Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of indium

Indium (49In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted age of the Universe.

The stable isotope 113In is only 4.3% of naturally occurring indium. Among elements with a known stable isotope, only tellurium and rhenium similarly occur with a stable isotope in lower abundance than the long-lived radioactive isotope. Other than 115In, the longest-lived radioisotope is 111In, with a half-life of 2.8047 days. All other radioisotopes have half-lives less than a day. This element also has 47 isomers, the longest-lived being 114m1In, with a half-life of 49.51 days. All other meta-states have half-lives less than a day, most less than an hour, and many measured in milliseconds or less.

Indium-111 is used medically in nuclear imaging, as a radiotracer nuclide tag for gamma camera localization of protein radiopharmaceuticals, such as In-111-labeled octreotide, which binds to receptors on certain endocrine tumors (Octreoscan). Indium-111 is also used in indium white blood cell scans, which use nuclear medical techniques to search for hidden infections.

Several proton-rich isotopes of indium (including indium-99) have been used to measure the mass of the doubly-magic isotope tin-100.

We don't have any images related to Isotopes of indium yet.
We don't have any YouTube videos related to Isotopes of indium yet.
We don't have any PDF documents related to Isotopes of indium yet.
We don't have any Books related to Isotopes of indium yet.
We don't have any archived web articles related to Isotopes of indium yet.

