Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of tin

Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a "magic number" of protons. In addition, 32 unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994) and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

We don't have any images related to Isotopes of tin yet.
We don't have any YouTube videos related to Isotopes of tin yet.
We don't have any PDF documents related to Isotopes of tin yet.
We don't have any Books related to Isotopes of tin yet.
We don't have any archived web articles related to Isotopes of tin yet.

List of isotopes

Nuclide2ZNIsotopic mass (Da)345Half-life67Decaymode89Daughterisotope10Spin andparity111213Natural abundance (mole fraction)
Excitation energy14Normal proportion15Range of variation
98Sn1650480+
99Sn17504998.94850(63)#24(4) msβ+ (95%)99In9/2+#
β+, p (5%)98Cd
100Sn18505099.93865(26)1.18(8) sβ+ (>83%)100In0+
β+, p (<17%)99Cd
101Sn5051100.93526(32)2.22(5) sβ+101In(7/2+)
β+, p?100Cd
102Sn5052101.93029(11)3.8(2) sβ+102In0+
102mSn2017(2) keV367(8) nsIT102Sn(6+)
103Sn5053102.92797(11)#7.0(2) sβ+ (98.8%)103In5/2+#
β+, p (1.2%)102Cd
104Sn5054103.923105(6)20.8(5) sβ+104In0+
105Sn5055104.921268(4)32.7(5) sβ+105In(5/2+)
β+, p (0.011%)104Cd
106Sn5056105.916957(5)1.92(8) minβ+106In0+
107Sn5057106.915714(6)2.90(5) minβ+107In(5/2+)
108Sn5058107.911894(6)10.30(8) minβ+108In0+
109Sn5059108.911293(9)18.1(2) minβ+109In5/2+
110Sn5060109.907845(15)4.154(4) hEC110In0+
111Sn5061110.907741(6)35.3(6) minβ+111In7/2+
111mSn254.71(4) keV12.5(10) μsIT111Sn1/2+
112Sn5062111.9048249(3)Observationally Stable190+0.0097(1)
113Sn5063112.9051759(17)115.08(4) dβ+113In1/2+
113mSn77.389(19) keV21.4(4) minIT (91.1%)113Sn7/2+
β+ (8.9%)113In
114Sn5064113.90278013(3)Stable0+0.0066(1)
114mSn3087.37(7) keV733(14) nsIT114Sn7−
115Sn5065114.903344695(16)Stable1/2+0.0034(1)
115m1Sn612.81(4) keV3.26(8) μsIT115Sn7/2+
115m2Sn713.64(12) keV159(1) μsIT115Sn11/2−
116Sn5066115.90174283(10)Stable0+0.1454(9)
116m1Sn2365.975(21) keV348(19) nsIT116Sn5−
116m2Sn3547.16(17) keV833(30) nsIT116Sn10+
117Sn5067116.90295404(52)Stable1/2+0.0768(7)
117m1Sn314.58(4) keV13.939(24) dIT117Sn11/2−
117m2Sn2406.4(4) keV1.75(7) μsIT117Sn(19/2+)
118Sn5068117.90160663(54)Stable0+0.2422(9)
118m1Sn2574.91(4) keV230(10) nsIT118Sn7−
118m2Sn3108.06(22) keV2.52(6) μsIT118Sn(10+)
119Sn5069118.90331127(78)Stable1/2+0.0859(4)
119m1Sn89.531(13) keV293.1(7) dIT119Sn11/2−
119m2Sn2127.0(10) keV9.6(12) μsIT119Sn(19/2+)
119m3Sn2369.0(3) keV96(9) nsIT119Sn23/2+
120Sn5070119.90220256(99)Stable0+0.3258(9)
120m1Sn2481.63(6) keV11.8(5) μsIT120Sn7−
120m2Sn2902.22(22) keV6.26(11) μsIT120Sn10+
121Sn205071120.9042435(11)27.03(4) hβ−121Sb3/2+
121m1Sn6.31(6) keV43.9(5) yIT (77.6%)121Sn11/2−
β− (22.4%)121Sb
121m2Sn1998.68(13) keV5.3(5) μsIT121Sn19/2+
