Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Truncated order-3 apeirogonal tiling
Truncated order-3 apeirogonal tiling
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration3.∞.∞
Schläfli symbolt{∞,3}
Wythoff symbol2 3 | ∞
Coxeter diagram
Symmetry group[∞,3], (*∞32)
DualInfinite-order triakis triangular tiling
PropertiesVertex-transitive

In geometry, the truncated order-3 apeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of t{∞,3}.

Related Image Collections Add Image
We don't have any YouTube videos related to Truncated order-3 apeirogonal tiling yet.
We don't have any PDF documents related to Truncated order-3 apeirogonal tiling yet.
We don't have any Books related to Truncated order-3 apeirogonal tiling yet.
We don't have any archived web articles related to Truncated order-3 apeirogonal tiling yet.

Dual tiling

The dual tiling, the infinite-order triakis triangular tiling, has face configuration V3.∞.∞.

This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and [n,3] Coxeter group symmetry.

*n32 symmetry mutation of truncated tilings: t{n,3}
  • v
  • t
  • e
Symmetry*n32[n,3]SphericalEuclid.Compact hyperb.Paraco.Noncompact hyperbolic
*232[2,3]*332[3,3]*432[4,3]*532[5,3]*632[6,3]*732[7,3]*832[8,3]...*∞32[∞,3][12i,3][9i,3][6i,3]
Truncatedfigures
Symbolt{2,3}t{3,3}t{4,3}t{5,3}t{6,3}t{7,3}t{8,3}t{∞,3}t{12i,3}t{9i,3}t{6i,3}
Triakisfigures
Config.V3.4.4V3.6.6V3.8.8V3.10.10V3.12.12V3.14.14V3.16.16V3.∞.∞
Paracompact uniform tilings in [∞,3] family
  • v
  • t
  • e
Symmetry: [∞,3], (*∞32)[∞,3]+(∞32)[1+,∞,3](*∞33)[∞,3+](3*∞)
= = = = or = or =
{∞,3}t{∞,3}r{∞,3}t{3,∞}{3,∞}rr{∞,3}tr{∞,3}sr{∞,3}h{∞,3}h2{∞,3}s{3,∞}
Uniform duals
V∞3V3.∞.∞V(3.∞)2V6.6.∞V3∞V4.3.4.∞V4.6.∞V3.3.3.3.∞V(3.∞)3V3.3.3.3.3.∞

See also

Wikimedia Commons has media related to Uniform tiling 3-i-i.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.