List of isotopes

Nuclide4ZNIsotopic mass (Da)56Half-life7Decaymode8Daughterisotope910Spin andparity1112Natural abundance (mole fraction)
Excitation energy13Normal proportionRange of variation
96In494795.95911(54)#1# ms[>400 ns]β+?96Cd9/2+#
p?95Cd
97In494896.94913(43)#36(6) msβ+ (97.7%)97Cd9/2+#
β+, p (2.3%)96Ag
p?96Cd
97mIn400(100)# keV0.12(7) msp?96Cd1/2−#
98In494997.94213(33)#30(1) msβ+ (>99.87%)98Cd(0+)
β+, p (<0.13%)97Ag
98mIn14820(730) keV890(20) msβ+ (56%)98Cd(9+)
β+, p (44%)97Ag
99In495098.93411(32)#3.11(6) sβ+ (99.71%)99Cd9/2+#
β+, p (0.29%)98Ag
100In495199.9311019(24)5.62(6) sβ+ (98.34%)100Cd6+#
β+, p (1.66%)99Ag
101In4952100.926414(13)15.1(11) sβ+ (>98.3%)101Cd(9/2+)
β+, p (<1.7%)100Ag
101mIn640(40) keV10# sβ+?101Cd1/2−#
IT?101In
102In4953101.9241059(49)23.3(1) sβ+ (99.99%)102Cd(6+)
β+, p (0.0093%)101Ag
103In4954102.9198788(96)60(1) sβ+103Cd(9/2+)
103mIn631.7(1) keV34(2) sβ+ (67%)103Cd(1/2−)
IT (33%)103In
104In4955103.9182145(62)1.80(3) minβ+104Cd(5+)
104mIn93.48(10) keV15.7(5) sIT (80%)104In(3+)
β+ (20%)104Cd
105In4956104.914502(11)5.07(7) minβ+105Cd9/2+
105mIn674.09(25) keV48(6) sIT105In(1/2)−
β+?105Cd
106In4957105.9134636(13)6.2(1) minβ+106Cd7+
106mIn28.6(3) keV5.2(1) minβ+106Cd(2)+
107In4958106.910287(10)32.4(3) minβ+107Cd9/2+
107mIn678.5(3) keV50.4(6) sIT107In1/2−
108In4959107.9096937(93)58.0(12) minβ+108Cd7+
108mIn29.75(5) keV39.6(7) minβ+108Cd2+
109In4960108.9071497(43)4.159(10) hβ+109Cd9/2+
109m1In649.79(10) keV1.34(6) minIT109In1/2−
109m2In2101.86(11) keV210.0(9) msIT109In19/2+
110In4961109.907171(12)4.92(8) hβ+110Cd7+
110mIn62.08(4) keV69.1(5) minβ+110Cd2+
111In154962110.9051072(37)2.8048(1) dEC111Cd9/2+
111mIn536.99(7) keV7.7(2) minIT111In1/2−
112In4963111.9055387(46)14.88(15) minβ+ (62%)112Cd1+
β− (38%)112Sn
112m1In156.592(25) keV20.67(8) minIT112In4+
112m2In350.80(5) keV690(50) nsIT112In(7)+
112m3In613.82(6) keV2.81(3) μsIT112In8−
113In164964112.90406045(20)Stable9/2+0.04281(52)
113mIn391.699(3) keV1.6579(4) hIT113In1/2−
114In4965113.90491641(32)71.9(1) sβ− (99.50%)114Sn1+
β+ (0.50%)114Cd
114m1In190.2682(8) keV49.51(1) dIT (96.75%)114In5+
β+ (3.25%)114Cd
114m2In501.948(3) keV43.1(6) msIT (96.75%)114m1In8−
β+ (3.25%)114Cd
115In17184966114.903878772(12)4.41(25)×1014 yβ−115Sn9/2+0.95719(52)
115mIn336.244(17) keV4.486(4) hIT (95.0%)115In1/2−
β− (5.0%)115Sn
116In4967115.90525999(24)14.10(3) sβ− (99.98%)116Sn1+
EC (0.0237%)116Cd
116m1In127.267(6) keV54.29(17) minβ−116Sn5+
116m2In289.660(6) keV2.18(4) sIT116m1In8−
117In4968116.9045157(52)43.2(3) minβ−117Sn9/2+
117mIn315.303(11) keV116.2(3) minβ− (52.9%)117Sn1/2−
IT (47.1%)117In
118In4969117.9063567(83)5.0(5) sβ−118Sn1+
118m1In19100(50)# keV4.364(7) minβ−118Sn5+
118m2In240(50)# keV8.5(3) sIT (98.6%)118m1In8−
β− (1.4%)118Sn
119In4970118.9058516(78)2.4(1) minβ−119Sn9/2+
119m1In311.37(3) keV18.0(3) minβ− (97.4%)119Sn1/2−
IT (2.6%)119In
119m2In654.27(7) keV130(15) nsIT119In(3/2)+
119m3In2656.9(18) keV265(10) nsIT119In(25/2+)
120In4971119.9079875(33)203.08(8) sβ−120Sn1+
120m1In90.1(26) keV2146.2(8) sβ−120Sn5+
120m2In2290.1(26) keV2347.3(5) sβ−120Sn8−
121In4972120.9078416(13)2423.1(6) sβ−121Sn9/2+
121m1In313.68(7) keV3.88(10) minβ− (98.8%)121Sn1/2−
IT (1.2%)121In
121m2In2550(100)# keV7.3(2) μsIT121In(25/2+)
122In4973121.9103046(13)2510.3(6) sβ−122Sn5+
122m1In26<15 keV2710.8(4) sβ−122Sn8−
122m2In77.2(15) keV281.5(3) sβ−122Sn1+
123In4974122.9104679(12)296.17(5) sβ−123mSn9/2+
123m1In327.21(4) keV47.4(4) sβ−123Sn1/2−
123m2In2078.1(6) keV1.4(2) μsIT123In(17/2−)
123m3In2103(14)# keV>100 μsIT123In(21/2−)
124In4975123.9131390(34)303.67(03) sβ−124Sn8−
124mIn24.2(26) keV313.12(9) sβ−124Sn3+
125In4976124.9136738(19)2.36(4) sβ−125mSn9/2+
125m1In352(12) keV12.2(2) sβ−125Sn1/2−
125m2In2009.4(7) keV9.4(6) μsIT125In(19/2+)
125m3In2161.2(9) keV5.0(15) msIT125In(23/2−)
126In4977125.9164682(45)1.53(1) sβ−126Sn3+
126m1In90(7) keV1.64(5) sβ−126Sn8−
126m2In243.3(2) keV22(2) μsIT126In1−
127In4978126.9174539(14)321.086(7) sβ− (>99.97%)127mSn9/2+
β−, n (<0.03%)126Sn
127m1In407.9(50) keV333.618(21) sβ− (99.30%)127mSn1/2−#
β−, n (0.70%)126Sn
127m2In1728.7(12) keV341.04(10) sβ−127mSn(21/2−)
β−, n?126Sn
127m3In2364.7(9) keV9(2) μsIT127In(29/2+)
128In4979127.9203536(14)816(27) msβ− (99.96%)128Sn(3)+
β−, n (0.038%)127Sn
128m1In247.87(10) keV23(2) μsIT128In(1)−
128m2In285.1(22) keV720(100) msβ−128Sn(8−)
IT?128In
β−, n?127Sn
128m3In1797.6(16) keV>0.3 sβ−128Sn(16+)
IT?128In
β−, n?127Sn
129In4980128.9218085(21)570(10) msβ− (99.77%)129Sn9/2+
β−, n (0.23%)128Sn
129m1In449.1(59) keV351.23(3) sβ− (96.2%)129Sn1/2−
β−, n (3.6%)128Sn
IT?129In
129m2In1646.6(33) keV36670(100) msβ−129Sn(23/2−)
IT?129In
129m3In1687.97(25) keV11.2(2) μsIT129In(17/2−)
129m4In1927.6(33) keV37110(15) msIT129In(29/2+)
β−?129Sn
130In4981129.9249523(19)273(5) msβ− (99.07%)130Sn1(−)
β−, n (0.93%)129Sn
130m1In3866.5(27) keV540(10) msβ− (98.20%)130Sn(10-)
β−, n (1.80%)129Sn
130m2In385.4(26) keV540(10) msβ− (98.20%)130Sn(5+)
β−, n (1.80%)129Sn
130m3In388.3(2) keV4.6(2) μsIT130In(3+)
131In4982130.9269728(24)261.5(28) msβ− (97.75%)131Sn9/2+
β−, n (2.25%)130Sn
131m1In376(3) keV328(15) msβ− (97.75%)131Sn1/2−
β−, n (2.25%)130Sn
IT?131In
131m2In3750(90) keV322(41) msβ− (88%)131Sn(21/2+)
β−, n (12%)130Sn
IT?129Sn
131m3In3783.6(5) keV669(34) nsIT131In(17/2+)
132In4983131.932998(64)202.2(2) msβ− (87.7%)132Sn(7−)
β−, n (12.3%)131Sn
β−, 2n?130Sn
133In4984132.93807(22)#163.0(16) msβ−, n (85%)132Sn(9/2+)
β− (15%)133Sn
β−, 2n?131Sn
133mIn330(40)# keV167(11) msβ−, n (93%)132Sn(1/2−)
β− (7%)133Sn
134In4985133.94421(22)#140(4) msβ−, n (65%)133Sn7−#
β−?134Sn
β−, 2n (<4%)132Sn
134mIn56.7(1) keV3.5(4) μsIT134In(5−)
135In4986134.94943(32)#103(3) msβ−135Sn9/2+#
β−, n?134Sn
β−, 2n?133Sn
136In4987135.95602(32)#86(9) msβ−136Sn7−#
β−, n?135Sn
β−, 2n?134Sn
137In4988136.96154(43)#70(40) msβ−137Sn9/2+#
β−, n?136Sn
β−, 2n?135Sn
This table header & footer:
  • view