121m3Sn2222.0(2) keV520(50) nsIT121Sn23/2+
121m4Sn2833.9(2) keV167(25) nsIT121Sn27/2−
122Sn215072121.9034455(26)Observationally Stable220+0.0463(3)
122m1Sn2409.03(4) keV7.5(9) μsIT122Sn7−
122m2Sn2765.5(3) keV62(3) μsIT122Sn10+
122m3Sn4721.2(3) keV139(9) nsIT122Sn15−
123Sn235073122.9057271(27)129.2(4) dβ−123Sb11/2−
123m1Sn24.6(4) keV40.06(1) minβ−123Sb3/2+
123m2Sn1944.90(12) keV7.4(26) μsIT123Sn19/2+
123m3Sn2152.66(19) keV6 μsIT123Sn23/2+
123m4Sn2712.47(21) keV34 μsIT123Sn27/2−
124Sn245074123.9052796(14)Observationally Stable250+0.0579(5)
124m1Sn2204.620(23) keV270(60) nsIT124Sn5-
124m2Sn2324.96(4) keV3.1(5) μsIT124Sn7−
124m3Sn2656.6(3) keV51(3) μsIT124Sn10+
124m4Sn4552.4(3) keV260(25) nsIT124Sn15−
125Sn265075124.9077894(14)9.634(15) dβ−125Sb11/2−
125m1Sn27.50(14) keV9.77(25) minβ−125Sb3/2+
125m2Sn1892.8(3) keV6.2(2) μsIT125Sn19/2+
125m3Sn2059.5(4) keV650(60) nsIT125Sn23/2+
125m4Sn2623.5(5) keV230(17) nsIT125Sn27/2−
126Sn275076125.907658(11)2.30(14)×105 yβ−126Sb0+< 10−1428
126m1Sn2218.99(8) keV6.1(7) μsIT126Sn7−
126m2Sn2564.5(5) keV7.6(3) μsIT126Sn10+
126m3Sn4347.4(4) keV114(2) nsIT126Sn15−
127Sn5077126.9103917(99)2.10(4) hβ−127Sb11/2−
127m1Sn5.07(6) keV4.13(3) minβ−127Sb3/2+
127m2Sn1826.67(16) keV4.52(15) μsIT127Sn19/2+
127m3Sn1930.97(17) keV1.26(15) μsIT127Sn(23/2+)
127m4Sn2552.4(10) keV250 (30) nsIT127Sn(27/2−)
128Sn5078127.910508(19)59.07(14) minβ−128Sb0+
128m1Sn2091.50(11) keV6.5(5) sIT128Sn7−
128m2Sn2491.91(17) keV2.91(14) μsIT128Sn10+
128m3Sn4099.5(4) keV220(30) nsIT128Sn(15−)
129Sn5079128.913482(19)2.23(4) minβ−129Sb3/2+
129m1Sn35.15(5) keV6.9(1) minβ−129Sb11/2−
129m2Sn1761.6(10) keV3.49(11) μsIT129Sn(19/2+)
129m3Sn1802.6(10) keV2.22(13) μsIT129Sn23/2+
129m4Sn2552.9(11) keV221(18) nsIT129Sn(27/2−)
130Sn5080129.9139745(20)3.72(7) minβ−130Sb0+
130m1Sn1946.88(10) keV1.7(1) minβ−130Sb7−
130m2Sn2434.79(12) keV1.501(17) μsIT130Sn(10+)
131Sn5081130.917053(4)56.0(5) sβ−131Sb3/2+
131m1Sn65.1(3) keV58.4(5) sβ−131Sb11/2−
IT?131Sn
131m2Sn4670.0(4) keV316(5) nsIT131Sn(23/2−)
132Sn5082131.9178239(21)39.7(8) sβ−132Sb0+
132mSn4848.52(20) keV2.080(16) μsIT132Sn8+
133Sn5083132.9239138(20)1.37(7) sβ− (99.97%)133Sb7/2−
β−n (.0294%)132Sb
134Sn5084133.928680(3)0.93(8) sβ− (83%)134Sb0+
β−n (17%)133Sb
134mSn1247.4(5) keV87(8) nsIT134Sn6+
135Sn5085134.934909(3)515(5) msβ− (79%)135Sb7/2−#
β−n (21%)134Sb
β−2n?133Sb
136Sn5086135.93970(22)#355(18) msβ− (72%)136Sb0+
β−n (28%)135Sb
β−2n?134Sb
137Sn5087136.94616(32)#249(15) msβ− (52%)137Sb5/2−#
β−n (48%)136Sb
β−2n?135Sb
138Sn5088137.95114(43)#148(9) msβ− (64%)138Sb0+
β−n (36%)137Sb
β−2n?136Sb
138mSn1344(2) keV210(45) nsIT138Sn(6+)
139Sn5089138.95780(43)#120(38) msβ−139Sb5/2−#
β−n?138Sb
β−2n?137Sb
140Sn5090139.96297(32)#50# ms[>550 ns]β−?140Sb0+
β−n?139Sb
β−2n?138Sb
This table header & footer:
  • view

