.html
Pokorny, Fabian; Zhang, Chi; Higgins, Gerard; Cabello, Adán; Kleinmann, Matthias; Hennrich, Markus (February 25, 2020). "Tracking the Dynamics of an Ideal Quantum Measurement". Physical Review Letters. 124 (8): 080401. arXiv:1903.10398. Bibcode:2020PhRvL.124h0401P. doi:10.1103/PhysRevLett.124.080401. PMID 32167322. S2CID 85501331. /wiki/ArXiv_(identifier)
"Scientists measure electron spin qubit without demolishing it". phys.org. Retrieved April 5, 2020. https://phys.org/news/2020-03-scientists-electron-qubit-demolishing.html
Yoneda, J.; Takeda, K.; Noiri, A.; Nakajima, T.; Li, S.; Kamioka, J.; Kodera, T.; Tarucha, S. (March 2, 2020). "Quantum non-demolition readout of an electron spin in silicon". Nature Communications. 11 (1): 1144. arXiv:1910.11963. Bibcode:2020NatCo..11.1144Y. doi:10.1038/s41467-020-14818-8. ISSN 2041-1723. PMC 7052195. PMID 32123167. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052195
"Engineers crack 58-year-old puzzle on way to quantum breakthrough". phys.org. Retrieved April 5, 2020. https://phys.org/news/2020-03-year-old-puzzle-quantum-breakthrough.html
Asaad, Serwan; Mourik, Vincent; Joecker, Benjamin; Johnson, Mark A. I.; Baczewski, Andrew D.; Firgau, Hannes R.; Mądzik, Mateusz T.; Schmitt, Vivien; Pla, Jarryd J.; Hudson, Fay E.; Itoh, Kohei M.; McCallum, Jeffrey C.; Dzurak, Andrew S.; Laucht, Arne; Morello, Andrea (March 2020). "Coherent electrical control of a single high-spin nucleus in silicon". Nature. 579 (7798): 205–209. arXiv:1906.01086. Bibcode:2020Natur.579..205A. doi:10.1038/s41586-020-2057-7. PMID 32161384. S2CID 174797899. /wiki/ArXiv_(identifier)
Laboratory, The Army Research. "Scientists create quantum sensor that covers entire radio frequency spectrum". phys.org. Retrieved April 14, 2024. https://phys.org/news/2020-03-scientists-quantum-sensor-entire-radio.html
Meyer, David H; Castillo, Zachary A; Cox, Kevin C; Kunz, Paul D (January 10, 2020). "Assessment of Rydberg atoms for wideband electric field sensing". Journal of Physics B: Atomic, Molecular and Optical Physics. 53 (3): 034001. arXiv:1910.00646. Bibcode:2020JPhB...53c4001M. doi:10.1088/1361-6455/ab6051. ISSN 0953-4075. S2CID 203626886. /wiki/ArXiv_(identifier)
"Researchers demonstrate the missing link for a quantum internet". phys.org. Retrieved April 7, 2020. https://phys.org/news/2020-03-link-quantum-internet.html
Bhaskar, M. K.; Riedinger, R.; Machielse, B.; Levonian, D. S.; Nguyen, C. T.; Knall, E. N.; Park, H.; Englund, D.; Lončar, M.; Sukachev, D. D.; Lukin, M. D. (April 2020). "Experimental demonstration of memory-enhanced quantum communication". Nature. 580 (7801): 60–64. arXiv:1909.01323. Bibcode:2020Natur.580...60B. doi:10.1038/s41586-020-2103-5. PMID 32238931. S2CID 202539813. /wiki/ArXiv_(identifier)
Delbert, Caroline (April 17, 2020). "Hot Qubits Could Deliver a Quantum Computing Breakthrough". Popular Mechanics. Retrieved May 16, 2020. https://www.popularmechanics.com/science/a32170397/hot-qubits-quantum-computing-breakthrough/
"'Hot' qubits crack quantum computing temperature barrier – ABC News". www.abc.net.au. April 15, 2020. Retrieved May 16, 2020. https://www.abc.net.au/news/science/2020-04-16/hot-qubits-crack-quantum-computing-temperature-barrier/12132400
"Hot qubits break one of the biggest constraints to practical quantum computers". phys.org. Retrieved May 16, 2020. https://phys.org/news/2020-04-hot-qubits-biggest-constraints-quantum.html
Yang, C. H.; Leon, R. C. C.; Hwang, J. C. C.; Saraiva, A.; Tanttu, T.; Huang, W.; Camirand Lemyre, J.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Pioro-Ladrière, M.; Laucht, A.; Dzurak, A. S. (April 2020). "Operation of a silicon quantum processor unit cell above one kelvin". Nature. 580 (7803): 350–354. arXiv:1902.09126. Bibcode:2020Natur.580..350Y. doi:10.1038/s41586-020-2171-6. PMID 32296190. S2CID 119520750. /wiki/ArXiv_(identifier)
"New discovery settles long-standing debate about photovoltaic materials". phys.org. Retrieved May 17, 2020. https://phys.org/news/2020-04-discovery-long-standing-debate-photovoltaic-materials.html
Liu, Z.; Vaswani, C.; Yang, X.; Zhao, X.; Yao, Y.; Song, Z.; Cheng, D.; Shi, Y.; Luo, L.; Mudiyanselage, D.-H.; Huang, C.; Park, J.-M.; Kim, R. H. J.; Zhao, J.; Yan, Y.; Ho, K.-M.; Wang, J. (April 16, 2020). "Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite
C
H
3
N
H
3
P
b
I
3
{\displaystyle {\mathrm {CH} }_{3}{\mathrm {NH} }_{3}{\mathrm {PbI} }_{3}}
". Physical Review Letters. 124 (15): 157401. arXiv:1905.12373. doi:10.1103/PhysRevLett.124.157401. PMID 32357060. S2CID 214606050. https://doi.org/10.1103%2FPhysRevLett.124.157401
"Scientists demonstrate quantum radar prototype". phys.org. Retrieved June 12, 2020. https://phys.org/news/2020-05-scientists-quantum-radar-prototype.html
"'Quantum radar' uses entangled photons to detect objects". New Atlas. May 12, 2020. Retrieved June 12, 2020. https://newatlas.com/physics/quantum-radar-entangled-photons/
Barzanjeh, S.; Pirandola, S.; Vitali, D.; Fink, J. M. (May 1, 2020). "Microwave quantum illumination using a digital receiver". Science Advances. 6 (19): eabb0451. arXiv:1908.03058. Bibcode:2020SciA....6..451B. doi:10.1126/sciadv.abb0451. PMC 7272231. PMID 32548249. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272231
"Scientists break the link between a quantum material's spin and orbital states". phys.org. Retrieved June 12, 2020. https://phys.org/news/2020-05-scientists-link-quantum-material-orbital.html
Shen, L.; Mack, S. A.; Dakovski, G.; Coslovich, G.; Krupin, O.; Hoffmann, M.; Huang, S.-W.; Chuang, Y-D.; Johnson, J. A.; Lieu, S.; Zohar, S.; Ford, C.; Kozina, M.; Schlotter, W.; Minitti, M. P.; Fujioka, J.; Moore, R.; Lee, W-S.; Hussain, Z.; Tokura, Y.; Littlewood, P.; Turner, J. J. (May 12, 2020). "Decoupling spin–orbital correlations in a layered manganite amidst ultrafast hybridized charge-transfer band excitation". Physical Review B. 101 (20): 201103. arXiv:1912.10234. Bibcode:2020PhRvB.101t1103S. doi:10.1103/PhysRevB.101.201103. https://doi.org/10.1103%2FPhysRevB.101.201103