References

  1. "Octreoscan review". Medscape. http://www.medscape.com/viewarticle/406655_3

  2. "Precision mass measurements of indium isotopes allow conclusions on the mass of the doubly-magic atomic nucleus of tin-100". GSI. 13 June 2012. Retrieved 2023-09-10. https://www.gsi.de/en/start/news/details?tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Bnews%5D=5195&cHash=d326bd52bf15461efeb8cde717996f3b

  3. "Tin 100 probed by studying its neighboring isotopes, indium 99 and 101 – IJCLab". Retrieved 2023-09-10. https://www.ijclab.in2p3.fr/en/actualite/tin-100-probed-by-studying-its-neighboring-isotopes-indium-99-and-101/

  4. mIn – Excited nuclear isomer. /wiki/Nuclear_isomer

  5. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  6. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  8. Modes of decay: EC:Electron captureIT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Electron_capture

  9. Bold italics symbol as daughter – Daughter product is nearly stable.

  10. Bold symbol as daughter – Daughter product is stable.

  11. ( ) spin value – Indicates spin with weak assignment arguments.

  12. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  13. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  14. Order of ground state and isomer is uncertain.

  15. Used in medical applications /wiki/Nuclear_medicine

  16. Fission product /wiki/Fission_product

  17. Fission product /wiki/Fission_product

  18. Primordial radionuclide /wiki/Primordial_nuclide

  19. Order of ground state and isomer is uncertain.

  20. Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301. /wiki/ArXiv_(identifier)

  21. Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301. /wiki/ArXiv_(identifier)

  22. Order of isomers is uncertain.

  23. Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301. /wiki/ArXiv_(identifier)

  24. Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301. /wiki/ArXiv_(identifier)

  25. Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301. /wiki/ArXiv_(identifier)

  26. Order of ground state and isomer is uncertain.

  27. Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301. /wiki/ArXiv_(identifier)

  28. Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301. /wiki/ArXiv_(identifier)

  29. Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301. /wiki/ArXiv_(identifier)

  30. Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301. /wiki/ArXiv_(identifier)

  31. Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301. /wiki/ArXiv_(identifier)

  32. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  33. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  34. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  35. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  36. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  37. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  38. Order of ground state and isomer is uncertain.