Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Transistor count
Number of transistors in a device

The transistor count is the number of transistors in an electronic device (typically on a single substrate or silicon die). It is the most common measure of integrated circuit complexity (although the majority of transistors in modern microprocessors are contained in cache memories, which consist mostly of the same memory cell circuits replicated many times). The rate at which MOS transistor counts have increased generally follows Moore's law, which observes that transistor count doubles approximately every two years. However, being directly proportional to the area of a die, transistor count does not represent how advanced the corresponding manufacturing technology is. A better indication of this is transistor density which is the ratio of a semiconductor's transistor count to its die area.

Records

As of 2023, the highest transistor count in flash memory is Micron's 2 terabyte (3D-stacked) 16-die, 232-layer V-NAND flash memory chip, with 5.3 trillion floating-gate MOSFETs (3 bits per transistor).

The highest transistor count in a single chip processor as of 2020 is that of the deep learning processor Wafer Scale Engine 2 by Cerebras. It has 2.6 trillion MOSFETs in 84 exposed fields (dies) on a wafer, manufactured using TSMC's 7 nm FinFET process.12345

As of 2024, the GPU with the highest transistor count is Nvidia's Blackwell-based B100 accelerator, built on TSMC's custom 4NP process node and totaling 208 billion MOSFETs.

The highest transistor count in a consumer microprocessor as of March 2025 is 184 billion transistors, in Apple's ARM-based dual-die M3 Ultra SoC, which is fabricated using TSMC's 3 nm semiconductor manufacturing process.6

YearComponentNameNumber of MOSFETs (in trillions)Remarks
2022Flash memoryMicron's V-NAND module5.3stacked package of sixteen 232-layer 3D NAND dies
2020any processorWafer Scale Engine 22.6wafer-scale design of 84 exposed fields (dies)
2024GPUNvidia B1000.208Uses two reticle limit dies, with 104 billion transistors each, joined together and acting as a single large monolithic piece of silicon
2025Microprocessor (consumer)Apple M3 Ultra0.184SoC using two dies joined together with a high-speed bridge
2020DLPColossus Mk2 GC2000.059An IPU in contrast to CPU and GPU

In terms of computer systems that consist of numerous integrated circuits, the supercomputer with the highest transistor count as of 2016 was the Chinese-designed Sunway TaihuLight, which has for all CPUs/nodes combined "about 400 trillion transistors in the processing part of the hardware" and "the DRAM includes about 12 quadrillion transistors, and that's about 97 percent of all the transistors."7 To compare, the smallest computer, as of 2018 dwarfed by a grain of rice, had on the order of 100,000 transistors. Early experimental solid-state computers had as few as 130 transistors but used large amounts of diode logic. The first carbon nanotube computer had 178 transistors and was a 1-bit one-instruction set computer, while a later one is 16-bit (its instruction set is 32-bit RISC-V though).

Ionic transistor chips ("water-based" analog limited processor), have up to hundreds of such transistors.8

Estimates of the total numbers of transistors manufactured:

  • Up to 2014: 2.9×1021
  • Up to 2018: 1.3×1022910

Transistor count

Microprocessors

See also: Microprocessor chronology and Microcontroller

A microprocessor incorporates the functions of a computer's central processing unit on a single integrated circuit. It is a multi-purpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output.

The development of MOS integrated circuit technology in the 1960s led to the development of the first microprocessors.11 The 20-bit MP944, developed by Garrett AiResearch for the U.S. Navy's F-14 Tomcat fighter in 1970, is considered by its designer Ray Holt to be the first microprocessor.12 It was a multi-chip microprocessor, fabricated on six MOS chips. However, it was classified by the Navy until 1998. The 4-bit Intel 4004, released in 1971, was the first single-chip microprocessor.

Modern microprocessors typically include on-chip cache memories. The number of transistors used for these cache memories typically far exceeds the number of transistors used to implement the logic of the microprocessor (that is, excluding the cache). For example, the last DEC Alpha chip uses 90% of its transistors for cache.13