"Photon discovery is a major step toward large-scale quantum technologies". phys.org. Retrieved June 14, 2020. https://phys.org/news/2020-05-photon-discovery-major-large-scale-quantum.html
"Physicists develop integrated photon source for macro quantum-photonics". optics.org. Retrieved June 14, 2020. https://optics.org/news/11/5/44
Paesani, S.; Borghi, M.; Signorini, S.; Maïnos, A.; Pavesi, L.; Laing, A. (May 19, 2020). "Near-ideal spontaneous photon sources in silicon quantum photonics". Nature Communications. 11 (1): 2505. arXiv:2005.09579. Bibcode:2020NatCo..11.2505P. doi:10.1038/s41467-020-16187-8. PMC 7237445. PMID 32427911. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237445
Lachmann, Maike D.; Rasel, Ernst M. (June 11, 2020). "Quantum matter orbits Earth". Nature. 582 (7811): 186–187. Bibcode:2020Natur.582..186L. doi:10.1038/d41586-020-01653-6. PMID 32528088. https://doi.org/10.1038%2Fd41586-020-01653-6
"Quantum 'fifth state of matter' observed in space for first time". phys.org. Retrieved July 4, 2020. https://phys.org/news/2020-06-quantum-state-space.html
Aveline, David C.; Williams, Jason R.; Elliott, Ethan R.; Dutenhoffer, Chelsea; Kellogg, James R.; Kohel, James M.; Lay, Norman E.; Oudrhiri, Kamal; Shotwell, Robert F.; Yu, Nan; Thompson, Robert J. (June 2020). "Observation of Bose–Einstein condensates in an Earth-orbiting research lab". Nature. 582 (7811): 193–197. Bibcode:2020Natur.582..193A. doi:10.1038/s41586-020-2346-1. PMID 32528092. S2CID 219568565. /wiki/Bibcode_(identifier)
"The smallest motor in the world". phys.org. Retrieved July 4, 2020. https://phys.org/news/2020-06-smallest-motor-world.html
"Nano-motor of just 16 atoms runs at the boundary of quantum physics". New Atlas. June 17, 2020. Retrieved July 4, 2020. https://newatlas.com/physics/nano-motor-quantum-physics/
Stolz, Samuel; Gröning, Oliver; Prinz, Jan; Brune, Harald; Widmer, Roland (June 15, 2020). "Molecular motor crossing the frontier of classical to quantum tunneling motion". Proceedings of the National Academy of Sciences. 117 (26): 14838–14842. Bibcode:2020PNAS..11714838S. doi:10.1073/pnas.1918654117. ISSN 0027-8424. PMC 7334648. PMID 32541061. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334648
"New techniques improve quantum communication, entangle phonons". phys.org. Retrieved July 5, 2020. https://phys.org/news/2020-06-techniques-quantum-entangle-phonons.html
Schirber, Michael (June 12, 2020). "Quantum Erasing with Phonons". Physics. Retrieved July 5, 2020. https://physics.aps.org/articles/v13/95
Chang, H.-S.; Zhong, Y. P.; Bienfait, A.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 17, 2020). "Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System". Physical Review Letters. 124 (24): 240502. arXiv:2005.12334. Bibcode:2020PhRvL.124x0502C. doi:10.1103/PhysRevLett.124.240502. PMID 32639797. S2CID 218889298. /wiki/ArXiv_(identifier)
Bienfait, A.; Zhong, Y. P.; Chang, H.-S.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 12, 2020). "Quantum Erasure Using Entangled Surface Acoustic Phonons". Physical Review X. 10 (2): 021055. arXiv:2005.09311. Bibcode:2020PhRvX..10b1055B. doi:10.1103/PhysRevX.10.021055. https://doi.org/10.1103%2FPhysRevX.10.021055
"Honeywell claims to have world's highest performing quantum computer according to IBM's benchmark". ZDNet. https://www.zdnet.com/article/honeywell-claims-to-have-worlds-highest-performing-quantum-computer-according-to-ibms-benchmark
"UChicago scientists discover way to make quantum states last 10,000 times longer". Argonne National Laboratory. August 13, 2020. Retrieved August 14, 2020. https://www.anl.gov/article/uchicago-scientists-discover-way-to-make-quantum-states-last-10000-times-longer
Miao, Kevin C.; Blanton, Joseph P.; Anderson, Christopher P.; Bourassa, Alexandre; Crook, Alexander L.; Wolfowicz, Gary; Abe, Hiroshi; Ohshima, Takeshi; Awschalom, David D. (May 12, 2020). "Universal coherence protection in a solid-state spin qubit". Science. 369 (6510): 1493–1497. arXiv:2005.06082v1. Bibcode:2020Sci...369.1493M. doi:10.1126/science.abc5186. PMID 32792463. S2CID 218613907. /wiki/ArXiv_(identifier)
"Quantum computers may be destroyed by high-energy particles from space". New Scientist. Retrieved September 7, 2020. https://www.newscientist.com/article/2252933-quantum-computers-may-be-destroyed-by-high-energy-particles-from-space/
"Cosmic rays may soon stymie quantum computing". phys.org. Retrieved September 7, 2020. https://phys.org/news/2020-08-cosmic-rays-stymie-quantum.html
Vepsäläinen, Antti P.; Karamlou, Amir H.; Orrell, John L.; Dogra, Akshunna S.; Loer, Ben; Vasconcelos, Francisca; Kim, David K.; Melville, Alexander J.; Niedzielski, Bethany M.; Yoder, Jonilyn L.; Gustavsson, Simon; Formaggio, Joseph A.; VanDevender, Brent A.; Oliver, William D. (August 2020). "Impact of ionizing radiation on superconducting qubit coherence". Nature. 584 (7822): 551–556. arXiv:2001.09190. Bibcode:2020Natur.584..551V. doi:10.1038/s41586-020-2619-8. ISSN 1476-4687. PMID 32848227. S2CID 210920566. Retrieved September 7, 2020. https://www.nature.com/articles/s41586-020-2619-8
"Google conducts largest chemical simulation on a quantum computer to date". phys.org. Retrieved September 7, 2020. https://phys.org/news/2020-08-google-largest-chemical-simulation-quantum.html
Savage, Neil. "Google's Quantum Computer Achieves Chemistry Milestone". Scientific American. Retrieved September 7, 2020. https://www.scientificamerican.com/article/googles-quantum-computer-achieves-chemistry-milestone/