Tin-117m

Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).29

Tin-121m

Tin-121m (121mSn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.

In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.30

Tin-126

Yield, % per fission31
ThermalFast14 MeV
232Thnot fissile0.0481 ± 0.00770.87 ± 0.20
233U0.224 ± 0.0180.278 ± 0.0221.92 ± 0.31
235U0.056 ± 0.0040.0137 ± 0.0011.70 ± 0.14
238Unot fissile0.054 ± 0.0041.31 ± 0.21
239Pu0.199 ± 0.0160.26 ± 0.022.02 ± 0.22
241Pu0.082 ± 0.0190.22 ± 0.03?

Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit 17 and 40 keV gamma radiation and a 3.67 MeV beta particle on their way to stable tellurium-126, making external exposure to tin-126 a potential concern.

Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for 235U), since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.

See also

Daughter products other than tin

References

  1. K. Sümmerer; R. Schneider; T Faestermann; J. Friese; H. Geissel; R. Gernhäuser; H. Gilg; F. Heine; J. Homolka; P. Kienle; H. J. Körner; G. Münzenberg; J. Reinhold; K. Zeitelhack (April 1997). "Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS". Nuclear Physics A. 616 (1–2): 341–345. Bibcode:1997NuPhA.616..341S. doi:10.1016/S0375-9474(97)00106-1. /wiki/Bibcode_(identifier)

  2. mSn – Excited nuclear isomer. /wiki/Nuclear_isomer

  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  4. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  5. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Modes of decay: EC:Electron captureIT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Electron_capture

  10. Bold symbol as daughter – Daughter product is stable.

  11. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  12. ( ) spin value – Indicates spin with weak assignment arguments.

  13. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  14. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  15. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  16. Suzuki, H.; Fukuda, N.; Takeda, H.; et al. (2025). "Discovery of 98Sn produced by the projectile fragmentation of a 345-MeV/nucleon 124Xe beam". Progress of Theoretical and Experimental Physics (ptaf051). doi:10.1093/ptep/ptaf051. https://doi.org/10.1093%2Fptep%2Fptaf051

  17. Heaviest known nuclide with more protons than neutrons

  18. Heaviest nuclide with equal numbers of protons and neutrons with no observed α decay

  19. Believed to decay by β+β+ to 112Cd

  20. Fission product /wiki/Fission_product

  21. Fission product /wiki/Fission_product

  22. Believed to undergo β−β− decay to 122Te

  23. Fission product /wiki/Fission_product

  24. Fission product /wiki/Fission_product

  25. Believed to undergo β−β− decay to 124Te with a half-life over 1×1017 years

  26. Fission product /wiki/Fission_product

  27. Long-lived fission product /wiki/Long-lived_fission_product

  28. Shen, Hongtao; Jiang, Shan; He, Ming; Dong, Kejun; Li, Chaoli; He, Guozhu; Wu, Shaolei; Gong, Jie; Lu, Liyan; Li, Shizhuo; Zhang, Dawei; Shi, Guozhu; Huang, Chuntang; Wu, Shaoyong (February 2011). "Study on measurement of fission product nuclide 126Sn by AMS" (PDF). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 269 (3): 392–395. doi:10.1016/j.nimb.2010.11.059. https://accelconf.web.cern.ch/HIAT2009/papers/g-07.pdf

  29. "Procedure for Use of Synovetin OA" (PDF). nrc.gov. https://www.nrc.gov/docs/ML2017/ML20178A657.pdf

  30. M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm) https://www-nds.iaea.org/exfor/endf.htm

  31. M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm) https://www-nds.iaea.org/exfor/endf.htm