ProcessorTransistor countYearDesignerProcess(nm)Area (mm2)Transistordensity(tr./mm2)
MP944 (20-bit, 6-chip, 28 chips total)74,442 (5,360 excl. ROM & RAM)141519701617Garrett AiResearch???
Intel 4004 (4-bit, 16-pin)2,2501971Intel10,000 nm12 mm2188
TMX 1795 (8-bit, 24-pin)3,078181971Texas Instruments?30.64 mm2100.5
Intel 8008 (8-bit, 18-pin)3,5001972Intel10,000 nm14 mm2250
NEC μCOM-4 (4-bit, 42-pin)2,50019201973NEC7,500 nm21??
Toshiba TLCS-12 (12-bit)11,000+221973Toshiba6,000 nm32.45 mm2340+
Intel 4040 (4-bit, 16-pin)3,0001974Intel10,000 nm12 mm2250
Motorola 6800 (8-bit, 40-pin)4,1001974Motorola6,000 nm16 mm2256
Intel 8080 (8-bit, 40-pin)6,0001974Intel6,000 nm20 mm2300
TMS 1000 (4-bit, 28-pin)8,00023197424Texas Instruments8,000 nm11 mm2730
MOS Technology 6502 (8-bit, 40-pin)4,52825261975MOS Technology8,000 nm21 mm2216
Intersil IM6100 (12-bit, 40-pin; clone of PDP-8)4,0001975Intersil???
CDP 1801 (8-bit, 2-chip, 40-pin)5,0001975RCA???
RCA 1802 (8-bit, 40-pin)5,0001976RCA5,000 nm27 mm2185
Zilog Z80 (8-bit, 4-bit ALU, 40-pin)8,500271976Zilog4,000 nm18 mm2470
Intel 8085 (8-bit, 40-pin)6,5001976Intel3,000 nm20 mm2325
TMS9900 (16-bit)8,0001976Texas Instruments???
Bellmac-8 (8-bit)7,0001977Bell Labs5,000 nm??
Motorola 6809 (8-bit with some 16-bit features, 40-pin)9,0001978Motorola5,000 nm21 mm2430
Intel 8086 (16-bit, 40-pin)29,000281978Intel3,000 nm33 mm2880
Zilog Z8000 (16-bit)17,500291979Zilog5,000-6,000 nm (design rules)39.31 mm2 (238x256 mil2)445
Intel 8088 (16-bit, 8-bit data bus)29,0001979Intel3,000 nm33 mm2880
Motorola 68000 (16/32-bit, 32-bit registers, 16-bit ALU)68,000301979Motorola3,500 nm44 mm21,550
Intel 8051 (8-bit, 40-pin)50,0001980Intel???
WDC 65C0211,500311981WDC3,000 nm6 mm21,920
ROMP (32-bit)45,0001981IBM2,000 nm58.52 mm2770
Intel 80186 (16-bit, 68-pin)55,0001982Intel3,000 nm60 mm2920
Intel 80286 (16-bit, 68-pin)134,0001982Intel1,500 nm49 mm22,730
WDC 65C816 (8/16-bit)22,000321983WDC3,000 nm339 mm22,400
NEC V2063,0001984NEC???
Motorola 68020 (32-bit; 114 pins used)190,000341984Motorola2,000 nm85 mm22,200
Intel 80386 (32-bit, 132-pin; no cache)275,0001985Intel1,500 nm104 mm22,640
ARM 1 (32-bit; no cache)25,000351985Acorn3,000 nm50 mm2500
Novix NC4016 (16-bit)16,00036198537Harris Corporation3,000 nm38??
SPARC MB86900 (32-bit; no cache)110,000391986Fujitsu1,200 nm??
NEC V6040 (32-bit; no cache)375,0001986NEC1,500 nm??
ARM 2 (32-bit, 84-pin; no cache)27,00041421986Acorn2,000 nm30.25 mm2890
Z80000 (32-bit; very small cache)91,0001986Zilog???
NEC V7043 (32-bit; no cache)385,0001987NEC1,500 nm??
Hitachi Gmicro/20044730,0001987Hitachi1,000 nm??
Motorola 68030 (32-bit, very small caches)273,0001987Motorola800 nm102 mm22,680
TI Explorer's 32-bit Lisp machine chip553,000451987Texas Instruments2,000 nm46??
DEC WRL MultiTitan180,000471988DEC WRL1,500 nm61 mm22,950
Intel i960 (32-bit, 33-bit memory subsystem, no cache)250,000481988Intel1,500 nm49??
Intel i960CA (32-bit, cache)600,000501989Intel800 nm143 mm24,200
Intel i860 (32/64-bit, 128-bit SIMD, cache, VLIW)1,000,000511989Intel???
Intel 80486 (32-bit, 8 KB cache)1,180,2351989Intel1,000 nm173 mm26,822
ARM 3 (32-bit, 4 KB cache)310,0001989Acorn1,500 nm87 mm23,600
POWER1 (9-chip module, 72 kB of cache)6,900,000521990IBM1,000 nm1,283.61 mm25,375
Motorola 68040 (32-bit, 8 KB caches)1,200,0001990Motorola650 nm152 mm27,900
R4000 (64-bit, 16 KB of caches)1,350,0001991MIPS1,000 nm213 mm26,340
ARM 6 (32-bit, no cache for this 60 variant)35,0001991ARM800 nm??
Hitachi SH-1 (32-bit, no cache)600,00053199254Hitachi800 nm100 mm26,000
Intel i960CF (32-bit, cache)900,000551992Intel?125 mm27,200
Alpha 21064 (64-bit, 290-pin; 16 KB of caches)1,680,0001992DEC750 nm233.52 mm27,190
Hitachi HARP-1 (32-bit, cache)2,800,000561993Hitachi500 nm267 mm210,500
Pentium (32-bit, 16 KB of caches)3,100,0001993Intel800 nm294 mm210,500
POWER2 (8-chip module, 288 kB of cache)23,037,000571993IBM720 nm1,217.39 mm218,923
ARM700 (32-bit; 8 KB cache)578,977581994ARM700 nm68.51 mm28,451
MuP21 (21-bit,59 40-pin; includes video)7,000601994Offete Enterprises1,200 nm??
Motorola 68060 (32-bit, 16 KB of caches)2,500,0001994Motorola600 nm218 mm211,500
PowerPC 601 (32-bit, 32 KB of caches)2,800,000611994Apple, IBM, Motorola600 nm121 mm223,000
PowerPC 603 (32-bit, 16 KB of caches)1,600,000621994Apple, IBM, Motorola500 nm84.76 mm218,900
PowerPC 603e (32-bit, 32 KB of caches)2,600,000631995Apple, IBM, Motorola500 nm98 mm226,500
Alpha 21164 EV5 (64-bit, 112 kB cache)9,300,000641995DEC500 nm298.65 mm231,140
SA-110 (32-bit, 32 KB of caches)2,500,000651995Acorn, DEC, Apple350 nm50 mm250,000
Pentium Pro (32-bit, 16 KB of caches;66 L2 cache on-package, but on separate die)5,500,000671995Intel500 nm307 mm218,000
PA-8000 64-bit, no cache3,800,000681995HP500 nm337.69 mm211,300
Alpha 21164A EV56 (64-bit, 112 kB cache)9,660,000691996DEC350 nm208.8 mm246,260
AMD K5 (32-bit, caches)4,300,0001996AMD500 nm251 mm217,000
Pentium II Klamath (32-bit, 64-bit SIMD, caches)7,500,0001997Intel350 nm195 mm239,000
AMD K6 (32-bit, caches)8,800,0001997AMD350 nm162 mm254,000
F21 (21-bit; includes e.g. video)15,000199770Offete Enterprises???
AVR (8-bit, 40-pin; w/memory)140,000 (48,000 excl. memory71)1997Nordic VLSI/Atmel???
Pentium II Deschutes (32-bit, large cache)7,500,0001998Intel250 nm113 mm266,000
Alpha 21264 EV6 (64-bit)15,200,000721998DEC350 nm313.96 mm248,400
Alpha 21164PC PCA57 (64-bit, 48 kB cache)5,700,0001998Samsung280 nm100.5 mm256,700
Hitachi SH-4 (32-bit, caches)733,200,000741998Hitachi250 nm57.76 mm255,400
ARM 9TDMI (32-bit, no cache)111,000751999Acorn350 nm4.8 mm223,100
Pentium III Katmai (32-bit, 128-bit SIMD, caches)9,500,0001999Intel250 nm128 mm274,000
Emotion Engine (64-bit, 128-bit SIMD, cache)10,500,00076– 13,500,000771999Sony, Toshiba250 nm239.7 mm27843,800 – 56,300
Pentium II Mobile Dixon (32-bit, caches)27,400,0001999Intel180 nm180 mm2152,000
AMD K6-III (32-bit, caches)21,300,0001999AMD250 nm118 mm2181,000
AMD K7 (32-bit, caches)22,000,0001999AMD250 nm184 mm2120,000
Gekko (32-bit, large cache)21,000,000792000IBM, Nintendo180 nm43 mm2490,000 (check)
Pentium III Coppermine (32-bit, large cache)21,000,0002000Intel180 nm80 mm2263,000
Pentium 4 Willamette (32-bit, large cache)42,000,0002000Intel180 nm217 mm2194,000
SPARC64 V (64-bit, large cache)191,000,000802001Fujitsu130 nm81290 mm2659,000
Pentium III Tualatin (32-bit, large cache)45,000,0002001Intel130 nm81 mm2556,000
Pentium 4 Northwood (32-bit, large cache)55,000,0002002Intel130 nm145 mm2379,000
Itanium 2 McKinley (64-bit, large cache)220,000,0002002Intel180 nm421 mm2523,000
Alpha 21364 (64-bit, 946-pin, SIMD, very large caches)152,000,000822003DEC180 nm397 mm2383,000
AMD K7 Barton (32-bit, large cache)54,300,0002003AMD130 nm101 mm2538,000
AMD K8 (64-bit, large cache)105,900,0002003AMD130 nm193 mm2548,700
Pentium M Banias (32-bit)77,000,000832003Intel130 nm83 mm2928,000
Itanium 2 Madison 6M (64-bit)410,000,0002003Intel130 nm374 mm21,096,000
PlayStation 2 single chip (CPU + GPU)53,500,00084200385Sony, Toshiba90 nm86130 nm878886 mm2622,100
Pentium 4 Prescott (32-bit, large cache)112,000,0002004Intel90 nm110 mm21,018,000
Pentium M Dothan (32-bit)144,000,000892004Intel90 nm87 mm21,655,000
SPARC64 V+ (64-bit, large cache)400,000,000902004Fujitsu90 nm294 mm21,360,000
Itanium 2 (64-bit;9 MB cache)592,000,0002004Intel130 nm432 mm21,370,000
Pentium 4 Prescott-2M (32-bit, large cache)169,000,0002005Intel90 nm143 mm21,182,000
Pentium D Smithfield (64-bit, large cache)228,000,0002005Intel90 nm206 mm21,107,000
Xenon (64-bit, 128-bit SIMD, large cache)165,000,0002005IBM90 nm??
Cell (32-bit, cache)250,000,000912005Sony, IBM, Toshiba90 nm221 mm21,131,000
Pentium 4 Cedar Mill (32-bit, large cache)184,000,0002006Intel65 nm90 mm22,044,000
Pentium D Presler (64-bit, large cache)362,000,000 922006Intel65 nm162 mm22,235,000
Core 2 Duo Conroe (dual-core 64-bit, large caches)291,000,0002006Intel65 nm143 mm22,035,000
Dual-core Itanium 2 (64-bit, SIMD, large caches)1,700,000,000932006Intel90 nm596 mm22,852,000
AMD K10 quad-core 2M L3 (64-bit, large caches)463,000,000942007AMD65 nm283 mm21,636,000
ARM Cortex-A9 (32-bit, (optional) SIMD, caches)26,000,000952007ARM45 nm31 mm2839,000
Core 2 Duo Wolfdale (dual-core 64-bit, SIMD, caches)411,000,0002007Intel45 nm107 mm23,841,000
POWER6 (64-bit, large caches)789,000,0002007IBM65 nm341 mm22,314,000
Core 2 Duo Allendale (dual-core 64-bit, SIMD, large caches)169,000,0002007Intel65 nm111 mm21,523,000
Uniphier250,000,000962007Matsushita45 nm??
SPARC64 VI (64-bit, SIMD, large caches)540,000,000200797Fujitsu90 nm421 mm21,283,000
Core 2 Duo Wolfdale 3M (dual-core 64-bit, SIMD, large caches)230,000,0002008Intel45 nm83 mm22,771,000
Core i7 (quad-core 64-bit, SIMD, large caches)731,000,0002008Intel45 nm263 mm22,779,000
AMD K10 quad-core 6M L3 (64-bit, SIMD, large caches)758,000,000982008AMD45 nm258 mm22,938,000
Atom (32-bit, large cache)47,000,0002008Intel45 nm24 mm21,958,000
SPARC64 VII (64-bit, SIMD, large caches)600,000,000200899Fujitsu65 nm445 mm21,348,000
Six-core Xeon 7400 (64-bit, SIMD, large caches)1,900,000,0002008Intel45 nm503 mm23,777,000
Six-core Opteron 2400 (64-bit, SIMD, large caches)904,000,0002009AMD45 nm346 mm22,613,000
SPARC64 VIIIfx (64-bit, SIMD, large caches)760,000,0001002009Fujitsu45 nm513 mm21,481,000
Atom (Pineview) 64-bit, 1-core, 512 kB L2 cache123,000,0001012010Intel45 nm66 mm21,864,000
Atom (Pineview) 64-bit, 2-core, 1 MB L2 cache176,000,0001022010Intel45 nm87 mm22,023,000
SPARC T3 (16-core 64-bit, SIMD, large caches)1,000,000,0001032010Sun/Oracle40 nm377 mm22,653,000
Six-core Core i7 (Gulftown)1,170,000,0002010Intel32 nm240 mm24,875,000
POWER7 32M L3 (8-core 64-bit, SIMD, large caches)1,200,000,0002010IBM45 nm567 mm22,116,000
Quad-core z196104 (64-bit, very large caches)1,400,000,0002010IBM45 nm512 mm22,734,000
Quad-core Itanium Tukwila (64-bit, SIMD, large caches)2,000,000,0001052010Intel65 nm699 mm22,861,000
Xeon Nehalem-EX (8-core 64-bit, SIMD, large caches)2,300,000,0001062010Intel45 nm684 mm23,363,000
SPARC64 IXfx (64-bit, SIMD, large caches)1,870,000,0001072011Fujitsu40 nm484 mm23,864,000
Quad-core + GPU Core i7 (64-bit, SIMD, large caches)1,160,000,0002011Intel32 nm216 mm25,370,000
Six-core Core i7/8-core Xeon E5 (Sandy Bridge-E/EP) (64-bit, SIMD, large caches)2,270,000,0001082011Intel32 nm434 mm25,230,000
Xeon Westmere-EX (10-core 64-bit, SIMD, large caches)2,600,000,0002011Intel32 nm512 mm25,078,000
Atom "Medfield" (64-bit)432,000,0001092012Intel32 nm64 mm26,750,000
SPARC64 X (64-bit, SIMD, caches)2,990,000,0001102012Fujitsu28 nm600 mm24,983,000
AMD Bulldozer (8-core 64-bit, SIMD, caches)1,200,000,0001112012AMD32 nm315 mm23,810,000
Quad-core + GPU AMD Trinity (64-bit, SIMD, caches)1,303,000,0002012AMD32 nm246 mm25,297,000
Quad-core + GPU Core i7 Ivy Bridge (64-bit, SIMD, caches)1,400,000,0002012Intel22 nm160 mm28,750,000
POWER7+ (8-core 64-bit, SIMD, 80 MB L3 cache)2,100,000,0002012IBM32 nm567 mm23,704,000
Six-core zEC12 (64-bit, SIMD, large caches)2,750,000,0002012IBM32 nm597 mm24,606,000
Itanium Poulson (8-core 64-bit, SIMD, caches)3,100,000,0002012Intel32 nm544 mm25,699,000
Xeon Phi (61-core 32-bit, 512-bit SIMD, caches)5,000,000,0001122012Intel22 nm720 mm26,944,000
Apple A7 (dual-core 64/32-bit ARM64, "mobile SoC", SIMD, caches)1,000,000,0002013Apple28 nm102 mm29,804,000
Six-core Core i7 Ivy Bridge E (64-bit, SIMD, caches)1,860,000,0002013Intel22 nm256 mm27,266,000
POWER8 (12-core 64-bit, SIMD, caches)4,200,000,0002013IBM22 nm650 mm26,462,000
Xbox One main SoC (64-bit, SIMD, caches)5,000,000,0002013Microsoft, AMD28 nm363 mm213,770,000
Quad-core + GPU Core i7 Haswell (64-bit, SIMD, caches)1,400,000,0001132014Intel22 nm177 mm27,910,000
Apple A8 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)2,000,000,0002014Apple20 nm89 mm222,470,000
Core i7 Haswell-E (8-core 64-bit, SIMD, caches)2,600,000,0001142014Intel22 nm355 mm27,324,000
Apple A8X (tri-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)3,000,000,0001152014Apple20 nm128 mm223,440,000
Xeon Ivy Bridge-EX (15-core 64-bit, SIMD, caches)4,310,000,0001162014Intel22 nm541 mm27,967,000
Xeon Haswell-E5 (18-core 64-bit, SIMD, caches)5,560,000,0001172014Intel22 nm661 mm28,411,000
Quad-core + GPU GT2 Core i7 Skylake K (64-bit, SIMD, caches)1,750,000,0002015Intel14 nm122 mm214,340,000
Dual-core + GPU Iris Core i7 Broadwell-U (64-bit, SIMD, caches)1,900,000,0001182015Intel14 nm133 mm214,290,000
Apple A9 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)2,000,000,000+2015Apple14 nm(Samsung)96 mm2(Samsung)20,800,000+
16 nm(TSMC)104.5 mm2(TSMC)19,100,000+
Apple A9X (dual core 64/32-bit ARM64 "mobile SoC", SIMD, caches)3,000,000,000+2015Apple16 nm143.9 mm220,800,000+
IBM z13 (64-bit, caches)3,990,000,0002015IBM22 nm678 mm25,885,000
IBM z13 Storage Controller7,100,000,0002015IBM22 nm678 mm210,472,000
SPARC M7 (32-core 64-bit, SIMD, caches)10,000,000,0001192015Oracle20 nm??
Core i7 Broadwell-E (10-core 64-bit, SIMD, caches)3,200,000,0001202016Intel14 nm246 mm212113,010,000
Apple A10 Fusion (quad-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)3,300,000,0002016Apple16 nm125 mm226,400,000
HiSilicon Kirin 960 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)4,000,000,0001222016Huawei16 nm110.00 mm236,360,000
Xeon Broadwell-E5 (22-core 64-bit, SIMD, caches)7,200,000,0001232016Intel14 nm456 mm215,790,000
Xeon Phi (72-core 64-bit, 512-bit SIMD, caches)8,000,000,0002016Intel14 nm683 mm211,710,000
Zip CPU (32-bit, for FPGAs)1,286 6-LUTs1242016Gisselquist Technology???
Qualcomm Snapdragon 835 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)3,000,000,0001251262016Qualcomm10 nm72.3 mm241,490,000
Apple A11 Bionic (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)4,300,000,0002017Apple10 nm89.23 mm248,190,000
AMD Zen CCX (core complex unit: 4 cores, 8 MB L3 cache)1,400,000,0001272017AMD14 nm(GF 14LPP)44 mm231,800,000
AMD Zeppelin SoC Ryzen (64-bit, SIMD, caches)4,800,000,0001282017AMD14 nm192 mm225,000,000
AMD Ryzen 5 1600 Ryzen (64-bit, SIMD, caches)4,800,000,0001292017AMD14 nm213 mm222,530,000
IBM z14 (64-bit, SIMD, caches)6,100,000,0002017IBM14 nm696 mm28,764,000
IBM z14 Storage Controller (64-bit)9,700,000,0002017IBM14 nm696 mm213,940,000
HiSilicon Kirin 970 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)5,500,000,0001302017Huawei10 nm96.72 mm256,900,000
Xbox One X (Project Scorpio) main SoC (64-bit, SIMD, caches)7,000,000,0001312017Microsoft, AMD16 nm360 mm213219,440,000
Xeon Platinum 8180 (28-core 64-bit, SIMD, caches)8,000,000,0001332017Intel14 nm??
Xeon (unspecified)7,100,000,0001342017Intel14 nm672 mm210,570,000
POWER9 (64-bit, SIMD, caches)8,000,000,0002017IBM14 nm695 mm211,500,000
Freedom U500 Base Platform Chip (E51, 4×U54) RISC-V (64-bit, caches)250,000,0001352017SiFive28 nm~30 mm28,330,000
SPARC64 XII (12-core 64-bit, SIMD, caches)5,450,000,0001362017Fujitsu20 nm795 mm26,850,000
Apple A10X Fusion (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)4,300,000,0001372017Apple10 nm96.40 mm244,600,000
Centriq 2400 (64/32-bit, SIMD, caches)18,000,000,0001382017Qualcomm10 nm398 mm245,200,000
AMD Epyc (32-core 64-bit, SIMD, caches)19,200,000,0002017AMD14 nm768 mm225,000,000
Qualcomm Snapdragon 845 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)5,300,000,0001392017Qualcomm10 nm94 mm256,400,000
Qualcomm Snapdragon 850 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)5,300,000,0001402017Qualcomm10 nm94 mm256,400,000
HiSilicon Kirin 710 (octa-core ARM64 "mobile SoC", SIMD, caches)5,500,000,0001412018Huawei12 nm??
Apple A12 Bionic (hexa-core ARM64 "mobile SoC", SIMD, caches)6,900,000,0001421432018Apple7 nm83.27 mm282,900,000
HiSilicon Kirin 980 (octa-core ARM64 "mobile SoC", SIMD, caches)6,900,000,0001442018Huawei7 nm74.13 mm293,100,000
Qualcomm Snapdragon 8cx / SCX8180 (octa-core ARM64 "mobile SoC", SIMD, caches)8,500,000,0001452018Qualcomm7 nm112 mm275,900,000
Apple A12X Bionic (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)10,000,000,0001462018Apple7 nm122 mm282,000,000
Fujitsu A64FX (64/32-bit, SIMD, caches)8,786,000,0001472018148Fujitsu7 nm??
Tegra Xavier SoC (64/32-bit)9,000,000,0001492018Nvidia12 nm350 mm225,700,000
Qualcomm Snapdragon 855 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)6,700,000,0001502018Qualcomm7 nm73 mm291,800,000
AMD Zen 2 core (0.5 MB L2 + 4 MB L3 cache)475,000,0001512019AMD7 nm7.83 mm260,664,000
AMD Zen 2 CCX (core complex: 4 cores, 16 MB L3 cache)1,900,000,0001522019AMD7 nm31.32 mm260,664,000
AMD Zen 2 CCD (core complex die: 8 cores, 32 MB L3 cache)3,800,000,0001532019AMD7 nm74 mm251,350,000
AMD Zen 2 client I/O die2,090,000,0001542019AMD12 nm125 mm216,720,000
AMD Zen 2 server I/O die8,340,000,0001552019AMD12 nm416 mm220,050,000
AMD Zen 2 Renoir die9,800,000,0001562019AMD7 nm156 mm262,820,000
AMD Ryzen 7 3700X (64-bit, SIMD, caches, I/O die)5,990,000,0001571582019AMD7 & 12 nm(TSMC)199 (74+125) mm230,100,000
HiSilicon Kirin 990 4G8,000,000,0001592019Huawei7 nm90.00 mm289,000,000
Apple A13 (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches)8,500,000,0001601612019Apple7 nm98.48 mm286,300,000
IBM z15 CP chip (12 cores, 256 MB L3 cache)9,200,000,0001622019IBM14 nm696 mm213,220,000
IBM z15 SC chip (960 MB L4 cache)12,200,000,0002019IBM14 nm696 mm217,530,000
AMD Ryzen 9 3900X (64-bit, SIMD, caches, I/O die)9,890,000,0001631642019AMD7 & 12 nm(TSMC)273 mm236,230,000
HiSilicon Kirin 990 5G10,300,000,0001652019Huawei7 nm113.31 mm290,900,000
AWS Graviton2 (64-bit, 64-core ARM-based, SIMD, caches)16616730,000,000,0002019Amazon7 nm??
AMD Epyc Rome (64-bit, SIMD, caches)39,540,000,0001681692019AMD7 & 12 nm(TSMC)1,008 mm239,226,000
Qualcomm Snapdragon 865 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)10,300,000,0001702019Qualcomm7 nm83.54 mm2171123,300,000
TI Jacinto TDA4VM (ARM A72, DSP, SRAM)3,500,000,0001722020Texas Instruments16 nm??
Apple A14 Bionic (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches)11,800,000,0001732020Apple5 nm88 mm2134,100,000
Apple M1 (octa-core 64-bit ARM64 SoC, SIMD, caches)16,000,000,0001742020Apple5 nm119 mm2134,500,000
HiSilicon Kirin 900015,300,000,0001751762020Huawei5 nm114 mm2134,200,000
AMD Zen 3 CCX (core complex unit: 8 cores, 32 MB L3 cache)4,080,000,0001772020AMD7 nm68 mm260,000,000
AMD Zen 3 CCD (core complex die)4,150,000,0001782020AMD7 nm81 mm251,230,000
Core 11th gen Rocket Lake (8-core 64-bit, SIMD, large caches)6,000,000,000+ 1792021Intel14 nm +++ 14 nm276 mm218037,500,000 or 21,800,000+ 181
AMD Ryzen 7 5800H (64-bit, SIMD, caches, I/O and GPU)10,700,000,0001822021AMD7 nm180 mm259,440,000
AMD Epyc 7763 (Milan) (64-core, 64-bit)?2021AMD7 & 12 nm(TSMC)1,064 mm2(8×81+416)183?
Apple A1515,000,000,0001841852021Apple5 nm107.68 mm2139,300,000
Apple M1 Pro (10-core, 64-bit)33,700,000,0001862021Apple5 nm245 mm2187137,600,000
Apple M1 Max (10-core, 64-bit)57,000,000,0001881892021Apple5 nm420.2 mm2190135,600,000
Power10 dual-chip module (30 SMT8 cores or 60 SMT4 cores)36,000,000,0001912021IBM7 nm1,204 mm229,900,000
Dimensity 9000 (ARM64 SoC)15,300,000,0001921932021Mediatek4 nm(TSMC N4)??
Apple A16 (ARM64 SoC)16,000,000,0001941951962022Apple4 nm??
Apple M1 Ultra (dual-chip module, 2×10 cores)114,000,000,0001971982022Apple5 nm840.5 mm2199135,600,000
AMD Epyc 7773X (Milan-X) (multi-chip module, 64 cores, 768 MB L3 cache)26,000,000,000 + Milan2002022AMD7 & 12 nm(TSMC)1,352 mm2(Milan + 8×36)201?
IBM Telum dual-chip module (2×8 cores, 2×256 MB cache)45,000,000,0002022032022IBM7 nm (Samsung)1,060 mm242,450,000
Apple M2 (deca-core 64-bit ARM64 SoC, SIMD, caches)20,000,000,0002042022Apple5 nm??
Dimensity 9200 (ARM64 SoC)17,000,000,0002052062072022Mediatek4 nm(TSMC N4P)??
Qualcomm Snapdragon 8 Gen 2 (octa-core ARM64 "mobile SoC", SIMD, caches)16,000,000,0002022Qualcomm4 nm268 mm259,701,492
AMD EPYC Genoa (4th gen/9004 series) 13-chip module (up to 96 cores and 384 MB (L3) + 96 MB (L2) cache)20890,000,000,0002092102022AMD5 nm (CCD)6 nm (IOD)1,263.34 mm212×72.225 (CCD)396.64 (IOD)21121271,240,000
HiSilicon Kirin 9000s9,510,000,0002132023Huawei7 nm107 mm2107,690,000
Apple M4 (deca-core 64-bit ARM64 SoC, SIMD, caches)28,000,000,0002142024Apple3 nm??
Apple M3 (octa-core 64-bit ARM64 SoC, SIMD, caches)25,000,000,0002152023Apple3 nm??
Apple M3 Pro (dodeca-core 64-bit ARM64 SoC, SIMD, caches)37,000,000,0002162023Apple3 nm??
Apple M3 Max (16-core 64-bit ARM64 SoC, SIMD, caches)92,000,000,0002172023Apple3 nm??
Apple A1719,000,000,0002182023Apple3 nm103.8 mm2183,044,315
Sapphire Rapids quad-chip module (up to 60 cores and 112.5 MB of cache)21944,000,000,000–48,000,000,0002202023Intel10 nm ESF (Intel 7)1,600 mm227,500,000–30,000,000
Apple M2 Pro (12-core 64-bit ARM64 SoC, SIMD, caches)40,000,000,0002212023Apple5 nm??
Apple M2 Max (12-core 64-bit ARM64 SoC, SIMD, caches)67,000,000,0002222023Apple5 nm??
Apple M2 Ultra (two M2 Max dies)134,000,000,0002232023Apple5 nm??
AMD Epyc Bergamo (4th gen/97X4 series) 9-chip module (up to 128 cores and 256 MB (L3) + 128 MB (L2) cache)82,000,000,0002242023AMD5 nm (CCD)6 nm (IOD)??
AMD Instinct MI300A (multi-chip module, 24 cores, 128 GB GPU memory + 256 MB (LLC/L3) cache)146,000,000,0002252262023AMD5 nm (CCD, GCD)6 nm (IOD)1,017 mm2144,000,000
RV32-WUJI: 3-atom-thick molybdenum disulfide on sapphire; RISC-V architecture59312272025?3000 nm??
ProcessorTransistor countYearDesignerProcess(nm)Area (mm2)Transistordensity(tr./mm2)

GPUs

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display.