Arute, Frank; et al. (Google AI Quantum Collaborators) (August 28, 2020). "Hartree–Fock on a superconducting qubit quantum computer". Science. 369 (6507): 1084–1089. arXiv:2004.04174. Bibcode:2020Sci...369.1084.. doi:10.1126/science.abb9811. ISSN 0036-8075. PMID 32855334. S2CID 215548188. Retrieved September 7, 2020. https://www.science.org/doi/10.1126/science.abb9811
"Multi-user communication network paves the way towards the quantum internet". Physics World. September 8, 2020. Retrieved October 8, 2020. https://physicsworld.com/a/multi-user-communication-network-paves-the-way-towards-the-quantum-internet/
Joshi, Siddarth Koduru; Aktas, Djeylan; Wengerowsky, Sören; Lončarić, Martin; Neumann, Sebastian Philipp; Liu, Bo; Scheidl, Thomas; Lorenzo, Guillermo Currás; Samec, Željko; Kling, Laurent; Qiu, Alex; Razavi, Mohsen; Stipčević, Mario; Rarity, John G.; Ursin, Rupert (September 1, 2020). "A trusted node–free eight-user metropolitan quantum communication network". Science Advances. 6 (36): eaba0959. arXiv:1907.08229. Bibcode:2020SciA....6..959J. doi:10.1126/sciadv.aba0959. ISSN 2375-2548. PMC 7467697. PMID 32917585. Text and images are available under a Creative Commons Attribution 4.0 International License. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467697
"First Photonic Quantum Computer on the Cloud – IEEE Spectrum". https://spectrum.ieee.org/photonic-quantum
"Quantum entanglement realized between distant large objects". phys.org. Retrieved October 9, 2020. https://phys.org/news/2020-09-quantum-entanglement-distant-large.html
Thomas, Rodrigo A.; Parniak, Michał; Østfeldt, Christoffer; Møller, Christoffer B.; Bærentsen, Christian; Tsaturyan, Yeghishe; Schliesser, Albert; Appel, Jürgen; Zeuthen, Emil; Polzik, Eugene S. (September 21, 2020). "Entanglement between distant macroscopic mechanical and spin systems". Nature Physics. 17 (2): 228–233. arXiv:2003.11310. doi:10.1038/s41567-020-1031-5. ISSN 1745-2481. S2CID 214641162. Retrieved October 9, 2020. https://www.nature.com/articles/s41567-020-1031-5
"Chinese team unveils exceedingly fast quantum computer". China Daily. December 4, 2020. Retrieved December 5, 2020. http://global.chinadaily.com.cn/a/202012/04/WS5fc96deba31024ad0ba99abf.html
"China Stakes Its Claim to Quantum Supremacy". Wired. December 3, 2020. Retrieved December 5, 2020. https://www.wired.com/story/china-stakes-claim-quantum-supremacy/
Zhong, Han-Sen; Wang, Hui; Deng, Yu-Hao; Chen, Ming-Cheng; Peng, Li-Chao; Luo, Yi-Han; Qin, Jian; Wu, Dian; Ding, Xing; Hu, Yi; Hu, Peng; Yang, Xiao-Yan; Zhang, Wei-Jun; Li, Hao; Li, Yuxuan; Jiang, Xiao; Gan, Lin; Yang, Guangwen; You, Lixing; Wang, Zhen; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei (December 18, 2020). "Quantum computational advantage using photons". Science. 370 (6523): 1460–1463. arXiv:2012.01625. Bibcode:2020Sci...370.1460Z. doi:10.1126/science.abe8770. ISSN 0036-8075. PMID 33273064. S2CID 227254333. Retrieved January 22, 2021. https://www.science.org/doi/full/10.1126/science.abe8770
"Honeywell introduces quantum computing as a service with subscription offering". ZDNet. https://www.zdnet.com/article/honeywell-introduces-quantum-computing-as-a-service-with-subscription-offering/#ftag=CAD-00-10aag7e
"Three Frosty Innovations for Better Quantum Computers – IEEE Spectrum". https://spectrum.ieee.org/three-super-cold-devices-quantum-computers
"Scientists Achieve Direct Counterfactual Quantum Communication For The First Time". Futurism. Retrieved January 16, 2021. https://futurism.com/scientists-achieve-direct-counterfactual-quantum-communication-for-the-first-time
"Elementary particles part ways with their properties". phys.org. Retrieved January 16, 2021. https://phys.org/news/2020-12-elementary-particles-ways-properties.html
McRae, Mike. "In a Mind-Bending New Paper, Physicists Give Schrodinger's Cat a Cheshire Grin". ScienceAlert. Retrieved January 16, 2021. https://www.sciencealert.com/schrodinger-s-cat-gets-a-cheshire-grin-in-a-mind-bending-quantum-physics-analysis
Aharonov, Yakir; Rohrlich, Daniel (December 21, 2020). "What Is Nonlocal in Counterfactual Quantum Communication?". Physical Review Letters. 125 (26): 260401. arXiv:2011.11667. Bibcode:2020PhRvL.125z0401A. doi:10.1103/PhysRevLett.125.260401. PMID 33449741. S2CID 145994494. Retrieved January 16, 2021. Available under CC BY 4.0. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.260401
"The world's first integrated quantum communication network". phys.org. Retrieved February 11, 2021. https://phys.org/news/2021-01-world-quantum-network.html
Chen, Yu-Ao; Zhang, Qiang; Chen, Teng-Yun; Cai, Wen-Qi; Liao, Sheng-Kai; Zhang, Jun; Chen, Kai; Yin, Juan; Ren, Ji-Gang; Chen, Zhu; Han, Sheng-Long; Yu, Qing; Liang, Ken; Zhou, Fei; Yuan, Xiao; Zhao, Mei-Sheng; Wang, Tian-Yin; Jiang, Xiao; Zhang, Liang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Lu, Chao-Yang; Shu, Rong; Wang, Jian-Yu; Li, Li; Liu, Nai-Le; Xu, Feihu; Wang, Xiang-Bin; Peng, Cheng-Zhi; Pan, Jian-Wei (January 2021). "An integrated space-to-ground quantum communication network over 4,600 kilometres". Nature. 589 (7841): 214–219. Bibcode:2021Natur.589..214C. doi:10.1038/s41586-020-03093-8. ISSN 1476-4687. PMID 33408416. S2CID 230812317. Retrieved February 11, 2021. https://www.nature.com/articles/s41586-020-03093-8
"Error-protected quantum bits entangled for the first time". phys.org. Retrieved August 30, 2021. https://phys.org/news/2021-01-error-protected-quantum-bits-entangled.html
Erhard, Alexander; Poulsen Nautrup, Hendrik; Meth, Michael; Postler, Lukas; Stricker, Roman; Stadler, Martin; Negnevitsky, Vlad; Ringbauer, Martin; Schindler, Philipp; Briegel, Hans J.; Blatt, Rainer; Friis, Nicolai; Monz, Thomas (January 2021). "Entangling logical qubits with lattice surgery". Nature. 589 (7841): 220–224. arXiv:2006.03071. Bibcode:2021Natur.589..220E. doi:10.1038/s41586-020-03079-6. ISSN 1476-4687. PMID 33442044. S2CID 219401398. Retrieved August 30, 2021. https://www.nature.com/articles/s41586-020-03079-6
"Using drones to create local quantum networks". phys.org. Retrieved February 12, 2021. https://phys.org/news/2021-01-drones-local-quantum-networks.html
Liu, Hua-Ying; Tian, Xiao-Hui; Gu, Changsheng; Fan, Pengfei; Ni, Xin; Yang, Ran; Zhang, Ji-Ning; Hu, Mingzhe; Guo, Jian; Cao, Xun; Hu, Xiaopeng; Zhao, Gang; Lu, Yan-Qing; Gong, Yan-Xiao; Xie, Zhenda; Zhu, Shi-Ning (January 15, 2021). "Optical-Relayed Entanglement Distribution Using Drones as Mobile Nodes". Physical Review Letters. 126 (2): 020503. Bibcode:2021PhRvL.126b0503L. doi:10.1103/PhysRevLett.126.020503. PMID 33512193. S2CID 231761406. Retrieved February 12, 2021. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.020503
"BMW explores quantum computing to boost supply chain efficiencies". ZDNet. https://www.zdnet.com/article/bmw-explores-quantum-computing-to-boost-supply-chain-efficiencies/#ftag=CAD-00-10aag7e
"Physicists develop record-breaking source for single photons". phys.org. Retrieved February 12, 2021. https://phys.org/news/2021-01-physicists-record-breaking-source-photons.html
Tomm, Natasha; Javadi, Alisa; Antoniadis, Nadia Olympia; Najer, Daniel; Löbl, Matthias Christian; Korsch, Alexander Rolf; Schott, Rüdiger; Valentin, Sascha René; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John (January 28, 2021). "A bright and fast source of coherent single photons". Nature Nanotechnology. 16 (4): 399–403. arXiv:2007.12654. Bibcode:2021NatNa..16..399T. doi:10.1038/s41565-020-00831-x. ISSN 1748-3395. PMID 33510454. S2CID 220769410. Retrieved February 12, 2021. https://www.nature.com/articles/s41565-020-00831-x
"You can now try out a quantum computer with Microsoft's Azure cloud service". https://www.cnet.com/tech/computing/microsoft-opens-its-azure-quantum-computer-cloud-service-to-the-public/
"Quantum systems learn joint computing". phys.org. Retrieved March 7, 2021. https://phys.org/news/2021-02-quantum-joint.html
Daiss, Severin; Langenfeld, Stefan; Welte, Stephan; Distante, Emanuele; Thomas, Philip; Hartung, Lukas; Morin, Olivier; Rempe, Gerhard (February 5, 2021). "A quantum-logic gate between distant quantum-network modules". Science. 371 (6529): 614–617. arXiv:2103.13095. Bibcode:2021Sci...371..614D. doi:10.1126/science.abe3150. ISSN 0036-8075. PMID 33542133. S2CID 231808141. Retrieved March 7, 2021. https://www.science.org/doi/10.1126/science.abe3150
"Quantum computing: Honeywell just quadrupled the power of its computer". ZDNet. https://www.zdnet.com/article/quantum-computing-honeywell-just-quadrupled-the-power-of-its-computer/
"We could detect alien civilizations through their interstellar quantum communication". phys.org. Retrieved May 9, 2021. https://phys.org/news/2021-04-alien-civilizations-interstellar-quantum.html
Hippke, Michael (April 13, 2021). "Searching for Interstellar Quantum Communications". The Astronomical Journal. 162 (1): 1. arXiv:2104.06446. Bibcode:2021AJ....162....1H. doi:10.3847/1538-3881/abf7b7. S2CID 233231350. https://doi.org/10.3847%2F1538-3881%2Fabf7b7
"Vibrating drumheads are entangled quantum mechanically". Physics World. May 17, 2021. Retrieved June 14, 2021. https://physicsworld.com/a/vibrating-drumheads-are-entangled-quantum-mechanically/
Lépinay, Laure Mercier de; Ockeloen-Korppi, Caspar F.; Woolley, Matthew J.; Sillanpää, Mika A. (May 7, 2021). "Quantum mechanics–free subsystem with mechanical oscillators". Science. 372 (6542): 625–629. arXiv:2009.12902. Bibcode:2021Sci...372..625M. doi:10.1126/science.abf5389. hdl:1959.4/unsworks_79394. ISSN 0036-8075. PMID 33958476. S2CID 221971015. Retrieved June 14, 2021. https://www.science.org/doi/10.1126/science.abf5389
Kotler, Shlomi; Peterson, Gabriel A.; Shojaee, Ezad; Lecocq, Florent; Cicak, Katarina; Kwiatkowski, Alex; Geller, Shawn; Glancy, Scott; Knill, Emanuel; Simmonds, Raymond W.; Aumentado, José; Teufel, John D. (May 7, 2021). "Direct observation of deterministic macroscopic entanglement". Science. 372 (6542): 622–625. arXiv:2004.05515. Bibcode:2021Sci...372..622K. doi:10.1126/science.abf2998. ISSN 0036-8075. PMID 33958475. S2CID 233872863. Retrieved June 14, 2021. https://www.science.org/doi/10.1126/science.abf2998
"TOSHIBA ANNOUNCES BREAKTHROUGH IN LONG DISTANCE QUANTUM COMMUNICATION". Toshiba. June 12, 2021. Retrieved June 12, 2021. https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/toshiba-announces-breakthrough-in-long-distance-quantum-communication
"Researchers create an 'un-hackable' quantum network over hundreds of kilometers using optical fiber". ZDNet. June 8, 2021. Retrieved June 12, 2021. https://www.zdnet.com/article/researchers-created-an-un-hackable-quantum-network-over-hundreds-of-kilometers-using-optical-fiber/
Pittaluga, Mirko; Minder, Mariella; Lucamarini, Marco; Sanzaro, Mirko; Woodward, Robert I.; Li, Ming-Jun; Yuan, Zhiliang; Shields, Andrew J. (July 2021). "600-km repeater-like quantum communications with dual-band stabilization". Nature Photonics. 15 (7): 530–535. arXiv:2012.15099. Bibcode:2021NaPho..15..530P. doi:10.1038/s41566-021-00811-0. ISSN 1749-4893. S2CID 229923162. Retrieved July 19, 2021. https://www.nature.com/articles/s41566-021-00811-0
"Quantum computer is smallest ever, claim physicists". Physics World. July 7, 2021. Retrieved July 11, 2021. https://physicsworld.com/a/quantum-computer-is-smallest-ever-claim-physicists/
Pogorelov, I.; Feldker, T.; Marciniak, Ch. D.; Postler, L.; Jacob, G.; Krieglsteiner, O.; Podlesnic, V.; Meth, M.; Negnevitsky, V.; Stadler, M.; Höfer, B.; Wächter, C.; Lakhmanskiy, K.; Blatt, R.; Schindler, P.; Monz, T. (June 17, 2021). "Compact Ion-Trap Quantum Computing Demonstrator". PRX Quantum. 2 (2): 020343. arXiv:2101.11390. Bibcode:2021PRXQ....2b0343P. doi:10.1103/PRXQuantum.2.020343. S2CID 231719119. Retrieved July 11, 2021. https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.020343