The designer refers to the technology company that designs the logic of the integrated circuit chip (such as Nvidia and AMD). The manufacturer ("Fab.") refers to the semiconductor company that fabricates the chip using its semiconductor manufacturing process at a foundry (such as TSMC and Samsung Semiconductor). The transistor count in a chip is dependent on a manufacturer's fabrication process, with smaller semiconductor nodes typically enabling higher transistor density and thus higher transistor counts.

The random-access memory (RAM) that comes with GPUs (such as VRAM, SGRAM or HBM) greatly increases the total transistor count, with the memory typically accounting for the majority of transistors in a graphics card. For example, Nvidia's Tesla P100 has 15 billion FinFETs (16 nm) in the GPU in addition to 16 GB of HBM2 memory, totaling about 150 billion MOSFETs on the graphics card.228 The following table does not include the memory. For memory transistor counts, see the Memory section below.

ProcessorTransistor countYearDesigner(s)Fab(s)ProcessAreaTransistordensity(tr./mm2)Ref
μPD7220 GDC40,0001982NECNEC5,000 nm??229
ARTC HD6348460,0001984HitachiHitachi???230
CBM Agnus21,0001985CommodoreCSG5,000 nm??231232
YM7101 VDP100,0001988Yamaha, SegaYamaha???233
Tom & Jerry750,0001993FlareIBM???234
VDP11,000,0001994SegaHitachi500 nm??235
Sony GPU1,000,0001994ToshibaLSI500 nm??236237238
NV11,000,0001995Nvidia, SegaSGS500 nm90 mm211,000
Reality Coprocessor2,600,0001996SGINEC350 nm81 mm232,100239
PowerVR1,200,0001996VideoLogicNEC350 nm??240
Voodoo Graphics1,000,00019963dfxTSMC500 nm??241242
Voodoo Rush1,000,00019973dfxTSMC500 nm??243244
NV33,500,0001997NvidiaSGS, TSMC350 nm90 mm238,900245246
i7403,500,0001998Intel, Real3DReal3D350 nm??247248
Voodoo 24,000,00019983dfxTSMC350 nm??
Voodoo Rush4,000,00019983dfxTSMC350 nm??
NV47,000,0001998NvidiaTSMC350 nm90 mm278,000249250
PowerVR2 CLX210,000,0001998VideoLogicNEC250 nm116 mm286,200251252253254
PowerVR2 PMX16,000,0001999VideoLogicNEC250 nm??255
Rage 1288,000,0001999ATITSMC, UMC250 nm70 mm2114,000256
Voodoo 38,100,00019993dfxTSMC250 nm??257
Graphics Synthesizer43,000,0001999Sony, ToshibaSony, Toshiba180 nm279 mm2154,000258259260261
NV515,000,0001999NvidiaTSMC250 nm90 mm2167,000262
NV1017,000,0001999NvidiaTSMC220 nm111 mm2153,000263264
NV1120,000,0002000NvidiaTSMC180 nm65 mm2308,000265
NV1525,000,0002000NvidiaTSMC180 nm81 mm2309,000266
Voodoo 414,000,00020003dfxTSMC220 nm??267268
Voodoo 528,000,00020003dfxTSMC220 nm??269270
R10030,000,0002000ATITSMC180 nm97 mm2309,000271
Flipper51,000,0002000ArtXNEC180 nm106 mm2481,000272273
PowerVR3 KYRO14,000,0002001ImaginationST250 nm??274275
PowerVR3 KYRO II15,000,0002001ImaginationST180 nm
NV2A60,000,0002001NvidiaTSMC150 nm??276277
NV2057,000,0002001NvidiaTSMC150 nm128 mm2445,000278
NV2563,000,0002002NvidiaTSMC150 nm142 mm2444,000
NV2836,000,0002002NvidiaTSMC150 nm101 mm2356,000
NV17/1829,000,0002002NvidiaTSMC150 nm65 mm2446,000
R20060,000,0002001ATITSMC150 nm68 mm2882,000
R300107,000,0002002ATITSMC150 nm218 mm2490,800
R360117,000,0002003ATITSMC150 nm218 mm2536,700
NV3445,000,0002003NvidiaTSMC150 nm124 mm2363,000
NV34b45,000,0002004NvidiaTSMC140 nm91 mm2495,000
NV30125,000,0002003NvidiaTSMC130 nm199 mm2628,000
NV3180,000,0002003NvidiaTSMC130 nm121 mm2661,000
NV35/38135,000,0002003NvidiaTSMC130 nm207 mm2652,000
NV3682,000,0002003NvidiaIBM130 nm133 mm2617,000
R480160,000,0002004ATITSMC130 nm297 mm2538,700
NV40222,000,0002004NvidiaIBM130 nm305 mm2727,900
NV4475,000,0002004NvidiaIBM130 nm110 mm2681,800
NV41222,000,0002005NvidiaTSMC110 nm225 mm2986,700279
NV42198,000,0002005NvidiaTSMC110 nm222 mm2891,900
NV43146,000,0002005NvidiaTSMC110 nm154 mm2948,100
G70303,000,0002005NvidiaTSMC, Chartered110 nm333 mm2909,900
Xenos232,000,0002005ATITSMC90 nm182 mm21,275,000280281
RSX Reality Synthesizer300,000,0002005Nvidia, SonySony90 nm186 mm21,613,000282283
R520321,000,0002005ATITSMC90 nm288 mm21,115,000284
RV530157,000,0002005ATITSMC90 nm150 mm21,047,000
RV515107,000,0002005ATITSMC90 nm100 mm21,070,000
R580384,000,0002006ATITSMC90 nm352 mm21,091,000
G71278,000,0002006NvidiaTSMC90 nm196 mm21,418,000
G72112,000,0002006NvidiaTSMC90 nm81 mm21,383,000
G73177,000,0002006NvidiaTSMC90 nm125 mm21,416,000
G80681,000,0002006NvidiaTSMC90 nm480 mm21,419,000
G86 Tesla210,000,0002007NvidiaTSMC80 nm127 mm21,654,000
G84 Tesla289,000,0002007NvidiaTSMC80 nm169 mm21,710,000
RV560330,000,0002006ATITSMC80 nm230 mm21,435,000
R600700,000,0002007ATITSMC80 nm420 mm21,667,000
RV610180,000,0002007ATITSMC65 nm85 mm22,118,000285
RV630390,000,0002007ATITSMC65 nm153 mm22,549,000
G92754,000,0002007NvidiaTSMC, UMC65 nm324 mm22,327,000
G94 Tesla505,000,0002008NvidiaTSMC65 nm240 mm22,104,000
G96 Tesla314,000,0002008NvidiaTSMC65 nm144 mm22,181,000
G98 Tesla210,000,0002008NvidiaTSMC65 nm86 mm22,442,000
GT2002861,400,000,0002008NvidiaTSMC65 nm576 mm22,431,000
RV620181,000,0002008ATITSMC55 nm67 mm22,701,000287
RV635378,000,0002008ATITSMC55 nm135 mm22,800,000
RV710242,000,0002008ATITSMC55 nm73 mm23,315,000
RV730514,000,0002008ATITSMC55 nm146 mm23,521,000
RV670666,000,0002008ATITSMC55 nm192 mm23,469,000
RV770956,000,0002008ATITSMC55 nm256 mm23,734,000
RV790959,000,0002008ATITSMC55 nm282 mm23,401,000288289
G92b Tesla754,000,0002008NvidiaTSMC, UMC55 nm260 mm22,900,000290
G94b Tesla505,000,0002008NvidiaTSMC, UMC55 nm196 mm22,577,000
G96b Tesla314,000,0002008NvidiaTSMC, UMC55 nm121 mm22,595,000
GT200b Tesla1,400,000,0002008NvidiaTSMC, UMC55 nm470 mm22,979,000
GT218 Tesla260,000,0002009NvidiaTSMC40 nm57 mm24,561,000291
GT216 Tesla486,000,0002009NvidiaTSMC40 nm100 mm24,860,000
GT215 Tesla727,000,0002009NvidiaTSMC40 nm144 mm25,049,000
RV740826,000,0002009ATITSMC40 nm137 mm26,029,000
Cypress RV8702,154,000,0002009ATITSMC40 nm334 mm26,449,000
Juniper RV8401,040,000,0002009ATITSMC40 nm166 mm26,265,000
Redwood RV830627,000,0002010AMD (ATI)TSMC40 nm104 mm26,029,000292
Cedar RV810292,000,0002010AMDTSMC40 nm59 mm24,949,000
Cayman RV9702,640,000,0002010AMDTSMC40 nm389 mm26,789,000
Barts RV9401,700,000,0002010AMDTSMC40 nm255 mm26,667,000
Turks RV930716,000,0002011AMDTSMC40 nm118 mm26,068,000
Caicos RV910370,000,0002011AMDTSMC40 nm67 mm25,522,000
GF100 Fermi3,200,000,0002010NvidiaTSMC40 nm526 mm26,084,000293
GF110 Fermi3,000,000,0002010NvidiaTSMC40 nm520 mm25,769,000294
GF104 Fermi1,950,000,0002011NvidiaTSMC40 nm332 mm25,873,000295
GF106 Fermi1,170,000,0002010NvidiaTSMC40 nm238 mm24,916,000296
GF108 Fermi585,000,0002011NvidiaTSMC40 nm116 mm25,043,000297
GF119 Fermi292,000,0002011NvidiaTSMC40 nm79 mm23,696,000298
Tahiti GCN14,312,711,8732011AMDTSMC28 nm365 mm211,820,000299
Cape Verde GCN11,500,000,0002012AMDTSMC28 nm123 mm212,200,000300
Pitcairn GCN12,800,000,0002012AMDTSMC28 nm212 mm213,210,000301
GK110 Kepler7,080,000,0002012NvidiaTSMC28 nm561 mm212,620,000302303
GK104 Kepler3,540,000,0002012NvidiaTSMC28 nm294 mm212,040,000304
GK106 Kepler2,540,000,0002012NvidiaTSMC28 nm221 mm211,490,000305
GK107 Kepler1,270,000,0002012NvidiaTSMC28 nm118 mm210,760,000306
GK208 Kepler1,020,000,0002013NvidiaTSMC28 nm79 mm212,910,000307
Oland GCN11,040,000,0002013AMDTSMC28 nm90 mm211,560,000308
Bonaire GCN22,080,000,0002013AMDTSMC28 nm160 mm213,000,000
Durango (Xbox One)4,800,000,0002013AMDTSMC28 nm375 mm212,800,000309310
Liverpool (PlayStation 4)?2013AMDTSMC28 nm348 mm2?311
Hawaii GCN26,300,000,0002013AMDTSMC28 nm438 mm214,380,000312
GM200 Maxwell8,000,000,0002015NvidiaTSMC28 nm601 mm213,310,000
GM204 Maxwell5,200,000,0002014NvidiaTSMC28 nm398 mm213,070,000
GM206 Maxwell2,940,000,0002014NvidiaTSMC28 nm228 mm212,890,000
GM107 Maxwell1,870,000,0002014NvidiaTSMC28 nm148 mm212,640,000
Tonga GCN35,000,000,0002014AMDTSMC, GlobalFoundries28 nm366 mm213,660,000
Fiji GCN38,900,000,0002015AMDTSMC28 nm596 mm214,930,000
Durango 2 (Xbox One S)5,000,000,0002016AMDTSMC16 nm240 mm220,830,000313
Neo (PlayStation 4 Pro)5,700,000,0002016AMDTSMC16 nm325 mm217,540,000314
Ellesmere/Polaris 10 GCN45,700,000,0002016AMDSamsung, GlobalFoundries14 nm232 mm224,570,000315
Baffin/Polaris 11 GCN43,000,000,0002016AMDSamsung, GlobalFoundries14 nm123 mm224,390,000316317
Lexa/Polaris 12 GCN42,200,000,0002017AMDSamsung, GlobalFoundries14 nm101 mm221,780,000318319
GP100 Pascal15,300,000,0002016NvidiaTSMC, Samsung16 nm610 mm225,080,000320321
GP102 Pascal11,800,000,0002016NvidiaTSMC, Samsung16 nm471 mm225,050,000322323
GP104 Pascal7,200,000,0002016NvidiaTSMC16 nm314 mm222,930,000324325
GP106 Pascal4,400,000,0002016NvidiaTSMC16 nm200 mm222,000,000326327
GP107 Pascal3,300,000,0002016NvidiaSamsung14 nm132 mm225,000,000328329
GP108 Pascal1,850,000,0002017NvidiaSamsung14 nm74 mm225,000,000330331
Scorpio (Xbox One X)6,600,000,0002017AMDTSMC16 nm367 mm217,980,000332333
Vega 10 GCN512,500,000,0002017AMDSamsung, GlobalFoundries14 nm484 mm225,830,000334
GV100 Volta21,100,000,0002017NvidiaTSMC12 nm815 mm225,890,000335
TU102 Turing18,600,000,0002018NvidiaTSMC12 nm754 mm224,670,000336
TU104 Turing13,600,000,0002018NvidiaTSMC12 nm545 mm224,950,000
TU106 Turing10,800,000,0002018NvidiaTSMC12 nm445 mm224,270,000
TU116 Turing6,600,000,0002019NvidiaTSMC12 nm284 mm223,240,000337
TU117 Turing4,700,000,0002019NvidiaTSMC12 nm200 mm223,500,000338
Vega 20 GCN513,230,000,0002018AMDTSMC7 nm331 mm239,970,000339
Navi 10 RDNA10,300,000,0002019AMDTSMC7 nm251 mm241,040,000340
Navi 12 RDNA?2020AMDTSMC7 nm??
Navi 14 RDNA6,400,000,0002019AMDTSMC7 nm158 mm240,510,000341
Arcturus CDNA25,600,000,0002020AMDTSMC7 nm750 mm234,100,000342
GA100 Ampere54,200,000,0002020NvidiaTSMC7 nm826 mm265,620,000343344
GA102 Ampere28,300,000,0002020NvidiaSamsung8 nm628 mm245,035,000345346
GA103 Ampere22,000,000,0002022NvidiaSamsung8 nm496 mm244,400,000347
GA104 Ampere17,400,000,0002020NvidiaSamsung8 nm392 mm244,390,000348
GA106 Ampere12,000,000,0002021NvidiaSamsung8 nm276 mm243,480,000349
GA107 Ampere8,700,000,0002021NvidiaSamsung8 nm200 mm243,500,000350
Navi 21 RDNA226,800,000,0002020AMDTSMC7 nm520 mm251,540,000
Navi 22 RDNA217,200,000,0002021AMDTSMC7 nm335 mm251,340,000
Navi 23 RDNA211,060,000,0002021AMDTSMC7 nm237 mm246,670,000
Navi 24 RDNA25,400,000,0002022AMDTSMC6 nm107 mm250,470,000
Aldebaran CDNA258,200,000,000 (MCM)2021AMDTSMC6 nm1448–1474 mm23511480 mm23521490–1580 mm235339,500,000–40,200,00039,200,00036,800,000–39,100,000354
GH100 Hopper80,000,000,0002022NvidiaTSMC4 nm814 mm298,280,000355
AD102 Ada Lovelace76,300,000,0002022NvidiaTSMC4 nm608.4 mm2125,411,000356
AD103 Ada Lovelace45,900,000,0002022NvidiaTSMC4 nm378.6 mm2121,240,000357
AD104 Ada Lovelace35,800,000,0002022NvidiaTSMC4 nm294.5 mm2121,560,000358
AD106 Ada Lovelace?2023NvidiaTSMC4 nm190 mm2?359360
AD107 Ada Lovelace?2023NvidiaTSMC4 nm146 mm2?361362
Navi 31 RDNA357,700,000,000 (MCM)45,400,000,000 (GCD)6×2,050,000,000 (MCD)2022AMDTSMC5 nm (GCD)6 nm (MCD)531 mm2 (MCM)306 mm2 (GCD)6×37.5 mm2 (MCD)109,200,000 (MCM)132,400,000 (GCD)54,640,000 (MCD)363364365
Navi 32 RDNA328,100,000,000 (MCM)2023AMDTSMC5 nm (GCD)6 nm (MCD)350 mm2 (MCM)200 mm2 (GCD)4×37.5 mm2 (MCD)80,200,000 (MCM)366
Navi 33 RDNA313,300,000,0002023AMDTSMC6 nm204 mm265,200,000367
Aqua Vanjaram CDNA3153,000,000,000 (MCM)2023AMDTSMC5 nm (GCD)6 nm (MCD)??368369
GB200 Grace Blackwell208,000,000,000 (MCM)2024NvidiaTSMC4 nm ??370
GB202 Blackwell (RTX 5090)92,200,000,0002025NvidiaTSMC4 nm 750 mm2122,600,000371
ProcessorTransistor countYearDesigner(s)Fab(s)MOS processAreaTransistordensity(tr./mm2)Ref

FPGA

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing.

FPGATransistor countDate of introductionDesignerManufacturerProcessAreaTransistor density, tr./mm2Ref
Virtex70,000,0001997Xilinx
Virtex-E200,000,0001998Xilinx
Virtex-II350,000,0002000Xilinx130 nm
Virtex-II PRO430,000,0002002Xilinx
Virtex-41,000,000,0002004Xilinx90 nm
Virtex-51,100,000,0002006XilinxTSMC65 nm372
Stratix IV2,500,000,0002008AlteraTSMC40 nm373
Stratix V3,800,000,0002011AlteraTSMC28 nm
Arria 105,300,000,0002014AlteraTSMC20 nm374
Virtex-7 2000T6,800,000,0002011XilinxTSMC28 nm375
Stratix 10 SX 280017,000,000,000TBDIntelIntel14 nm560 mm230,400,000376377
Virtex-Ultrascale VU44020,000,000,000Q1 2015XilinxTSMC20 nm378379
Virtex-Ultrascale+ VU19P35,000,000,0002020XilinxTSMC16 nm900 mm238038,900,000381382383
Versal VC190237,000,000,0002H 2019XilinxTSMC7 nm384385386
Stratix 10 GX 10M43,300,000,000Q4 2019IntelIntel14 nm1,400 mm238730,930,000388389
Versal VP180292,000,000,0002021 ?390XilinxTSMC7 nm391392

Memory

See also: Random-access memory § Timeline, flash memory § Timeline, and read-only memory § Timeline

Semiconductor memory is an electronic data storage device, often used as computer memory, implemented on integrated circuits. Nearly all semiconductor memories since the 1970s have used MOSFETs (MOS transistors), replacing earlier bipolar junction transistors. There are two major types of semiconductor memory: random-access memory (RAM) and non-volatile memory (NVM). In turn, there are two major RAM types: dynamic random-access memory (DRAM) and static random-access memory (SRAM), as well as two major NVM types: flash memory and read-only memory (ROM).

Typical CMOS SRAM consists of six transistors per cell. For DRAM, 1T1C, which means one transistor and one capacitor structure, is common. Capacitor charged or not is used to store 1 or 0. In flash memory, the data is stored in floating gates, and the resistance of the transistor is sensed to interpret the data stored. Depending on how fine scale the resistance could be separated, one transistor could store up to three bits, meaning eight distinctive levels of resistance possible per transistor. However, a finer scale comes with the cost of repeatability issues, and hence reliability. Typically, low grade 2-bits MLC flash is used for flash drives, so a 16 GB flash drive contains roughly 64 billion transistors.

For SRAM chips, six-transistor cells (six transistors per bit) was the standard.393 DRAM chips during the early 1970s had three-transistor cells (three transistors per bit), before single-transistor cells (one transistor per bit) became standard since the era of 4 Kb DRAM in the mid-1970s.394395 In single-level flash memory, each cell contains one floating-gate MOSFET (one transistor per bit),396 whereas multi-level flash contains 2, 3 or 4 bits per transistor.

Flash memory chips are commonly stacked up in layers, up to 128-layer in production,397 and 136-layer managed,398 and available in end-user devices up to 69-layer from manufacturers.

Random-access memory (RAM)
Chip nameCapacity (bits)RAM typeTransistor countDate of introductionManufacturer(s)ProcessAreaTransistordensity(tr./mm2)Ref
1-bitSRAM (cell)61963Fairchild?399
1-bitDRAM (cell)11965Toshiba?400401
?8-bitSRAM (bipolar)481965SDS, Signetics???402
SP9516-bitSRAM (bipolar)801965IBM???403
TMC316216-bitSRAM (TTL)961966Transitron??404
??SRAM (MOS)?1966NEC???405
256-bitDRAM (IC)2561968Fairchild???406
64-bitSRAM (PMOS)3841968Fairchild???407
144-bitSRAM (NMOS)8641968NEC
1101256-bitSRAM (PMOS)1,5361969Intel12,000 nm??408409410
11021 KbDRAM (PMOS)3,0721970Intel, Honeywell???411
11031 KbDRAM (PMOS)3,0721970Intel8,000 nm10 mm2307412413414415
μPD4031 KbDRAM (NMOS)3,0721971NEC???416
?2 KbDRAM (PMOS)6,1441971General Instrument?12.7 mm2484417
21021 KbSRAM (NMOS)6,1441972Intel???418419
?8 KbDRAM (PMOS)8,1921973IBM?18.8 mm2436420
51011 KbSRAM (CMOS)6,1441974Intel???421
211616 KbDRAM (NMOS)16,3841975Intel???422423
21144 KbSRAM (NMOS)24,5761976Intel???424425
?4 KbSRAM (CMOS)24,5761977Toshiba???426
64 KbDRAM (NMOS)65,5361977NTT?35.4 mm21851427
DRAM (VMOS)65,5361979Siemens?25.2 mm22601428
16 KbSRAM (CMOS)98,3041980Hitachi, Toshiba???429
256 KbDRAM (NMOS)262,1441980NEC1,500 nm41.6 mm26302430
NTT1,000 nm34.4 mm27620431
64 KbSRAM (CMOS)393,2161980Matsushita???432
288 KbDRAM294,9121981IBM?25 mm211,800433
64 KbSRAM (NMOS)393,2161982Intel1,500 nm??434
256 KbSRAM (CMOS)1,572,8641984Toshiba1,200 nm??435436
8 MbDRAM8,388,608January 5, 1984Hitachi???437438
16 MbDRAM (CMOS)16,777,2161987NTT700 nm148 mm2113,400439
4 MbSRAM (CMOS)25,165,8241990NEC, Toshiba, Hitachi, Mitsubishi???440
64 MbDRAM (CMOS)67,108,8641991Matsushita, Mitsubishi, Fujitsu, Toshiba400 nm
KM48SL200016 MbSDRAM16,777,2161992Samsung???441442
?16 MbSRAM (CMOS)100,663,2961992Fujitsu, NEC400 nm??443
256 MbDRAM (CMOS)268,435,4561993Hitachi, NEC250 nm
1 GbDRAM1,073,741,824January 9, 1995NEC250 nm??444445
Hitachi160 nm??
SDRAM1,073,741,8241996Mitsubishi150 nm??446
SDRAM (SOI)1,073,741,8241997Hyundai???447
4 GbDRAM (4-bit)1,073,741,8241997NEC150 nm??448
DRAM4,294,967,2961998Hyundai???449
8 GbSDRAM (DDR3)8,589,934,592April 2008Samsung50 nm??450
16 GbSDRAM (DDR3)17,179,869,1842008
32 GbSDRAM (HBM2)34,359,738,3682016Samsung20 nm??451
64 GbSDRAM (HBM2)68,719,476,7362017
128 GbSDRAM (DDR4)137,438,953,4722018Samsung10 nm??452
?RRAM453 (3DSoC)454?2019SkyWater Technology45590 nm??
Flash memory
Chip nameCapacity (bits)Flash typeFGMOS transistor countDate of introductionManufacturer(s)ProcessAreaTransistordensity(tr./mm2)Ref
?256 KbNOR262,1441985Toshiba2,000 nm??456
1 MbNOR1,048,5761989Seeq, Intel?
4 MbNAND4,194,3041989Toshiba1,000 nm
16 MbNOR16,777,2161991Mitsubishi600 nm
DD28F032SA32 MbNOR33,554,4321993Intel?280 mm2120,000457458
?64 MbNOR67,108,8641994NEC400 nm??459
NAND67,108,8641996Hitachi
128 MbNAND134,217,7281996Samsung, Hitachi?
256 MbNAND268,435,4561999Hitachi, Toshiba250 nm
512 MbNAND536,870,9122000Toshiba???460
1 Gb2-bit NAND536,870,9122001Samsung???461
Toshiba, SanDisk160 nm??462
2 GbNAND2,147,483,6482002Samsung, Toshiba???463464
8 GbNAND8,589,934,5922004Samsung60 nm??465
16 GbNAND17,179,869,1842005Samsung50 nm??466
32 GbNAND34,359,738,3682006Samsung40 nm
THGAM128 GbStacked NAND128,000,000,000April 2007Toshiba56 nm252 mm2507,900,000467
THGBM256 GbStacked NAND256,000,000,0002008Toshiba43 nm353 mm2725,200,000468
THGBM21 TbStacked 4-bit NAND256,000,000,0002010Toshiba32 nm374 mm2684,500,000469
KLMCG8GE4A512 GbStacked 2-bit NAND256,000,000,0002011Samsung?192 mm21,333,000,000470
KLUFG8R1EM4 TbStacked 3-bit V-NAND1,365,333,333,5042017Samsung?150 mm29,102,000,000471
eUFS (1 TB)8 TbStacked 4-bit V-NAND2,048,000,000,0002019Samsung?150 mm213,650,000,000472473
?1 Tb232L TLC NAND die333,333,333,3332022Micron?68.5 mm2(memory array)4,870,000,000(14.6 Gbit/mm2)474475476477
?16 Tb232L package5,333,333,333,3332022Micron?68.5 mm2(memory array)77,900,000,000(16×14.6 Gbit/mm2)
Read-only memory (ROM)
Chip nameCapacity (bits)ROM typeTransistor countDate of introductionManufacturer(s)ProcessAreaRef
??PROM?1956Arma?478479
1 KbROM (MOS)1,0241965General Microelectronics??480
33011 KbROM (bipolar)1,0241969Intel?481
17022 KbEPROM (MOS)2,0481971Intel?15 mm2482
?4 KbROM (MOS)4,0961974AMD, General Instrument??483
27088 KbEPROM (MOS)8,1921975Intel??484
?2 KbEEPROM (MOS)2,0481976Toshiba??485
μCOM-43 ROM16 KbPROM (PMOS)16,0001977NEC??486
271616 KbEPROM (TTL)16,3841977Intel?487488
EA8316F16 KbROM (NMOS)16,3841978Electronic Arrays?436 mm2489490
273232 KbEPROM32,7681978Intel??491
236464 KbROM65,5361978Intel??492
276464 KbEPROM65,5361981Intel3,500 nm?493494
27128128 KbEPROM131,0721982Intel?
27256256 KbEPROM (HMOS)262,1441983Intel??495496
?256 KbEPROM (CMOS)262,1441983Fujitsu??497
512 KbEPROM (NMOS)524,2881984AMD1,700 nm?498
27512512 KbEPROM (HMOS)524,2881984Intel??499500
?1 MbEPROM (CMOS)1,048,5761984NEC1,200 nm?501
4 MbEPROM (CMOS)4,194,3041987Toshiba800 nm
16 MbEPROM (CMOS)16,777,2161990NEC600 nm
MROM16,777,2161995AKM, Hitachi??502

Transistor computers

Main article: Transistor computer

Before transistors were invented, relays were used in commercial tabulating machines and experimental early computers. The world's first working programmable, fully automatic digital computer,503 the 1941 Z3 22-bit word length computer, had 2,600 relays, and operated at a clock frequency of about 4–5 Hz. The 1940 Complex Number Computer had fewer than 500 relays,504 but it was not fully programmable. The earliest practical computers used vacuum tubes and solid-state diode logic. ENIAC had 18,000 vacuum tubes, 7,200 crystal diodes, and 1,500 relays, with many of the vacuum tubes containing two triode elements.

The second generation of computers were transistor computers that featured boards filled with discrete transistors, solid-state diodes and magnetic memory cores. The experimental 1953 48-bit Transistor Computer, developed at the University of Manchester, is widely believed to be the first transistor computer to come into operation anywhere in the world (the prototype had 92 point-contact transistors and 550 diodes).505 A later version the 1955 machine had a total of 250 junction transistors and 1,300 point-contact diodes. The Computer also used a small number of tubes in its clock generator, so it was not the first fully transistorized. The ETL Mark III, developed at the Electrotechnical Laboratory in 1956, may have been the first transistor-based electronic computer using the stored program method. It had about "130 point-contact transistors and about 1,800 germanium diodes were used for logic elements, and these were housed on 300 plug-in packages which could be slipped in and out."506 The 1958 decimal architecture IBM 7070 was the first transistor computer to be fully programmable. It had about 30,000 alloy-junction germanium transistors and 22,000 germanium diodes, on approximately 14,000 Standard Modular System (SMS) cards. The 1959 MOBIDIC, short for "MOBIle DIgital Computer", at 12,000 pounds (6.0 short tons) mounted in the trailer of a semi-trailer truck, was a transistorized computer for battlefield data.