"IBM researchers demonstrate the advantage that quantum computers have over classical computers". ZDNet. https://www.zdnet.com/article/ibm-researchers-demonstrate-the-advantage-that-quantum-computers-have-over-classical-computers/?ftag=TRE-03-10aaa6b&bhid=28974009886604832149562936007498&mid=13420444&cid=2193388821&eh=70013a02f0e22ff3dec6ccb58d5e95e4e57150473218ab3ecaf4d84e5143828a
"Bigger quantum computers, faster: This new idea could be the quickest route to real world apps". ZDNet. https://www.zdnet.com/article/quantum-computing-this-new-approach-could-be-the-fastest-path-to-real-applications/?ftag=TRE-03-10aaa6b&bhid=28974009886604832149562936007498&mid=13420444&cid=2193388821&eh=70013a02f0e22ff3dec6ccb58d5e95e4e57150473218ab3ecaf4d84e5143828a
"Harvard-led physicists take big step in race to quantum computing". Scienmag: Latest Science and Health News. July 9, 2021. Retrieved August 14, 2021. https://scienmag.com/harvard-led-physicists-take-big-step-in-race-to-quantum-computing/
Ebadi, Sepehr; Wang, Tout T.; Levine, Harry; Keesling, Alexander; Semeghini, Giulia; Omran, Ahmed; Bluvstein, Dolev; Samajdar, Rhine; Pichler, Hannes; Ho, Wen Wei; Choi, Soonwon; Sachdev, Subir; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (July 2021). "Quantum phases of matter on a 256-atom programmable quantum simulator". Nature. 595 (7866): 227–232. arXiv:2012.12281. Bibcode:2021Natur.595..227E. doi:10.1038/s41586-021-03582-4. ISSN 1476-4687. PMID 34234334. S2CID 229363764. /wiki/ArXiv_(identifier)
Scholl, Pascal; Schuler, Michael; Williams, Hannah J.; Eberharter, Alexander A.; Barredo, Daniel; Schymik, Kai-Niklas; Lienhard, Vincent; Henry, Louis-Paul; Lang, Thomas C.; Lahaye, Thierry; Läuchli, Andreas M. (July 7, 2021). "Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms". Nature. 595 (7866): 233–238. arXiv:2012.12268. Bibcode:2021Natur.595..233S. doi:10.1038/s41586-021-03585-1. ISSN 1476-4687. PMID 34234335. S2CID 229363462. https://www.nature.com/articles/s41586-021-03585-1
"China quantum computers are 1 million times more powerful Google's". TechHQ. October 28, 2021. Retrieved November 16, 2021. https://techhq.com/2021/10/china-has-quantum-computers-that-are-a-million-times-more-powerful-than-googles/
"China's quantum computing efforts surpasses the West's again". Tech Wire Asia. November 3, 2021. Retrieved November 16, 2021. https://techwireasia.com/2021/11/chinas-quantum-computing-efforts-surpasses-the-wests-yet-again/
"Canadian researchers achieve first quantum simulation of baryons". University of Waterloo. November 11, 2021. Retrieved November 12, 2021. https://uwaterloo.ca/news/media/canadian-researchers-achieve-first-quantum-simulation
Atas, Yasar Y.; Zhang, Jinglei; Lewis, Randy; Jahanpour, Amin; Haase, Jan F.; Muschik, Christine A. (November 11, 2021). "SU(2) hadrons on a quantum computer via a variational approach". Nature Communications. 12 (1): 6499. Bibcode:2021NatCo..12.6499A. doi:10.1038/s41467-021-26825-4. ISSN 2041-1723. PMC 8586147. PMID 34764262. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586147
"IBM creates largest ever superconducting quantum computer". New Scientist. Retrieved February 12, 2022. https://www.newscientist.com/article/2297583-ibm-creates-largest-ever-superconducting-quantum-computer/
"IBM Unveils Breakthrough 127-Qubit Quantum Processor". IBM Newsroom. Retrieved January 12, 2022. https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
"Europe's First Quantum Computer with More Than 5K Qubits Launched at Jülich". HPC Wire. January 18, 2022. Archived from the original on January 20, 2022. Retrieved January 20, 2022. https://www.hpcwire.com/off-the-wire/europes-first-quantum-computer-with-more-than-5k-qubits-launched-at-julich/
"Artificial neurons go quantum with photonic circuits". University of Vienna. Retrieved April 19, 2022. https://phys.org/news/2022-03-artificial-neurons-quantum-photonic-circuits.html
Spagnolo, Michele; Morris, Joshua; Piacentini, Simone; Antesberger, Michael; Massa, Francesco; Crespi, Andrea; Ceccarelli, Francesco; Osellame, Roberto; Walther, Philip (April 2022). "Experimental photonic quantum memristor". Nature Photonics. 16 (4): 318–323. arXiv:2105.04867. Bibcode:2022NaPho..16..318S. doi:10.1038/s41566-022-00973-5. ISSN 1749-4893. S2CID 234358015. /wiki/ArXiv_(identifier)
Zwerver, A. M. J.; Krähenmann, T.; Watson, T. F.; Lampert, L.; George, H. C.; Pillarisetty, R.; Bojarski, S. A.; Amin, P.; Amitonov, S. V.; Boter, J. M.; Caudillo, R.; Correas-Serrano, D.; Dehollain, J. P.; Droulers, G.; Henry, E. M.; Kotlyar, R.; Lodari, M.; Luthi, F.; Michalak, D. J.; Mueller, B. K.; Neyens, S.; Roberts, J.; Samkharadze, N.; Zheng, G.; Zietz, O. K.; Scappucci, G.; Vandersypen, L. M. K.; Clarke, J. S. (March 29, 2022). "Qubits made by advanced semiconductor manufacturing". Nature Electronics. 5 (3): 184–190. arXiv:2101.12650. doi:10.1038/s41928-022-00727-9. ISSN 2520-1131. https://wwwnature.com/articles/s41928-022-00727-9
"Quantinuum Announces Quantum Volume 4096 Achievement". www.quantinuum.com. April 14, 2022. Retrieved May 2, 2022. https://www.quantinuum.com/pressrelease/quantinuum-announces-quantum-volume-4096-achievement
Universität Innsbruck (May 27, 2022). "Error-Free Quantum Computing Gets Real". www.uibk.ac.at. Retrieved February 13, 2023. https://www.uibk.ac.at/en/newsroom/2022/error-free-quantum-computing-gets-real/
"A Huge Step Forward in Quantum Computing Was Just Announced: The First-Ever Quantum Circuit". Science Alert. June 22, 2022. Retrieved June 23, 2022. https://www.sciencealert.com/a-huge-step-forward-in-quantum-computing-was-just-announced-the-first-ever-quantum-circuit
Kiczynski, M.; Gorman, S. K.; Geng, H.; Donnelly, M. B.; Chung, Y.; He, Y.; Keizer, J. G.; Simmons, M. Y. (June 2022). "Engineering topological states in atom-based semiconductor quantum dots". Nature. 606 (7915): 694–699. Bibcode:2022Natur.606..694K. doi:10.1038/s41586-022-04706-0. ISSN 1476-4687. PMC 9217742. PMID 35732762.