The third generation of computers used integrated circuits (ICs).507 The 1962 15-bit Apollo Guidance Computer used "about 4,000 "Type-G" (3-input NOR gate) circuits" for about 12,000 transistors plus 32,000 resistors.508 The IBM System/360, introduced 1964, used discrete transistors in hybrid circuit packs.509 The 1965 12-bit PDP-8 CPU had 1409 discrete transistors and over 10,000 diodes, on many cards. Later versions, starting with the 1968 PDP-8/I, used integrated circuits. The PDP-8 was later reimplemented as a microprocessor as the Intersil 6100, see below.510

The next generation of computers were the microcomputers, starting with the 1971 Intel 4004, which used MOS transistors. These were used in home computers or personal computers (PCs).

This list includes early transistorized computers (second generation) and IC-based computers (third generation) from the 1950s and 1960s.

ComputerTransistor countYearManufacturerNotesRef
Transistor Computer921953University of ManchesterPoint-contact transistors, 550 diodes. Lacked stored program capability.511
TRADIC7001954Bell LabsPoint-contact transistors512
Transistor Computer (full size)2501955University of ManchesterDiscrete point-contact transistors, 1,300 diodes513
IBM 6083,0001955IBMGermanium transistors514
ETL Mark III1301956Electrotechnical LaboratoryPoint-contact transistors, 1,800 diodes, stored program capability515516
Metrovick 9502001956Metropolitan-VickersDiscrete junction transistors
NEC NEAC-22016001958NECGermanium transistors517
Hitachi MARS-11,0001958Hitachi518
IBM 707030,0001958IBMAlloy-junction germanium transistors, 22,000 diodes519
Matsushita MADIC-I4001959MatsushitaBipolar transistors520
NEC NEAC-22032,5791959NEC521
Toshiba TOSBAC-21005,0001959Toshiba522
IBM 709050,0001959IBMDiscrete germanium transistors523
PDP-12,7001959Digital Equipment CorporationDiscrete transistors
Olivetti Elea 9003?1959Olivetti300,000 (?) discrete transistors and diodes524
Mitsubishi MELCOM 11013,5001960MitsubishiGermanium transistors525
M18 FADAC1,6001960AutoneticsDiscrete transistors
CPU of IBM 7030 Stretch169,1001961IBMWorld's fastest computer from 1961 to 1964526
D-17B1,5211962AutoneticsDiscrete transistors
NEC NEAC-L216,0001964NECGe transistors527
CDC 6600 (entire computer)400,0001964Control Data CorporationWorld's fastest computer from 1964 to 1969528
IBM System/360?1964IBMHybrid circuits
PDP-8 "Straight-8"1,4095291965Digital Equipment Corporationdiscrete transistors, 10,000 diodes
PDP-8/S1,0015305315321966Digital Equipment Corporationdiscrete transistors, diodes
PDP-8/I1,4091968533Digital Equipment Corporation74 series TTL circuits534
Apollo Guidance Computer Block I12,3001966Raytheon / MIT Instrumentation Laboratory4,100 ICs, each containing a 3-transistor, 3-input NOR gate. (Block II had 2,800 dual 3-input NOR gates ICs.)

Logic functions

Transistor count for generic logic functions is based on static CMOS implementation.535

FunctionTransistor countRef
NOT2
Buffer4
NAND 2-input4
NOR 2-input4
AND 2-input6
OR 2-input6
NAND 3-input6
NOR 3-input6
XOR 2-input6
XNOR 2-input8
MUX 2-input with TG6
MUX 4-input with TG18
NOT MUX 2-input8
MUX 4-input24
1-bit full adder24
1-bit adder–subtractor48
AND-OR-INVERT6536
Latch, D gated8
Flip-flop, edge triggered dynamic D with reset12
8-bit multiplier3,000
16-bit multiplier9,000
32-bit multiplier21,000
small-scale integration2–100537
medium-scale integration100–500538
large-scale integration500–20,000539
very-large-scale integration20,000–1,000,000540
ultra-large scale integration>1,000,000

Parallel systems

Historically, each processing element in earlier parallel systems—like all CPUs of that time—was a serial computer built out of multiple chips. As transistor counts per chip increases, each processing element could be built out of fewer chips, and then later each multi-core processor chip could contain more processing elements.541

Goodyear MPP: (1983?) 8 pixel processors per chip, 3,000 to 8,000 transistors per chip.542

Brunel University Scape (single-chip array-processing element): (1983) 256 pixel processors per chip, 120,000 to 140,000 transistors per chip.543

Cell Broadband Engine: (2006) with 9 cores per chip, had 234 million transistors per chip.544

Other devices

Device typeDevice nameTransistor countDate of introductionDesigner(s)Manufacturer(s)MOS processAreaTransistor density, tr./mm2Ref
Deep learning engine / IPU545Colossus GC223,600,000,0002018GraphcoreTSMC16 nm~800 mm229,500,000546547548[better source needed]
Deep learning engine / IPUWafer Scale Engine1,200,000,000,0002019CerebrasTSMC16 nm46,225 mm225,960,000549550551552
Deep learning engine / IPUWafer Scale Engine 22,600,000,000,0002020CerebrasTSMC7 nm46,225 mm256,250,000553554555
Network switchNVLink4 NVSwitch25,100,000,0002022NvidiaTSMCN4 (4 nm)294 mm285,370,000556

Transistor density

The transistor density is the number of transistors that are fabricated per unit area, typically measured in terms of the number of transistors per square millimeter (mm2). The transistor density usually correlates with the gate length of a semiconductor node (also known as a semiconductor manufacturing process), typically measured in nanometers (nm). As of 2019, the semiconductor node with the highest transistor density is TSMC's 5 nanometer node, with 171.3 million transistors per square millimeter (note this corresponds to a transistor-transistor spacing of 76.4 nm, far greater than the relative meaningless "5nm")557

MOSFET nodes

Further information: List of semiconductor scale examples

Semiconductor nodes
Node nameTransistor density (transistors/mm2)Production yearProcessMOSFETManufacturer(s)Ref
??196020,000 nmPMOSBell Labs558559
??196020,000 nmNMOS
??1963?CMOSFairchild560
??1964?PMOSGeneral Microelectronics561
??196820,000 nmCMOSRCA562
??196912,000 nmPMOSIntel563564
??197010,000 nmCMOSRCA565
?30019708,000 nmPMOSIntel566567
??197110,000 nmPMOSIntel568
?4801971?PMOSGeneral Instrument569
??1973?NMOSTexas Instruments570
?2201973?NMOSMostek571
??19737,500 nmNMOSNEC572573
??19736,000 nmPMOSToshiba574575
??19765,000 nmNMOSHitachi, Intel576
??19765,000 nmCMOSRCA
??19764,000 nmNMOSZilog
??19763,000 nmNMOSIntel577
?1,8501977?NMOSNTT578
??19783,000 nmCMOSHitachi579
??19782,500 nmNMOSTexas Instruments580
??19782,000 nmNMOSNEC, NTT
?2,6001979?VMOSSiemens
?7,28019791,000 nmNMOSNTT
?7,62019801,000 nmNMOSNTT
??19832,000 nmCMOSToshiba581
??19831,500 nmCMOSIntel582
??19831,200 nmCMOSIntel
??1984800 nmCMOSNTT
??1987700 nmCMOSFujitsu
??1989600 nmCMOSMitsubishi, NEC, Toshiba583
??1989500 nmCMOSHitachi, Mitsubishi, NEC, Toshiba
??1991400 nmCMOSMatsushita, Mitsubishi, Fujitsu, Toshiba
??1993350 nmCMOSSony
??1993250 nmCMOSHitachi, NEC
3LM32,0001994350 nmCMOSNEC584
??1995160 nmCMOSHitachi585
??1996150 nmCMOSMitsubishi
TSMC 180 nm?1998180 nmCMOSTSMC586
CS80?1999180 nmCMOSFujitsu587
??1999180 nmCMOSIntel, Sony, Toshiba588589
CS85?1999170 nmCMOSFujitsu590
Samsung 140 nm?1999140 nmCMOSSamsung591
??2001130 nmCMOSFujitsu, Intel592593
Samsung 100 nm?2001100 nmCMOSSamsung594
??200290 nmCMOSSony, Toshiba, Samsung595596
CS100?200390 nmCMOSFujitsu597
Intel 90 nm1,450,000200490 nmCMOSIntel598599
Samsung 80 nm?200480 nmCMOSSamsung600
??200465 nmCMOSFujitsu, Toshiba601
Samsung 60 nm?200460 nmCMOSSamsung602
TSMC 45 nm?200445 nmCMOSTSMC
Elpida 90 nm?200590 nmCMOSElpida Memory603
CS200?200565 nmCMOSFujitsu604605
Samsung 50 nm?200550 nmCMOSSamsung606
Intel 65 nm2,080,000200665 nmCMOSIntel607
Samsung 40 nm?200640 nmCMOSSamsung608
Toshiba 56 nm?200756 nmCMOSToshiba609
Matsushita 45 nm?200745 nmCMOSMatsushita610
Intel 45 nm3,300,000200845 nmCMOSIntel611
Toshiba 43 nm?200843 nmCMOSToshiba612
TSMC 40 nm?200840 nmCMOSTSMC613
Toshiba 32 nm?200932 nmCMOSToshiba614
Intel 32 nm7,500,000201032 nmCMOSIntel615
??201020 nmCMOSHynix, Samsung616617
Intel 22 nm15,300,000201222 nmCMOSIntel618
IMFT 20 nm?201220 nmCMOSIMFT619
Toshiba 19 nm?201219 nmCMOSToshiba
Hynix 16 nm?201316 nmFinFETSK Hynix620
TSMC 16 nm28,880,000201316 nmFinFETTSMC621622
Samsung 10 nm51,820,000201310 nmFinFETSamsung623624
Intel 14 nm37,500,000201414 nmFinFETIntel625
14LP32,940,000201514 nmFinFETSamsung626
TSMC 10 nm52,510,000201610 nmFinFETTSMC627628
12LP36,710,000201712 nmFinFETGlobalFoundries, Samsung629
N7FF96,500,000

101,850,000630

20177 nmFinFETTSMC631632633
8LPP61,180,00020188 nmFinFETSamsung634
7LPE95,300,00020187 nmFinFETSamsung635
Intel 10 nm100,760,000

106,100,000636

201810 nmFinFETIntel637
5LPE126,530,000

133,560,000638 134,900,000639

20185 nmFinFETSamsung640641
N7FF+113,900,00020197 nmFinFETTSMC642643
CLN5FF171,300,000

185,460,000644

20195 nmFinFETTSMC645
Intel 7100,760,000

106,100,000646

20217 nmFinFETIntel
4LPE145,700,00064720214 nmFinFETSamsung648649650
N4196,600,00065165220214 nmFinFETTSMC653
N4P196,600,00065465520224 nmFinFETTSMC656
3GAE202,850,00065720223 nmMBCFETSamsung658659660
N3314,730,00066120223 nmFinFETTSMC662663
N4X?20234 nmFinFETTSMC664665666
N3E?20233 nmFinFETTSMC667668
3GAP?20233 nmMBCFETSamsung669
Intel 4160,000,00067020234 nmFinFETIntel671672673
Intel 3?20233 nmFinFETIntel674675
Intel 20A?20242 nmRibbonFETIntel676677
Intel 18A?2025sub-2 nmRibbonFETIntel678
2GAP?20252 nmMBCFETSamsung679
N2?20252 nmGAAFETTSMC680681
Samsung 1.4 nm?20271.4 nm?Samsung682

Gate count

In certain applications, the term gate count is preferred over the term transistor count. It refers to the number of logic gates built with transistors and other electronic devices needed to implement a design.683684685686

See also

Notes

References

  1. Hruska, Joel (August 2019). "Cerebras Systems Unveils 1.2 Trillion Transistor Wafer-Scale Processor for AI". extremetech.com. Retrieved September 6, 2019. https://www.extremetech.com/extreme/296906-cerebras-systems-unveils-1-2-trillion-transistor-wafer-scale-processor-for-ai

  2. Feldman, Michael (August 2019). "Machine Learning chip breaks new ground with waferscale integration". nextplatform.com. Retrieved September 6, 2019. https://www.nextplatform.com/2019/08/21/machine-learning-chip-breaks-new-ground-with-waferscale-integration/

  3. Cutress, Ian (August 2019). "Hot Chips 31 Live Blogs: Cerebras' 1.2 Trillion Transistor Deep Learning Processor". anandtech.com. Retrieved September 6, 2019. https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

  4. "A Look at Cerebras Wafer-Scale Engine: Half Square Foot Silicon Chip". WikiChip Fuse. November 16, 2019. Retrieved December 2, 2019. https://fuse.wikichip.org/news/3010/a-look-at-cerebras-wafer-scale-engine-half-square-foot-silicon-chip/

  5. Everett, Joseph (August 26, 2020). "World's largest CPU has 850,000 7 nm cores that are optimized for AI and 2.6 trillion transistors". TechReportArticles. https://www.techreportarticles.com/news/artificial-intelligence/worlds-largest-cpu-chip-has-850000-7nm-cores-optimized-for-ai-most-powerful-processor/

  6. Cite error: The named reference m3ultra was invoked but never defined (see the help page). /wiki/Help:Cite_errors/Cite_error_references_no_text

  7. "John Gustafson's answer to How many individual transistors are in the world's most powerful supercomputer?". Quora. Retrieved August 22, 2019. https://www.quora.com/How-many-individual-transistors-are-in-the-worlds-most-powerful-supercomputer/answer/John-Gustafson-1

  8. Pires, Francisco (October 5, 2022). "Water-Based Chips Could be Breakthrough for Neural Networking, AI: Wetware has gained an entirely new meaning". Tom's Hardware. Retrieved October 5, 2022.Diefendorff, Keith (15 November 1999). "Hal Makes Sparcs Fly". Microprocessor Report, Volume 13, Number 5. https://www.tomshardware.com/news/water-based-chips-could-be-breakthrough-for-neural-networking-ai

  9. Laws, David (April 2, 2018). "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. https://computerhistory.org/blog/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/

  10. Handy, Jim (May 26, 2014). "How Many Transistors Have Ever Shipped?". Forbes. https://www.forbes.com/sites/jimhandy/2014/05/26/how-many-transistors-have-ever-shipped/

  11. "1971: Microprocessor Integrates CPU Function onto a Single Chip". The Silicon Engine. Computer History Museum. Retrieved September 4, 2019. https://www.computerhistory.org/siliconengine/microprocessor-integrates-cpu-function-onto-a-single-chip/

  12. Holt, Ray. "World's First Microprocessor". Retrieved March 5, 2016. 1st fully integrated chip set microprocessor https://www.firstmicroprocessor.com/

  13. "Alpha 21364 - Microarchitectures - Compaq - WikiChip". en.wikichip.org. Retrieved September 8, 2019. https://en.wikichip.org/wiki/compaq/microarchitectures/alpha_21364

  14. Holt, Ray M. (1998). The F14A Central Air Data Computer and the LSI Technology State-of-the-Art in 1968. p. 8.

  15. Holt, Ray M. (2013). "F14 TomCat MOS-LSI Chip Set". First Microprocessor. Archived from the original on November 6, 2020. Retrieved November 6, 2020. https://firstmicroprocessor.com/wp-content/uploads/2020/02/2013powerpoint.ppt

  16. Holt, Ray. "World's First Microprocessor". Retrieved March 5, 2016. 1st fully integrated chip set microprocessor https://www.firstmicroprocessor.com/

  17. Declassified 1998 /wiki/Declassification

  18. Ken Shirriff. "The Texas Instruments TMX 1795: the (almost) first, forgotten microprocessor". 2015. https://www.righto.com/2015/05/the-texas-instruments-tmx-1795-first.html

  19. Ryoichi Mori; Hiroaki Tajima; Morihiko Tajima; Yoshikuni Okada (October 1977). "Microprocessors in Japan". Euromicro Newsletter. 3 (4): 50–7. doi:10.1016/0303-1268(77)90111-0. /wiki/Doi_(identifier)

  20. "NEC 751 (uCOM-4)". The Antique Chip Collector's Page. Archived from the original on May 25, 2011. Retrieved June 11, 2010. https://web.archive.org/web/20110525202756/http://www.antiquetech.com/chips/NEC751.htm