Press release: z3525214 (June 23, 2022). "UNSW quantum scientists deliver world's first integrated circuit at the atomic scale". University of New South Wales. Retrieved June 23, 2022.{{cite web}}: CS1 maint: numeric names: authors list (link)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217742
Conover, Emily (July 5, 2022). "Aliens could send quantum messages to Earth, calculations suggest". Science News. Retrieved July 13, 2022. https://www.sciencenews.org/article/alien-quantum-communication-extraterrestrial-communication-signal
Berera, Arjun; Calderón-Figueroa, Jaime (June 28, 2022). "Viability of quantum communication across interstellar distances". Physical Review D. 105 (12): 123033. arXiv:2205.11816. Bibcode:2022PhRvD.105l3033B. doi:10.1103/PhysRevD.105.123033. S2CID 249017926. /wiki/ArXiv_(identifier)
Universität Innsbruck (July 21, 2022). "Quantum computer works with more than zero and one". www.uibk.ac.at. Retrieved February 13, 2023. https://www.uibk.ac.at/en/newsroom/2022/quantum-computer-works-with-more-than-zero-and-one/
Purdue University (August 15, 2022). "2D array of electron and nuclear spin qubits opens new frontier in quantum science". Phys.org. /wiki/Purdue_University
Max Planck Society (August 24, 2022). "Physicists entangle more than a dozen photons efficiently". Nature. 608 (7924). Phys.org: 677–681. arXiv:2205.12736. Bibcode:2022Natur.608..677T. doi:10.1038/s41586-022-04987-5. PMC 9402438. PMID 36002484. Retrieved August 25, 2022. /wiki/Max_Planck_Society
Ritter, Florian; Max Planck Society. "Metasurfaces offer new possibilities for quantum research". Phys.org. /wiki/Max_Planck_Society
McRae, Mike (August 31, 2022). "Quantum Physicists Set New Record For Entangling Photons Together". Science Alert. https://www.sciencealert.com/quantum-physicists-set-new-record-for-entangling-photons-together
National Institute of Information and Communications Technology (September 2, 2022). "New method to systematically find optimal quantum operation sequences for quantum computers". Phys.org. Archived from the original on September 4, 2022. Retrieved September 8, 2023.{{cite web}}: CS1 maint: bot: original URL status unknown (link) /wiki/National_Institute_of_Information_and_Communications_Technology
University of New South Wales (September 30, 2022). "For the longest time: Quantum computing engineers set new standard in silicon chip performance". Science Advances. 7 (33). Australia: Phys.org. doi:10.1126/sciadv.abg9158. PMC 8363148. PMID 34389538. Archived from the original on October 1, 2022. Retrieved September 8, 2023.{{cite journal}}: CS1 maint: bot: original URL status unknown (link) https://archive.today/20221001222634/https://phys.org/news/2022-09-longest-quantum-standard-silicon-chip.amp
"IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two". IBM. November 9, 2022. Retrieved November 10, 2022. https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
"IBM unveils its 433 qubit Osprey quantum computer". Tech Crunch. November 9, 2022. Retrieved November 10, 2022. https://techcrunch.com/2022/11/09/ibm-unveils-its-433-qubit-osprey-quantum-computer/
"SpinQ Introduces Trio of Portable Quantum Computers". December 15, 2022. Retrieved December 15, 2022. https://www.tomshardware.com/news/spinq-introduces-trio-of-portable-quantum-computers
"World's first portable quantum computers on sale in Japan: Prices start at $8,700". https://tech.news.am/eng/news/510/worlds-first-portable-quantum-computers-on-sale-in-japan-prices-start-at-$8700.html
"Il futuro è ora: I primi computer quantistici portatili arrivano sul mercato" [The future is now: The first portable quantum computers hit the market] (in Italian). May 19, 2023. https://www.futuroprossimo.it/2021/06/amperage-mini-yacht-elettrico-con-terrazza-fotovoltaica-e-sauna-vabbe
Universität Innsbruck (February 3, 2023). "Entangled atoms across the Innsbruck quantum network". www.uibk.ac.at. Retrieved February 13, 2023. https://www.uibk.ac.at/en/newsroom/2023/entangled-atoms-across-the-innsbruck-quantum-network/
"State of Quantum Computing in Europe: AQT pushing performance with a Quantum Volume of 128". AQT | ALPINE QUANTUM TECHNOLOGIES. February 8, 2023. Retrieved February 13, 2023. https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/
Bartolucci, Sara; Birchall, Patrick; Bombín, Hector; Cable, Hugo; Dawson, Chris; Gimeno-Segovia, Mercedes; Johnston, Eric; Kieling, Konrad; Nickerson, Naomi; Pant, Mihir; Pastawski, Fernando; Rudolph, Terry; Sparrow, Chris (February 17, 2023). "Fusion-based quantum computation". Nature Communications. 14 (1): 912. Bibcode:2023NatCo..14..912B. doi:10.1038/s41467-023-36493-1. ISSN 2041-1723. PMC 9938229. PMID 36805650. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938229
"India's first quantum computing-based telecom network link now operational: Ashwini Vaishnaw". The Economic Times. March 27, 2023. https://economictimes.indiatimes.com/industry/telecom/telecom-news/indias-first-quantum-computing-based-telecom-network-link-now-operational-ashwini-vaishnaw/articleshow/99026697.cms
Chang, Kenneth (June 14, 2023). "Quantum Computing Advance Begins New Era, IBM Says – A quantum computer came up with better answers to a physics problem than a conventional supercomputer". The New York Times. Archived from the original on June 14, 2023. Retrieved June 15, 2023. https://www.nytimes.com/2023/06/14/science/ibm-quantum-computing.html
Kim, Youngseok; et al. (June 14, 2023). "Evidence for the utility of quantum computing before fault tolerance". Nature. 618 (7965): 500–505. Bibcode:2023Natur.618..500K. doi:10.1038/s41586-023-06096-3. PMC 10266970. PMID 37316724. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266970
Lardinois, Frederic (June 21, 2023). "Microsoft expects to build a quantum supercomputer within 10 years". Tech Crunch. https://techcrunch.com/2023/06/21/microsoft-expects-to-build-a-quantum-supercomputer-within-10-years/?guccounter=1&guce_referrer=aHR0cHM6Ly9lZGdlOS5od3VwZ3JhZGUuaXQv&guce_referrer_sig=AQAAACXAB0qvUPp2WTkuGfdLz7J6WL84C0dFSnA7-JlfcbG-NlUc5Wr_rDCfeBFqRnEGLozBpwYqrxqWUim6CgPzx5HnmrvLTOgBuO9C3fptgIUZ2JvHF1205F6FgMmcC-qSSHXDFx_aNts3TXoSyHy7ovW9ixtgT47y8ID7RHz8bMUj
Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Bonilla Ataides, J. Pablo; Maskara, Nishad; Cong, Iris; Gao, Xun; Sales Rodriguez, Pedro; Karolyshyn, Thomas; Semeghini, Giulia; Gullans, Michael J.; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (2024). "Logical quantum processor based on reconfigurable atom arrays". Nature. 626 (7997): 58–65. arXiv:2312.03982. Bibcode:2024Natur.626...58B. doi:10.1038/s41586-023-06927-3. PMC 10830422. PMID 38056497. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830422
Pause, L.; Sturm, L.; Mittenbühler, M.; Amann, S.; Preuschoff, T.; Schäffner, D.; Schlosser, S.; Birkl, G. (2024). "Supercharged two-dimensional tweezer array with more than 1000 atomic qubits". Optica. 11 (2): 222–226. arXiv:2310.09191. Bibcode:2024Optic..11..222P. doi:10.1364/OPTICA.513551. https://opg.optica.org/optica/abstract.cfm?URI=optica-11-2-222
Dumke, R.; Volk, M.; Müther, T.; Buchkremer, F. B. J.; Birkl, G.; Ertmer, W. (August 8, 2002). "Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits". Physical Review Letters. 89 (9): 097903. arXiv:quant-ph/0110140. Bibcode:2002PhRvL..89i7903D. doi:10.1103/PhysRevLett.89.097903. PMID 12190441. https://link.aps.org/doi/10.1103/PhysRevLett.89.097903
"Quantum startup Atom Computing first to exceed 1,000 qubits". Boulder, Colorado. October 24, 2023. https://atom-computing.com/quantum-startup-atom-computing-first-to-exceed-1000-qubits/
Russell, John (October 24, 2023). "Atom Computing Wins the Race to 1000 Qubits". HPC Wire. https://www.hpcwire.com/2023/10/24/atom-computing-wins-the-race-to-1000-qubits/
McDowell, Steve. "IBM Advances Quantum Computing with New Processors & Platforms". Forbes. Retrieved December 27, 2023. https://www.forbes.com/sites/stevemcdowell/2023/12/05/ibm-advances-quantum-computing-with-new-processors--platforms/
"IBM Quantum Computing Blog | The hardware and software for the era of quantum utility is here". www.ibm.com. Retrieved December 27, 2023. https://www.ibm.com/quantum/blog/quantum-roadmap-2033
"IBM's roadmap for scaling quantum technology". IBM Research Blog. February 9, 2021. Retrieved December 27, 2023. https://research.ibm.com/blog/ibm-quantum-roadmap
Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Bonilla Ataides, J. Pablo; Maskara, Nishad; Cong, Iris; Gao, Xun; Sales Rodriguez, Pedro; Karolyshyn, Thomas; Semeghini, Giulia; Gullans, Michael J.; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (2024). "Logical quantum processor based on reconfigurable atom arrays". Nature. 626 (7997): 58–65. arXiv:2312.03982. Bibcode:2024Natur.626...58B. doi:10.1038/s41586-023-06927-3. PMC 10830422. PMID 38056497. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830422
"Fundamental Quantum Technologies Laboratory". UNSW. https://www.unsw.edu.au/research/fqt/our-research/high-dimensional-nuclear-spins-in-silicon1
Yu, Xi; et al. (2025). "Schrödinger cat states of a nuclear spin qudit in silicon". Nature Physics. 21 (3): 362–367. arXiv:2405.15494. Bibcode:2025NatPh..21..362Y. doi:10.1038/s41567-024-02745-0. /wiki/ArXiv_(identifier)
Fernández de Fuentes, I., Botzem, T., Johnson, M.A.I.; et al. (2024). "Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields". Nat Commun. 15 (1380): 1380. arXiv:2306.07453. Bibcode:2024NatCo..15.1380F. doi:10.1038/s41467-024-45368-y. PMC 11258329. PMID 38355747.{{cite journal}}: CS1 maint: multiple names: authors list (link) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258329
Stock, Taylor J. Z.; et al. (February 21, 2024). "Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication". Advanced Materials. 36 (24). arXiv:2311.05752. Bibcode:2024AdM....3612282S. doi:10.1002/adma.202312282. PMID 38380859. /wiki/ArXiv_(identifier)
Krutyanskiy, Vladislav; et al. (February 27, 2025). "Multiplexed entanglement of multi-emitter quantum network nodes". Nature. 638 (8050): 54–59. Bibcode:2025Natur.639...54R. doi:10.1038/s41586-024-08537-z. PMID 40011776. /wiki/Bibcode_(identifier)
Beaulieu, Guillaume; et al. (March 10, 2025). "Observation of first- and second-order dissipative phase transitions in a two-photon driven Kerr resonator". Nature. 16 (1954): 1954. Bibcode:2025NatCo..16.1954B. doi:10.1038/s41467-025-56830-w. PMC 11893805. PMID 40064847. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893805
Neyens, Samuel; Zietz, Otto K.; Watson, Thomas F.; Luthi, Florian; Nethwewala, Aditi; George, Hubert C.; Henry, Eric; Islam, Mohammad; Wagner, Andrew J.; Borjans, Felix; Connors, Elliot J.; Corrigan, J.; Curry, Matthew J.; Keith, Daniel; Kotlyar, Roza; Lampert, L.; Madzik, M. T.; Millard, K.; Mohiyaddin, F. A.; Pellerano, S.; Pillarisetty, R.; Ramsey, M.; Savytskyy, R.; Schaal, S.; Zheng, G.; Ziegler, J.; Bishop, N. C.; Bojarski, S.; Roberts, J.; Clarke, J.S. (May 1, 2024). "Probing single electrons across 300-mm spin qubit wafers". Nature. 629 (8010): 80–85. arXiv:2307.04812. Bibcode:2024Natur.629...80N. doi:10.1038/s41586-024-07275-6. ISSN 1476-4687. PMC 11062914. PMID 38693414. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062914
Thomas, Philip; Ruscio, Leonardo; Morin, Olivier; Rempe, Gerhard (May 16, 2024). "Fusion of deterministically generated photonic graph states". Nature. 629 (8012): 567–572. arXiv:2403.11950. Bibcode:2024Natur.629..567T. doi:10.1038/s41586-024-07357-5. ISSN 0028-0836. PMC 11096110. PMID 38720079. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096110
Andersen, T.I.; et al. (February 5, 2025). "Thermalization and criticality on an analogue–digital quantum simulator". Nature. 638 (8049): 79–85. arXiv:2405.17385. Bibcode:2025Natur.638...79A. doi:10.1038/s41586-024-08460-3. PMC 11798852. PMID 39910386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798852
Publisher received: 10 May 2024
"Photonic Inc. Demonstrates Distributed Entanglement Between Two Modules Separated by 40 Meters of Fiber". www.quantumcomputingreport.com. May 30, 2024. Retrieved September 3, 2024. https://quantumcomputingreport.com/photonic-inc-demonstrates-distributed-entanglement-between-two-modules-separated-by-40-meters-of-fiber/
Main, D.; et al. (February 5, 2025). "Distributed quantum computing across an optical network link". Nature. 638 (8050): 383–388. arXiv:2407.00835. Bibcode:2025Natur.638..383M. doi:10.1038/s41586-024-08404-x. PMC 11821536. PMID 39910308. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821536
Zhang, Naiyuan J.; et al. (2025). "Excitons in the fractional quantum Hall effect". Nature. 637 (8045): 327–332. arXiv:2407.18224. Bibcode:2025Natur.637..327Z. doi:10.1038/s41586-024-08274-3. PMID 39780005. /wiki/ArXiv_(identifier)
Thomas, Jordan M.; et al. (2024). "Quantum teleportation coexisting with classical communications in optical fiber". Optica. 11 (12): 1700–1707. arXiv:2404.10738. Bibcode:2024Optic..11.1700T. doi:10.1364/OPTICA.540362. /wiki/ArXiv_(identifier)
Zhao, Chenxiao; et al. (2025). "Spin excitations in nanographene-based antiferromagnetic spin-1/2 Heisenberg chains". Nature. 24 (5): 722–727. arXiv:2408.10045. Bibcode:2025NatMa..24..722Z. doi:10.1038/s41563-025-02166-1. PMC 12048352. PMID 40087538. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048352
Hentschinski, Martin; et al. (2024). "QCD evolution of entanglement entropy". IOP Publishing. 87 (12). arXiv:2408.01259. Bibcode:2024RPPh...87l0501H. doi:10.1088/1361-6633/ad910b. PMID 39527914. /wiki/ArXiv_(identifier)
Acharya, Rajeev; et al. (December 9, 2024). "Quantum error correction below the surface code threshold". Nature. 638 (8052): 920–926. arXiv:2408.13687. doi:10.1038/s41586-024-08449-y. PMC 11864966. PMID 39653125. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864966