  21. "1970s: Development and evolution of microprocessors" (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019. https://web.archive.org/web/20190627161417/http://www.shmj.or.jp/english/pdf/ic/exhibi748E.pdf

  22. "1973: 12-bit engine-control microprocessor (Toshiba)" (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019. https://web.archive.org/web/20190627203018/http://www.shmj.or.jp/english/pdf/ic/exhibi739E.pdf

  23. The TMS1000 is a microcontroller, the transistor count includes memory and input/output controllers, not just the CPU. /wiki/Input/output

  24. "Low Bandwidth Timeline – Semiconductor". Texas Instruments. Retrieved June 22, 2016. http://www.ti.com/corp/docs/company/history/lowbandwidthtimelinesemiconductor.shtml?keyMatch=TMS-1000&tisearch=Search-EN-Everything

  25. 3,510 without depletion mode pull-up transistors

  26. "The MOS 6502 and the Best Layout Guy in the World". research.swtch.com. January 3, 2011. Retrieved September 3, 2019. https://research.swtch.com/6502

  27. 6,813 without depletion mode pull-up transistors

  28. Shirriff, Ken (January 2023). "Counting the transistors in the 8086 processor: it's harder than you might think". https://www.righto.com/2023/01/counting-transistors-in-8086-processor.html

  29. "Digital History: ZILOG Z8000 (APRIL 1979)". OLD-COMPUTERS.COM : The Museum. Retrieved June 19, 2019. http://www.old-computers.com/history/detail.asp?n=52

  30. "Chip Hall of Fame: Motorola MC68000 Microprocessor". IEEE Spectrum. Institute of Electrical and Electronics Engineers. June 30, 2017. Retrieved June 19, 2019. https://spectrum.ieee.org/chip-hall-of-fame-motorola-mc68000-microprocessor

  31. Microprocessors: 1971 to 1976 Archived December 3, 2013, at the Wayback Machine Christiansen http://icarus.cs.weber.edu/home/dferro/ada/Christiansen_Report_Finished/Finishedmicroprocessors.doc

  32. "Microprocessors 1976 to 1981". weber.edu. Archived from the original on December 3, 2013. Retrieved August 9, 2014. https://web.archive.org/web/20131203015458/http://icarus.cs.weber.edu/home/dferro/ada/Christiansen_Report_Finished/Finishedmicroprocessors.doc

  33. "W65C816S 16-bit Core". www.westerndesigncenter.com. Retrieved September 12, 2017. http://www.westerndesigncenter.com/wdc/w65c816s-core.cfm

  34. Demone, Paul (November 9, 2000). "ARM's Race to World Domination". real world technologies. Retrieved July 20, 2015. http://www.realworldtech.com/arms-race/

  35. Demone, Paul (November 9, 2000). "ARM's Race to World Domination". real world technologies. Retrieved July 20, 2015. http://www.realworldtech.com/arms-race/

  36. Hand, Tom. "The Harris RTX 2000 Microcontroller" (PDF). mpeforth.com. Retrieved August 9, 2014. http://soton.mpeforth.com/flag/jfar/vol6/no1/article1.pdf

  37. "Forth chips list". UltraTechnology. March 15, 2001. Retrieved August 9, 2014. http://www.ultratechnology.com/chips.htm

  38. Koopman, Philip J. (1989). "4.4 Architecture of the Novix NC4016". Stack Computers: the new wave. Ellis Horwood Series in Computers and Their Applications. Carnegie Mellon University. ISBN 978-0745804187. Retrieved August 9, 2014. 978-0745804187

  39. "Fujitsu SPARC". cpu-collection.de. Retrieved June 30, 2019. http://www.cpu-collection.de/?tn=0&l0=cl&l1=SPARC&l2=Fujitsu

  40. Kimura S, Komoto Y, Yano Y (1988). "Implementation of the V60/V70 and its FRM function". IEEE Micro. 8 (2): 22–36. doi:10.1109/40.527. S2CID 9507994. /wiki/Doi_(identifier)

  41. "VL2333 - VTI - WikiChip". en.wikichip.org. Retrieved August 31, 2019. https://en.wikichip.org/wiki/vti/vl86cx/vl2333

  42. Demone, Paul (November 9, 2000). "ARM's Race to World Domination". real world technologies. Retrieved July 20, 2015. http://www.realworldtech.com/arms-race/

  43. Kimura S, Komoto Y, Yano Y (1988). "Implementation of the V60/V70 and its FRM function". IEEE Micro. 8 (2): 22–36. doi:10.1109/40.527. S2CID 9507994. /wiki/Doi_(identifier)

  44. Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K (1988). "Realization of Gmicro/200". IEEE Micro. 8 (2): 12–21. doi:10.1109/40.526. S2CID 36938046. /wiki/Doi_(identifier)

  45. Bosshart, P.; Hewes, C.; Mi-Chang Chang; Kwok-Kit Chau; Hoac, C.; Houston, T.; Kalyan, V.; Lusky, S.; Mahant-Shetti, S.; Matzke, D.; Ruparel, K.; Ching-Hao Shaw; Sridhar, T.; Stark, D. (October 1987). "A 553K-Transistor LISP Processor Chip". IEEE Journal of Solid-State Circuits. 22 (5): 202–3. doi:10.1109/ISSCC.1987.1157084. S2CID 195841103. /wiki/Doi_(identifier)

  46. Fahlén, Lennart E.; Stockholm International Peace Research Institute (1987). "3. Hardware requirements for artificial intelligence § Lisp Machines: TI Explorer". Arms and Artificial Intelligence: Weapon and Arms Control Applications of Advanced Computing. SIPRI Monograph Series. Oxford University Press. p. 57. ISBN 978-0-19-829122-0. 978-0-19-829122-0

  47. Jouppi, Norman P.; Tang, Jeffrey Y. F. (July 1989). "A 20-MIPS Sustained 32-bit CMOS Microprocessor with High Ratio of Sustained to Peak Performance". IEEE Journal of Solid-State Circuits. 24 (5): i. Bibcode:1989IJSSC..24.1348J. CiteSeerX 10.1.1.85.988. doi:10.1109/JSSC.1989.572612. WRL Research Report 89/11. /wiki/Norman_Jouppi

  48. "The CPU shack museum". CPUshack.com. May 15, 2005. Retrieved August 9, 2014. http://www.cpushack.com/chippics/Intel/80960/IntelA80960CA-25-2.html

  49. "Intel i960 Embedded Microprocessor". National High Magnetic Field Laboratory. Florida State University. March 3, 2003. Archived from the original on March 3, 2003. Retrieved June 29, 2019. https://web.archive.org/web/20030303223737/http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/chips/intel960b.html

  50. "Intel i960 Embedded Microprocessor". National High Magnetic Field Laboratory. Florida State University. March 3, 2003. Archived from the original on March 3, 2003. Retrieved June 29, 2019. https://web.archive.org/web/20030303223737/http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/chips/intel960b.html

  51. Venkatasawmy, Rama (2013). The Digitization of Cinematic Visual Effects: Hollywood's Coming of Age. Rowman & Littlefield. p. 198. ISBN 9780739176214. 9780739176214

  52. Bakoglu, Grohoski, and Montoye. "The IBM RISC System/6000 processor: Hardware overview." IBM J. Research and Development. Vol. 34 No. 1, January 1990, pp. 12-22.

  53. "SH Microprocessor Leading the Nomadic Era" (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019. https://web.archive.org/web/20190627070645/http://www.shmj.or.jp/makimoto/en/pdf/makimoto_E_02_10.pdf

  54. "SH2: A Low Power RISC Micro for Consumer Applications" (PDF). Hitachi. Archived from the original (PDF) on May 10, 2019. Retrieved June 27, 2019. https://web.archive.org/web/20190510040218/http://www.hotchips.org/wp-content/uploads/hc_archives/hc06/2_Mon/HC6.S4/HC6.4.2.pdf

  55. "Intel i960 Embedded Microprocessor". National High Magnetic Field Laboratory. Florida State University. March 3, 2003. Archived from the original on March 3, 2003. Retrieved June 29, 2019. https://web.archive.org/web/20030303223737/http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/chips/intel960b.html

  56. "HARP-1: A 120 MHz Superscalar PA-RISC Processor" (PDF). Hitachi. Archived from the original (PDF) on April 23, 2016. Retrieved June 19, 2019. https://web.archive.org/web/20160423084425/http://www.hotchips.org/wp-content/uploads/hc_archives/hc05/3_Tue/HC05.S8/HC05.8.1-Matsubara-Hitachi-HARP-1.pdf

  57. White and Dhawan. "POWER2: next generation of the RISC System/6000 family" IBM J. Research and Development. Vol. 38 No. 5, September 1994, pp. 493-502.

  58. "ARM7 Statistics". Poppyfields.net. May 27, 1994. Retrieved August 9, 2014. http://www.poppyfields.net/acorn/docs/armdocs/arm7stat.shtml

  59. "Forth Multiprocessor Chip MuP21". www.ultratechnology.com. Retrieved September 6, 2019. MuP21 has a 21-bit CPU core, a memory coprocessor, and a video coprocessor http://www.ultratechnology.com/p21.html

  60. "F21 CPU". www.ultratechnology.com. Retrieved September 6, 2019. F21 offers video I/O, analog I/O, serial network I/O, and a parallel I/O port on chip. F21 has a transistor count of about 15,000 vs about 7,000 for MuP21. http://www.ultratechnology.com/f21cpu.html

  61. "Ars Technica: PowerPC on Apple: An Architectural History, Part I - Page 2 - (8/2004)". archive.arstechnica.com. Retrieved August 11, 2020. https://archive.arstechnica.com/cpu/004/ppc-1/m-ppc-1-2.html

  62. Gary et al. (1994). "The PowerPC 603 microprocessor: a low-power design for portable applications." Proceedings of COMPCON 94. DOI: 10.1109/CMPCON.1994.282894

  63. Slaton et al. (1995). "The PowerPC 603e microprocessor: an enhanced, low-power, superscalar microprocessor." Proceedings of ICCD '95 International Conference on Computer Design. DOI: 10.1109/ICCD.1995.528810

  64. Bowhill, William J. et al. (1995). "Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU". Digital Technical Journal, Volume 7, Number 1, pp. 100–118.

  65. Demone, Paul (November 9, 2000). "ARM's Race to World Domination". real world technologies. Retrieved July 20, 2015. http://www.realworldtech.com/arms-race/

  66. "Intel Pentium Pro 180". hw-museum.cz. February 20, 2015. Retrieved September 8, 2019. http://hw-museum.cz/cpu/7/intel-pentium-pro-180

  67. "PC Guide Intel Pentium Pro ("P6")". PCGuide.com. April 17, 2001. Archived from the original on April 14, 2001. Retrieved August 9, 2014. https://web.archive.org/web/20010414032941/http://www.pcguide.com/ref/cpu/fam/g6PPro-c.html

  68. Gaddis, N.; Lotz, J. (November 1996). "A 64-b quad-issue CMOS RISC microprocessor". IEEE Journal of Solid-State Circuits 31 (11): pp. 1697–1702.

  69. Bouchard, Gregg. "Design objectives of the 0.35 μm Alpha 21164 Microprocessor". IEEE Hot Chips Symposium, August 1996, IEEE Computer Society. https://web.archive.org/web/20110723210647/http://www.hotchips.org/archives/hc8/2_Mon/HC8.S1/HC8.1.2.pdf

  70. "F21 CPU". www.ultratechnology.com. Retrieved September 6, 2019. F21 offers video I/O, analog I/O, serial network I/O, and a parallel I/O port on chip. F21 has a transistor count of about 15,000 vs about 7,000 for MuP21. http://www.ultratechnology.com/f21cpu.html

  71. Ulf Samuelsson. "Transistor count of common uCs?". www.embeddedrelated.com. Retrieved September 8, 2019. IIRC, The AVR core is 12,000 gates, and the megaAVR core is 20,000 gates. Each gate is 4 transistors. The chip is considerably larger since the memory uses quite a lot. https://www.embeddedrelated.com/showthread/comp.arch.embedded/14362-1.php

  72. Gronowski, Paul E. et al. (May 1998). "High-performance microprocessor design". IEEE Journal of Solid-State Circuits 33 (5): pp. 676–686.

  73. Nakagawa, Norio; Arakawa, Fumio (April 1999). "Entertainment Systems and High-Performance Processor SH-4" (PDF). Hitachi Review. 48 (2): 58–63. Retrieved March 18, 2023. https://www.hitachi.com/rev/1999/revapr99/r2_103.pdf

  74. Nishii, O.; Arakawa, F.; Ishibashi, K.; Nakano, S.; Shimura, T.; Suzuki, K.; Tachibana, M.; Totsuka, Y.; Tsunoda, T.; Uchiyama, K.; Yamada, T.; Hattori, T.; Maejima, H.; Nakagawa, N.; Narita, S.; Seki, M.; Shimazaki, Y.; Satomura, R.; Takasuga, T.; Hasegawa, A. (1998). "A 200 MHZ 1.2 W 1.4 GFLOPS microprocessor with graphic operation unit". 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No. 98CH36156). IEEE. pp. 18.1-1 - 18.1-11. doi:10.1109/ISSCC.1998.672469. ISBN 0-7803-4344-1. S2CID 45392734. Retrieved March 17, 2023. 0-7803-4344-1

  75. Demone, Paul (November 9, 2000). "ARM's Race to World Domination". real world technologies. Retrieved July 20, 2015. http://www.realworldtech.com/arms-race/

  76. Diefendorff, Keith (April 19, 1999). "Sony's Emotionally Charged Chip: Killer Floating-Point "Emotion Engine" To Power PlayStation 2000" (PDF). Microprocessor Report. 13 (5). S2CID 29649747. Archived from the original (PDF) on February 28, 2019. Retrieved June 19, 2019. https://web.archive.org/web/20190228125309/http://pdfs.semanticscholar.org/9248/eea6c98e5a7fc45606d9d562a0e74707ce43.pdf

  77. Hennessy, John L.; Patterson, David A. (May 29, 2002). Computer Architecture: A Quantitative Approach (3 ed.). Morgan Kaufmann. p. 491. ISBN 978-0-08-050252-6. Retrieved April 9, 2013. 978-0-08-050252-6

  78. Diefendorff, Keith (April 19, 1999). "Sony's Emotionally Charged Chip: Killer Floating-Point "Emotion Engine" To Power PlayStation 2000" (PDF). Microprocessor Report. 13 (5). S2CID 29649747. Archived from the original (PDF) on February 28, 2019. Retrieved June 19, 2019. https://web.archive.org/web/20190228125309/http://pdfs.semanticscholar.org/9248/eea6c98e5a7fc45606d9d562a0e74707ce43.pdf

  79. "NVIDIA GeForce 7800 GTX GPU Review". PC Perspective. June 22, 2005. Retrieved June 18, 2019. https://pcper.com/2005/06/nvidia-geforce-7800-gtx-gpu-review/

  80. Ando, H.; Yoshida, Y.; Inoue, A.; Sugiyama, I.; Asakawa, T.; Morita, K.; Muta, T.; Otokurumada, T.; Okada, S.; Yamashita, H.; Satsukawa, Y.; Konmoto, A.; Yamashita, R.; Sugiyama, H. (2003). "A 1.3GHz fifth generation SPARC64 microprocessor". Proceedings of the 40th Annual Design Automation Conference. Design Automation Conference. pp. 702–705. doi:10.1145/775832.776010. ISBN 1-58113-688-9. 1-58113-688-9

  81. Krewell, Kevin (21 October 2002). "Fujitsu's SPARC64 V Is Real Deal". Microprocessor Report. http://www.eecg.toronto.edu/~moshovos/ACA07/lecturenotes/ultrasparc5%2520(mpr).pdf

  82. "Alpha 21364 - Microarchitectures - Compaq - WikiChip". en.wikichip.org. Retrieved September 8, 2019. https://en.wikichip.org/wiki/compaq/microarchitectures/alpha_21364

  83. "Intel Pentium M Processor 1.60 GHZ, 1M Cache, 400 MHZ FSB Product Specifications". https://ark.intel.com/content/www/us/en/ark/products/27577/intel-pentium-m-processor-1-60-ghz-1m-cache-400-mhz-fsb.html

  84. "EE+GS". PS2 Dev Wiki. https://playstationdev.wiki/ps2devwiki/EE%2BGS

  85. "Sony MARKETING (JAPAN) ANNOUNCES LAUNCH OF "PSX" DESR-5000 and DESR-7000 TOWARDS THE END OF 2003" (Press release). Sony. November 27, 2003. https://www.sony.com/en/SonyInfo/News/Press_Archive/200310/03-1007E/

  86. "EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP" (PDF). Sony. April 21, 2003. Retrieved March 19, 2023. https://www.sie.com/content/dam/corporate/en/corporate/release/pdf/030421be.pdf

  87. "Sony PSX's 90nm CPU is 'not 90nm'". The Register. January 30, 2004. https://www.theregister.com/2004/01/30/sony_psxs_90nm_cpu/

  88. "Semi Insights stands by 'not 90-nm' description of PSX chip". EE Times. February 5, 2004. https://www.eetimes.com/semi-insights-stands-by-not-90-nm-description-of-psx-chip/

  89. "Intel Pentium M Processor 760 (2M Cache, 2.00A GHZ, 533 MHZ FSB) Product Specifications". https://ark.intel.com/content/www/us/en/ark/products/27595/intel-pentium-m-processor-760-2m-cache-2-00a-ghz-533-mhz-fsb.html

  90. Fujitsu Limited (August 2004). SPARC64 V Processor For UNIX Server. /wiki/Fujitsu_Limited

  91. "A Glimpse Inside The Cell Processor". Gamasutra. July 13, 2006. Retrieved June 19, 2019. https://www.gamedeveloper.com/programming/a-glimpse-inside-the-cell-processor

  92. "Intel Pentium D Processor 920". Intel. Retrieved January 5, 2023. https://ark.intel.com/content/www/us/en/ark/products/42114/intel-pentium-d-processor-920-4m-cache-2-8-ghz-800-mhz-fsb.html

  93. "PRESS KIT — Dual-core Intel Itanium Processor". Intel. Retrieved August 9, 2014. http://www.intel.com/pressroom/kits/itanium2/

  94. Toepelt, Bert (January 8, 2009). "AMD Phenom II X4: 45nm Benchmarked — The Phenom II And AMD's Dragon Platform". TomsHardware.com. Retrieved August 9, 2014. http://www.tomshardware.com/reviews/phenom-ii-940,2114.html

  95. "ARM (Advanced RISC Machines) Processors". EngineersGarage.com. Retrieved August 9, 2014. http://www.engineersgarage.com/articles/arm-advanced-risc-machines-processors

  96. "Panasonic starts to sell a New-generation UniPhier System LSI". Panasonic. October 10, 2007. Retrieved July 2, 2019. http://panasonic.co.jp/corp/news/official.data/data.dir/en071010-3/en071010-3.html

  97. "SPARC64 VI Extensions" page 56, Fujitsu Limited, Release 1.3, 27 March 2007 http://www.fujitsu.com/downloads/SPARCE/others/sparc64vi-extensions.pdf

  98. Toepelt, Bert (January 8, 2009). "AMD Phenom II X4: 45nm Benchmarked — The Phenom II And AMD's Dragon Platform". TomsHardware.com. Retrieved August 9, 2014. http://www.tomshardware.com/reviews/phenom-ii-940,2114.html

  99. Morgan, Timothy Prickett (17 July 2008). "Fujitsu and Sun Flex Their Quads with New Sparc Server Lineup". The Unix Guardian, Vol. 8, No. 27. https://web.archive.org/web/20081120140153/http://www.itjungle.com/tug/tug071708-story01.html

  100. Takumi Maruyama (2009). SPARC64 VIIIfx: Fujitsu's New Generation Octo Core Processor for PETA Scale computing (PDF). Proceedings of Hot Chips 21. IEEE Computer Society. Archived from the original (PDF) on October 8, 2010. Retrieved June 30, 2019. https://web.archive.org/web/20101008183810/http://www.hotchips.org/archives/hc21/3_tues/HC21.25.500.ComputingAccelerators-Epub/HC21.25.51A.Maruyama-Fujitsu-Octo-Core-VIIIfx.pdf

  101. "Intel Atom N450 specifications". Intel. Retrieved June 8, 2023. https://ark.intel.com/content/www/us/en/ark/products/42503/intel-atom-processor-n450-512k-cache-1-66-ghz.html

  102. "Intel Atom D510 specifications". Intel. Retrieved June 8, 2023. https://ark.intel.com/content/www/us/en/ark/products/43098/intel-atom-processor-d510-1m-cache-1-66-ghz.html

  103. Stokes, Jon (February 10, 2010). "Sun's 1 billion-transistor, 16-core Niagara 3 processor". ArsTechnica.com. Retrieved August 9, 2014. https://arstechnica.com/business/news/2010/02/two-billion-transistor-beasts-power7-and-niagara-3.ars

  104. "IBM to Ship World's Fastest Microprocessor". IBM. September 1, 2010. Archived from the original on September 5, 2010. Retrieved August 9, 2014. https://web.archive.org/web/20100905053649/http://www-03.ibm.com/press/us/en/pressrelease/32414.wss#release

  105. "Intel to deliver first computer chip with two billion transistors". AFP. February 5, 2008. Archived from the original on May 20, 2011. Retrieved February 5, 2008. https://web.archive.org/web/20110520120639/http://afp.google.com/article/ALeqM5ipelkeZwHqz3cqmha_jD7gNhB98A

  106. "Intel Previews Intel Xeon 'Nehalem-EX' Processor." May 26, 2009. Retrieved on May 28, 2009. http://www.intel.com/pressroom/archive/releases/20090526comp.htm

  107. Morgan, Timothy Prickett (November 21, 2011), "Fujitsu parades 16-core Sparc64 super stunner", The Register, retrieved December 8, 2011 https://www.theregister.co.uk/2011/11/21/fujitsu_sparc64_ixfx_fx10_details

  108. Angelini, Chris (November 14, 2011). "Intel Core i7-3960X Review: Sandy Bridge-E And X79 Express". TomsHardware.com. Retrieved August 9, 2014. http://www.tomshardware.com/reviews/core-i7-3960x-x79-sandy-bridge-e,3071.html

  109. "IDF2012 Mark Bohr, Intel Senior Fellow" (PDF). https://www.intel.com/content/dam/www/public/us/en/documents/presentation/silicon-technology-leadership-presentation.pdf

  110. "Images of SPARC64" (PDF). fujitsu.com. Retrieved August 29, 2017. https://www.fujitsu.com/global/Images/HC25.27.910-SPARC64.pdf

  111. "Intel's Atom Architecture: The Journey Begins". AnandTech. Retrieved April 4, 2010. http://www.anandtech.com/showdoc.aspx?i=3276&p=9

  112. "Intel Xeon Phi SE10X". TechPowerUp. Retrieved July 20, 2015. http://www.techpowerup.com/gpudb/1891/xeon-phi-se10x.html

  113. Shimpi, Lal. "The Haswell Review: Intel Core i7-4770K & i5-4670K Tested". anandtech. Retrieved November 20, 2014. http://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested/5

  114. "Dimmick, Frank (August 29, 2014). "Intel Core i7 5960X Extreme Edition Review". Overclockers Club. Retrieved August 29, 2014. http://www.overclockersclub.com/reviews/iintel_core_i7_5960x_extreme_edition/

  115. "Apple A8X". NotebookCheck. Retrieved July 20, 2015. http://www.notebookcheck.net/Apple-A8X-iPad-SoC.128403.0.html

  116. "Intel Readying 15-core Xeon E7 v2". AnandTech. Retrieved August 9, 2014. http://www.anandtech.com/show/7753/intel-readying-15core-xeon-e7-v2

  117. "Intel Xeon E5-2600 v3 Processor Overview: Haswell-EP Up to 18 Cores". pcper. September 8, 2014. Retrieved January 29, 2015. http://www.pcper.com/reviews/Processors/Intel-Xeon-E5-2600-v3-Processor-Overview-Haswell-EP-18-Cores/5

  118. "Intel's Broadwell-U arrives aboard 15W, 28W mobile processors". TechReport. January 5, 2015. Retrieved January 5, 2015. http://techreport.com/news/27557/intel-broadwell-u-arrives-aboard-15w-28w-mobile-processors

  119. "Oracle Cranks up the Cores to 32 with Sparc M7 Chip". EnterpriseTech. August 13, 2014. http://www.enterprisetech.com/2014/08/13/oracle-cranks-cores-32-sparc-m7-chip/

  120. "Broadwell-E: Intel Core i7-6950X, 6900K, 6850K & 6800K Review". Tom's Hardware. May 30, 2016. Retrieved April 12, 2017. http://www.tomshardware.com/reviews/intel-core-i7-broadwell-e-6950x-6900k-6850k-6800k,4587.html

  121. "The Broadwell-E Review". PC Gamer. July 8, 2016. Retrieved April 12, 2017. http://www.pcgamer.com/the-broadwell-e-review/

  122. "HUAWEI TO UNVEIL KIRIN 970 SOC WITH AI UNIT, 5.5 BILLION TRANSISTORS AND 1.2 GBPS LTE SPEED AT IFA 2017". firstpost.com. September 1, 2017. Retrieved November 18, 2018. https://www.firstpost.com/tech/news-analysis/huawei-to-unveil-kirin-970-soc-with-ai-unit-5-5-billion-transistors-and-1-2-gbps-lte-speed-at-ifa-2017-3996027.html

  123. "Broadwell-EP Architecture - Intel Xeon E5-2600 v4 Broadwell-EP Review". Tom's Hardware. March 31, 2016. Retrieved April 4, 2016. http://www.tomshardware.com/reviews/intel-xeon-e5-2600-v4-broadwell-ep,4514-2.html

  124. "About the ZipCPU". zipcpu.com. Retrieved September 10, 2019. As of ORCONF, 2016, the ZipCPU used between 1286 and 4926 6-LUTs, depending upon how it is configured. http://zipcpu.com/about/zipcpu.html

  125. "Qualcomm Snapdragon 835 (8998)". NotebookCheck. Retrieved September 23, 2017. https://www.notebookcheck.net/Qualcomm-Snapdragon-835-SoC-Benchmarks-and-Specs.207842.0.html

  126. Takahashi, Dean (January 3, 2017). "Qualcomm's Snapdragon 835 will debut with 3 billion transistors and a 10nm manufacturing process". VentureBeat. https://venturebeat.com/2017/01/03/qualcomms-snapdragon-835-will-debut-with-3-billion-transistors-and-a-10nm-manufacturing-process/

  127. Singh, Teja (2017). "3.2 Zen: A Next-Generation High-Performance x86 Core". Proc. IEEE International Solid-State Circuits Conference. pp. 52–54.

  128. Cutress, Ian (February 22, 2017). "AMD Launches Zen". Anandtech.com. Retrieved February 22, 2017. http://www.anandtech.com/show/11143/amd-launch-ryzen-52-more-ipc-eight-cores-for-under-330-preorder-today-on-sale-march-2nd

  129. "Ryzen 5 1600 - AMD". Wikichip.org. April 20, 2018. Retrieved December 9, 2018. https://en.wikichip.org/wiki/amd/ryzen_5/1600

  130. "Kirin 970 – HiSilicon". Wikichip. March 1, 2018. Retrieved November 8, 2018. https://en.wikichip.org/wiki/hisilicon/kirin/970

  131. Leadbetter, Richard (April 6, 2017). "Inside the next Xbox: Project Scorpio tech revealed". Eurogamer. Retrieved May 3, 2017. http://www.eurogamer.net/articles/digitalfoundry-2017-project-scorpio-tech-revealed

  132. Leadbetter, Richard (April 6, 2017). "Inside the next Xbox: Project Scorpio tech revealed". Eurogamer. Retrieved May 3, 2017. http://www.eurogamer.net/articles/digitalfoundry-2017-project-scorpio-tech-revealed

  133. "Intel Xeon Platinum 8180". TechPowerUp. December 1, 2018. Retrieved December 2, 2018. https://www.techpowerup.com/cpudb/2055/xeon-platinum-8180

  134. Pellerano, Stefano (March 2, 2022). "Circuit Design to Harness the Power of Scaling and Integration (ISSCC 2022)". YouTube. https://youtube.com/watch?v=pFQj6L4eKc0

  135. Lee, Y. "SiFive Freedom SoCs : Industry's First Open Source RISC V Chips" (PDF). HotChips 29 IOT/Embedded. Archived from the original (PDF) on August 9, 2020. Retrieved June 19, 2019. https://web.archive.org/web/20200809140551/https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.20-IOT-Embedded-Pub/HC29.21.210-Freedom-SoCs-Lee-SiFive-v2.pdf

  136. "Documents at Fujitsu" (PDF). fujitsu.com. Retrieved August 29, 2017. http://www.fujitsu.com/jp/documents/products/computing/servers/unix/sparc/events/2017/coolchips20/CoolChips20-rev8.pdf

  137. Schmerer, Kai (November 5, 2018). "iPad Pro 2018: A12X-Prozessor bietet deutlich mehr Leistung". ZDNet.de (in German). https://www.zdnet.de/88346243/ipad-pro-2018-a12x-prozessor-bietet-deutlich-mehr-leistung/

  138. "Qualcomm Datacenter Technologies Announces Commercial Shipment of Qualcomm Centriq 2400 – The World's First 10nm Server Processor and Highest Performance Arm-based Server Processor Family Ever Designed". Qualcomm. Retrieved November 9, 2017. https://www.qualcomm.com/news/releases/2017/11/08/qualcomm-datacenter-technologies-announces-commercial-shipment-qualcomm

  139. "Qualcomm Snapdragon 1000 for laptops could pack 8.5 billion transistors". techradar. Retrieved September 23, 2017. https://www.techradar.com/news/qualcomm-snapdragon-1000-for-laptops-could-pack-85-billion-transistors

  140. "Spotted: Qualcomm Snapdragon 8cx Wafer on 7nm". AnandTech. Retrieved December 6, 2018. https://www.anandtech.com/show/13687/qualcomm-snapdragon-8cx-wafer-on-7nm

  141. "HiSilicon Kirin 710". Notebookcheck. September 19, 2018. Retrieved November 24, 2018. https://www.notebookcheck.net/HiSilicon-Kirin-710-SoC-Benchmarks-and-Specs.333292.0.html

  142. Yang, Daniel; Wegner, Stacy (September 21, 2018). "Apple iPhone Xs Max Teardown". TechInsights. Retrieved September 21, 2018. http://www.techinsights.com/about-techinsights/overview/blog/apple-iphone-xs-teardown/

  143. "Apple's A12 Bionic is the first 7-nanometer smartphone chip". Engadget. Retrieved September 26, 2018. https://www.engadget.com/2018/09/12/apple-a12-bionic-7-nanometer-chip/

  144. "Kirin 980 – HiSilicon". Wikichip. November 8, 2018. Retrieved November 8, 2018. https://en.wikichip.org/wiki/hisilicon/kirin/980

  145. "Qualcomm Snapdragon 8180: 7nm SoC SDM1000 With 8.5 Billion Transistors To Challenge Apple A12 Bionic Chipset". dailyhunt. Retrieved September 21, 2018. https://m.dailyhunt.in/news/bangladesh/english/gear-epaper-gear/qualcomm+snapdragon+8180+7nm+soc+sdm1000+with+8+5+billion+transistors+to+challenge+apple+a12+bionic+chipset-newsid-97431923

  146. Zafar, Ramish (October 30, 2018). "Apple's A12X Has 10 Billion Transistors, 90% Performance Boost & 7-Core GPU". Wccftech. https://wccftech.com/apple-a12x-10-billion-transistors-performance/