Leswing, Kif (December 10, 2024). "Alphabet shares jump 6% after Google touts 'breakthrough' quantum chip". CNBC. Retrieved December 25, 2024. https://www.cnbc.com/2024/12/10/alphabet-shares-jump-5percent-after-google-touts-breakthrough-quantum-chip-.html
"Quantum Networking Breakthrough As Entangled Photons Transmit Without Interruption for 30+ Hours". scitechdaily.com. OAK RIDGE NATIONAL LABORATORY. February 12, 2025. Archived from the original on February 13, 2025. Retrieved February 16, 2025. https://scitechdaily.com/quantum-networking-breakthrough-as-entangled-photons-transmit-without-interruption-for-30-hours/
Chapman, Joseph C.; Alshowkan, Muneer; Reaz, Kazi; Li, Tian; Kiran, Mariam (2024). "Continuous automatic polarization channel stabilization from heterodyne detection of coexisting dim reference signals". Optics Express. 32 (26). OPTICA PUBLISHING GROUP: 47589–47619. arXiv:2411.15135. Bibcode:2024OExpr..3247589C. doi:10.1364/OE.543704. /wiki/ArXiv_(identifier)
Scitechdaily (OAK RIDGE NATIONAL LABORATORY) indicates publication date 15 December 2024
George, Hubert C.; Mądzik, Mateusz T.; Henry, Eric M.; Wagner, Andrew J.; Islam, Mohammad M.; Borjans, Felix; Connors, Elliot J.; Corrigan, J.; Curry, Matthew; Harper, Michael K.; Keith, Daniel; Lampert, Lester; Luthi, Florian; Mohiyaddin, Fahd A.; Murcia, Sandra (January 15, 2025). "12-Spin-Qubit Arrays Fabricated on a 300 mm Semiconductor Manufacturing Line". Nano Letters. 25 (2): 793–799. Bibcode:2025NanoL..25..793G. doi:10.1021/acs.nanolett.4c05205. ISSN 1530-6984. PMC 11741134. PMID 39721970. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741134
Philips, Stephan G. J.; Mądzik, Mateusz T.; Amitonov, Sergey V.; de Snoo, Sander L.; Russ, Maximilian; Kalhor, Nima; Volk, Christian; Lawrie, William I. L.; Brousse, Delphine; Tryputen, Larysa; Wuetz, Brian Paquelet; Sammak, Amir; Veldhorst, Menno; Scappucci, Giordano; Vandersypen, Lieven M. K. (July 15, 2022). "Universal control of a six-qubit quantum processor in silicon". Nature. 609 (7929): 919–924. arXiv:2202.09252. Bibcode:2022Natur.609..919P. doi:10.1038/s41586-022-05117-x. ISSN 1476-4687. PMC 9519456. PMID 36171383. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519456
Nishikawa, Yunori; Yoshioka, Tomoki (January 7, 2025). "Quantum entanglement in a pure state of strongly correlated quantum impurity systems". Physical Review B. 111 (3): 035112. arXiv:2404.18387. Bibcode:2025PhRvB.111c5112N. doi:10.1103/PhysRevB.111.035112. /wiki/ArXiv_(identifier)
Björkman, Isak; Kuzmanović, Marko; Paraoanu, Gheorghe Sorin (February 14, 2025). "Observation of the Two-Photon Landau-Zener-Stückelberg-Majorana Effect". Phys. Rev. Lett. 134 (60602): 060602. arXiv:2402.10833. Bibcode:2025PhRvL.134f0602B. doi:10.1103/PhysRevLett.134.060602. PMID 40021142 – via Ville Heirola (Aalto University): scitechdaily.com/a-1932-discovery-is-rewriting-the-future-of-quantum-computing/ (February 22, 2025). /wiki/ArXiv_(identifier)
Stueckelberg, E.C.G. (1932). "Theorie der unelastischen Stösse zwischen Atomen". Helvetica Physica Acta. 5 (VI): 369. doi:10.5169/seals-110177.
English translation
https://doi.org/10.5169%2Fseals-110177
Ivakhnenko, Oleh V.; Shevchenko, Sergey N.; Nori, Franco (2023). "Nonadiabatic Landau-Zener-Stückelberg-Majorana transitions, dynamics, and interference". Phys. Rep. 995: 1–89. arXiv:2203.16348. Bibcode:2023PhR...995....1I. doi:10.1016/j.physrep.2022.10.002. /wiki/ArXiv_(identifier)
Zener, Clarence (September 1, 1932). "Non-adiabatic crossing of energy levels". Proc. R. Soc. Lond. A. 137 (833). royalsocietypublishing.org: 696–702. Bibcode:1932RSPSA.137..696Z. doi:10.1098/rspa.1932.0165 – via Björkman, Kuzmanović, Paraoanu doi:10.1103/PhysRevLett.134.060602. /wiki/Bibcode_(identifier)
Björkman, Isak; Kuzmanović, Marko; Paraoanu, Gheorghe Sorin (February 14, 2025). "Observation of the Two-Photon Landau-Zener-Stückelberg-Majorana Effect". Phys. Rev. Lett. 134 (60602): 060602. arXiv:2402.10833. Bibcode:2025PhRvL.134f0602B. doi:10.1103/PhysRevLett.134.060602. PMID 40021142 – via Ville Heirola (Aalto University): scitechdaily.com/a-1932-discovery-is-rewriting-the-future-of-quantum-computing/ (February 22, 2025). /wiki/ArXiv_(identifier)
Nguyen, Bich Ha (November 4, 2010). "Lamb and ac Stark shifts in cavity quantum electrodynamics". Advances in Natural Sciences: Nanoscience and Nanotechnology. 1 (3): 035008. Bibcode:2010ANSNN...1c5008N. doi:10.1088/2043-6262/1/3/035008. https://doi.org/10.1088%2F2043-6262%2F1%2F3%2F035008
Koetsier, John (February 19, 2025). "Massive Microsoft Quantum Computer Breakthrough Uses New State Of Matter". Forbes. Retrieved February 19, 2025. https://www.forbes.com/sites/johnkoetsier/2025/02/19/massive-microsoft-quantum-computer-breakthrough-uses-new-state-of-matter/
Vallance, Chris (February 19, 2025). "Powerful quantum computers in years not decades, says Microsoft". BBC. Retrieved February 26, 2025. https://www.bbc.com/news/articles/cj3e3252gj8o
Aghaee, Morteza (February 19, 2025). "Interferometric single-shot parity measurement in InAs–Al hybrid devices". Nature. 638 (8051): 651–655. arXiv:2401.09549. Bibcode:2025Natur.638..651M. doi:10.1038/s41586-024-08445-2. PMC 11839464. PMID 39972225. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839464
"Amazon announces Ocelot quantum chip". Amazon Science. February 27, 2025. Retrieved March 13, 2025. https://www.amazon.science/blog/amazon-announces-ocelot-quantum-chip
Noh, Kyungjoo; Putterman, Harald; Aghaeimeibodi, Shahriar; Lee, Menyoung; et al. (Amazon Center for Quantum Computing) (February 26, 2025). "Hardware-efficient quantum error correction via concatenated bosonic qubits". Nature. 638 (8052): 927–935. arXiv:2409.13025. Bibcode:2025Natur.638..927P. doi:10.1038/s41586-025-08642-7. ISSN 1476-4687. PMC 11864976. PMID 40011723. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864976
Liu, Minzhao; Shaydulin, Ruslan; Niroula, Pradeep; DeCross, Matthew; Hung, Shih-Han; Kon, Wen Yu; Cervero-Martín, Enrique; Chakraborty, Kaushik; Amer, Omar; Aaronson, Scott; Acharya, Atithi; Alexeev, Yuri; Berg, K. Jordan; Chakrabarti, Shouvanik; Curchod, Florian; Dreiling, Joan; Erickson, Neal; Foltz, Cameron; Foss-Feig, Michael; Hayes, David; Humble, Travis; Kumar, Niraj; Larson, Jeffrey; Lykov, Danylo; Mills, Michael; Moses, Steven; Neyenhuis, Brian; Eloul, Shaltiel; Siegfried, Peter; Walker, James; Lim, Charles; Pistoia, Marco (April 10, 2025). "Certified randomness using a trapped-ion quantum processor". Nature. 640 (8058): 343–348. arXiv:2503.20498. Bibcode:2025Natur.640..343L. doi:10.1038/s41586-025-08737-1. ISSN 1476-4687. PMC 11981928. PMID 40140579. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981928
Niroula, Pradeep (March 26, 2025). "Certified Randomness from a Quantum Computer". Bits & Qubits. Retrieved April 20, 2025. https://pradeepniroula.com/certified-randomness/