  147. "Fujitsu began to produce Japan's billions of super-calculations with the strongest ARM processor A64FX". firstxw.com. April 16, 2019. Archived from the original on June 20, 2019. Retrieved June 19, 2019. https://web.archive.org/web/20190620065621/http://images.firstxw.com/view/230119.html

  148. "Fujitsu Successfully Triples the Power Output of Gallium-Nitride Transistors". Fujitsu. August 22, 2018. Retrieved June 19, 2019. https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html

  149. "Hot Chips 30: Nvidia Xavier SoC". fuse.wikichip.org. September 18, 2018. Retrieved December 6, 2018. https://fuse.wikichip.org/news/1618/hot-chips-30-nvidia-xavier-soc

  150. Frumusanu, Andrei. "The Samsung Galaxy S10+ Snapdragon & Exynos Review: Almost Perfect, Yet So Flawed". www.anandtech.com. Retrieved February 19, 2021. https://www.anandtech.com/show/14072/the-samsung-galaxy-s10plus-review

  151. "Zen 2 Microarchitecture". WikiChip. Retrieved February 21, 2023. https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

  152. "Zen 2 Microarchitecture". WikiChip. Retrieved February 21, 2023. https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

  153. "Zen 2 Microarchitecture". WikiChip. Retrieved February 21, 2023. https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

  154. "Zen 2 Microarchitecture". WikiChip. Retrieved February 21, 2023. https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

  155. "Zen 2 Microarchitecture". WikiChip. Retrieved February 21, 2023. https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

  156. "Zen 2 Microarchitecture". WikiChip. Retrieved February 21, 2023. https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

  157. "AMD Ryzen 9 3900X and Ryzen 7 3700X Review: Zen 2 and 7nm Unleashed". Tom's Hardware. July 7, 2019. Retrieved October 19, 2019. https://www.tomshardware.com/reviews/ryzen-9-3900x-7-3700x-review,6214.html

  158. 3,900,000,000 core chiplet die, 2,090,000,000 I/O die

  159. Frumusanu, Andrei. "The Huawei Mate 30 Pro Review: Top Hardware without Google?". AnandTech. Retrieved January 2, 2020. https://www.anandtech.com/show/15099/the-huawei-mate-30-pro-review-top-hardware-without-google/2

  160. Zafar, Ramish (September 10, 2019). "Apple A13 For iPhone 11 Has 8.5 Billion Transistors, Quad-Core GPU". Wccftech. Retrieved September 11, 2019. https://wccftech.com/apple-a13-iphone-11-transistors-gpu/

  161. Introducing iPhone 11 Pro — Apple Youtube Video, retrieved September 11, 2019[dead YouTube link] https://www.youtube.com/watch?v=cVEemOmHw9Y&t=70

  162. "Hot Chips 2020 Live Blog: IBM z15". AnandTech. August 17, 2020. https://www.anandtech.com/show/15987/hot-chips-2020-live-blog-ibm-z15-a-52-ghz-mainframe-cpu-1100am-pt

  163. Broekhuijsen, Niels (October 23, 2019). "AMD's 64-Core EPYC and Ryzen CPUs Stripped: A Detailed Inside Look". Retrieved October 24, 2019. https://www.tomshardware.com/news/amd-64-core-epyc-cpu-die-design-architecture-ryzen-3000

  164. Mujtaba, Hassan (October 22, 2019). "AMD 2nd Gen EPYC Rome Processors Feature A Gargantuan 39.54 Billion Transistors, IO Die Pictured in Detail". Retrieved October 24, 2019. https://wccftech.com/amd-2nd-gen-epyc-rome-iod-ccd-chipshots-39-billion-transistors/

  165. Friedman, Alan (December 14, 2019). "5nm Kirin 1020 SoC tipped for next year's Huawei Mate 40 line". Phone Arena. Retrieved December 23, 2019. https://www.phonearena.com/news/Huawei-tipped-to-develop-new-flagship-chip-for-Mate-40_id121102

  166. Verheyde, Arne (December 5, 2019). "Amazon Compares 64-core ARM Graviton2 to Intel's Xeon". Tom's Hardware. Retrieved December 6, 2019. https://www.tomshardware.com/news/amazon-web-services-takes-on-intel-with-64-core-arm-graviton2

  167. Morgan, Timothy Prickett (December 3, 2019). "Finally: AWS Gives Servers A Real Shot In The Arm". The Next Platform. Retrieved December 6, 2019. https://www.nextplatform.com/2019/12/03/finally-aws-gives-servers-a-real-shot-in-the-arm/

  168. Broekhuijsen, Niels (October 23, 2019). "AMD's 64-Core EPYC and Ryzen CPUs Stripped: A Detailed Inside Look". Retrieved October 24, 2019. https://www.tomshardware.com/news/amd-64-core-epyc-cpu-die-design-architecture-ryzen-3000

  169. Mujtaba, Hassan (October 22, 2019). "AMD 2nd Gen EPYC Rome Processors Feature A Gargantuan 39.54 Billion Transistors, IO Die Pictured in Detail". Retrieved October 24, 2019. https://wccftech.com/amd-2nd-gen-epyc-rome-iod-ccd-chipshots-39-billion-transistors/

  170. Friedman, Alan (October 10, 2019). "Qualcomm will reportedly introduce the Snapdragon 865 SoC as soon as next month". Phone Arena. Retrieved February 19, 2021. https://www.phonearena.com/news/Qualcomm-to-unveil-the-Snapdragon-865-chipset-as-soon-as-next-month_id119548

  171. "Xiaomi Mi 10 Teardown Analysis | TechInsights". www.techinsights.com. Retrieved February 19, 2021. https://www.techinsights.com/blog/xiaomi-mi-10-teardown-analysis#:~:text=We%20have%20die%20photos%20ready,die%20HG11-PC761-2.

  172. "The Linley Group - TI Jacinto Accelerates Level 3 ADAS". www.linleygroup.com. Retrieved February 12, 2021. https://www.linleygroup.com/newsletters/newsletter_detail.php?num=6130&year=2020&tag=3

  173. "Apple unveils A14 Bionic processor with 40% faster CPU and 11.8 billion transistors". Venturebeat. November 10, 2020. Retrieved November 24, 2020. https://venturebeat.com/2020/09/15/apple-unveils-a14-bionic-processor-with-40-faster-cpu-and-11-8-billion-transistors/

  174. "Apple says new Arm-based M1 chip offers the 'longest battery life ever in a Mac'". The Verge. November 10, 2020. Retrieved November 11, 2020. https://www.theverge.com/2020/11/10/21558095/apple-silicon-m1-chip-arm-macs-soc-charge-power-efficiency-mobile-processor/

  175. Ikoba, Jed John (October 23, 2020). "Multiple benchmark tests rank the Kirin 9000 as one of the most-powerful chipset yet". Gizmochina. Retrieved November 14, 2020. https://www.gizmochina.com/2020/10/23/multiple-benchmark-tests-rank-the-kirin-9000-as-one-of-the-most-powerful-chipset-yet/

  176. Frumusanu, Andrei. "Huawei Announces Mate 40 Series: Powered by 15.3bn Transistors 5nm Kirin 9000". www.anandtech.com. Retrieved November 14, 2020. https://www.anandtech.com/show/16156/huawei-announces-mate-40-series

  177. Burd, Thomas (2022). "2.7 Zen3: The AMD 2nd-Generation 7nm x86-64 Microprocessor Core". Proc. IEEE International Solid-State Circuits Conference. pp. 54–56.

  178. Burd, Thomas (2022). "2.7 Zen3: The AMD 2nd-Generation 7nm x86-64 Microprocessor Core". Proc. IEEE International Solid-State Circuits Conference. pp. 54–56.

  179. "For a long time, Intel once again named the number of transistors in the chip. There are supposed to be about 6 billion for Rocket Lake-S. Coffee Lake-S is supposed to have about 4 billion. The chip with eight cores is about 30 % bigger than the predecessor with ten core". twitter. Retrieved March 16, 2021. https://twitter.com/aschilling/status/1371845970581975050

  180. "Intel's Core i7-11700K 'Rocket Lake' Delidded: A Big Die, Revealed". tomshardware. March 12, 2021. Retrieved March 16, 2021. https://www.tomshardware.com/news/intel-rocket-lake-delidded

  181. "Intel's 14nm density". www.techcenturion.com. November 26, 2019. Retrieved November 26, 2019. https://www.techcenturion.com/7nm-10nm-14nm-fabrication

  182. "AMD Ryzen 7 5800H Specs". TechPowerUp. Retrieved September 20, 2021. https://www.techpowerup.com/cpu-specs/ryzen-7-5800h.c2368

  183. "AMD Epyc 7763 specifications". August 2023. https://www.techpowerup.com/cpu-specs/epyc-7763.c2373

  184. Shankland, Stephen. "Apple's A15 Bionic chip powers iPhone 13 with 15 billion transistors, new graphics and AI". CNET. Retrieved September 20, 2021. https://www.cnet.com/tech/mobile/apples-a15-bionic-chip-powers-iphone-13-with-15-billion-transistors-new-graphics-and-ai/

  185. "Apple iPhone 13 Pro Teardown | TechInsights". www.techinsights.com. Retrieved September 29, 2021. https://www.techinsights.com/blog/teardown/apple-iphone-13-pro-teardown

  186. "Apple unveils M1 Pro and M1 Max chips for latest MacBook Pro laptops". VentureBeat. October 18, 2021. https://venturebeat.com/2021/10/18/apple-unveils-m1-pro-and-m1-max-chips-for-latest-macbook-pro-laptops/

  187. "Apple Announces M1 Pro & M1 Max: Giant New Arm SoCs with All-Out Performance". AnanadTech. Retrieved December 2, 2021. https://www.anandtech.com/show/17019/apple-announced-m1-pro-m1-max-giant-new-socs-with-allout-performance

  188. "Apple unveils new computer chips amid shortage". BBC News. October 19, 2021. https://www.bbc.com/news/technology-58917992

  189. "Apple unveils M1 Pro and M1 Max chips for latest MacBook Pro laptops". VentureBeat. October 18, 2021. https://venturebeat.com/2021/10/18/apple-unveils-m1-pro-and-m1-max-chips-for-latest-macbook-pro-laptops/

  190. "Apple Joins 3D-Fabric Portfolio with M1 Ultra?". TechInsights. Retrieved July 8, 2022. https://www.techinsights.com/blog/apple-joins-3d-fabric-portfolio-m1-ultra

  191. "Hot Chips 2020 live blog". AnandTech. August 17, 2020. https://www.anandtech.com/show/15985/hot-chips-2020-live-blog-ibms-power10-processor-on-samsung-7nm-1000am-pt

  192. "Phantom X2 Series 5G powered by MediaTek Dimensity 9000". Mediatek. December 12, 2022. https://www.mediatek.com/blog/phantom-x2-series-5g-powered-by-mediatek-dimensity-9000

  193. "MediaTek Dimensity 9000". Mediatek. January 21, 2023. https://www.mediatek.com/products/smartphones-2/mediatek-dimensity-9000

  194. "Apple A16 Bionic announced for the iPhone 14 Pro and iPhone 14 Pro Max". NotebookCheck. September 7, 2022. https://www.notebookcheck.net/Apple-A16-Bionic-announced-for-the-iPhone-14-Pro-and-iPhone-14-Pro-Max.647967.0.html

  195. "iPhone 14 Pro and Pro Max Only Models to Get New A16 Chip". CNET. September 7, 2022. https://www.cnet.com/tech/mobile/iphone-14-pro-and-pro-max-only-models-to-get-new-a16-chip/

  196. "The Apple 2022 Fall iPhone Event Live Blog". AnandTech. September 7, 2022. https://www.anandtech.com/print/17563/the-apple-2022-fall-iphone-event-live-blog-10am-pt-1700-utc

  197. "Apple unveils M1 Ultra, the world's most powerful chip for a personal computer". Apple Newsroom. Retrieved March 9, 2022. https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/

  198. Shankland, Stephen. "Meet Apple's Enormous 20-Core M1 Ultra Processor, the Brains in the New Mac Studio Machine". CNET. Retrieved March 9, 2022. https://www.cnet.com/tech/computing/m1-ultra-apple-just-unveiled-its-most-powerful-chip-yet/

  199. "Apple Joins 3D-Fabric Portfolio with M1 Ultra?". TechInsights. Retrieved July 8, 2022. https://www.techinsights.com/blog/apple-joins-3d-fabric-portfolio-m1-ultra

  200. "AMD releases Milan-X CPUs". AnandTech. March 21, 2022. https://www.anandtech.com/print/17323/amd-releases-milan-x-cpus-with-3d-vcache-epyc-7003

  201. "AMD releases Milan-X CPUs". AnandTech. March 21, 2022. https://www.anandtech.com/print/17323/amd-releases-milan-x-cpus-with-3d-vcache-epyc-7003

  202. "IBM Telum Hot Chips slide deck" (PDF). August 23, 2021. https://hc33.hotchips.org/assets/program/conference/day1/HC2021.C1.3%20IBM%20Cristian%20Jacobi%20Final.pdf

  203. "IBM z16 announcement". April 5, 2022. https://newsroom.ibm.com/2022-04-05-Announcing-IBM-z16-Real-time-AI-for-Transaction-Processing-at-Scale-and-Industrys-First-Quantum-Safe-System

  204. "Apple unveils M2, taking the breakthrough performance and capabilities of M1 even further". Apple. June 6, 2022. https://www.apple.com/newsroom/2022/06/apple-unveils-m2-with-breakthrough-performance-and-capabilities/

  205. "MediaTek Dimensity 9200: New flagship chipset debuts with ARM Cortex-X3 CPU and Immortalis-G715 GPU cores built around TSMC N4P node". NotebookCheck. November 8, 2022. https://www.notebookcheck.net/MediaTek-Dimensity-9200-New-flagship-chipset-debuts-with-ARM-Cortex-X3-CPU-and-Immortalis-G715-GPU-cores-built-around-TSMC-N4P-node.667041.0.html

  206. "Dimensity 9200 specs". Mediatek. November 8, 2022. https://www.mediatek.com/products/smartphones-2/mediatek-dimensity-9200

  207. "Dimensity 9200 presentation". Mediatek. November 8, 2022. https://i.mediatek.com/dimensity-9200

  208. "AMD EPYC Genoa Gaps Intel Xeon in Stunning Fashion". ServeTheHome. November 10, 2022. https://www.servethehome.com/amd-epyc-genoa-gaps-intel-xeon-in-stunning-fashion/

  209. "AMD Aims to Break the ZettaFLOP Barrier by 2035, Lays Down Next-Gen Plans to Resolve Efficiency Problems". Appuals. February 21, 2023. https://appuals.com/amd-zettaflop-plans/

  210. "AMD Lays The Path To Zettascale Computing: Talks CPU & GPU Performance Plus Efficiency Trends, Next-Gen Chiplet Packaging & More". WCCFtech. February 20, 2023. https://wccftech.com/amd-lays-the-path-to-zettascale-computing-talks-cpu-gpu-performance-plus-efficiency-trends-next-gen-chiplet-packaging-more/

  211. "AMD EPYC Genoa & SP5 Platform Leaked – 5nm Zen 4 CCD Measures Roughly 72mm, 12 CCD Package at 5428mm2, Up To 700W Peak Socket Power". WCCFtech. August 17, 2021. https://wccftech.com/amd-epyc-genoa-zen-4-server-cpus-and-sp5-lga-6096-server-platform-details-leaked/

  212. Syed, Areej (August 17, 2021). "Leaked AMD Epyc Genoa Docs Reveal 96 Cores, Max TDP of 700W, and Zen 4 Chiplet Dimensions". HardwareTimes. https://www.hardwaretimes.com/leaked-amd-epyc-genoa-docs-reveal-96-cores-max-tdp-of-700w-and-zen-4-chiplet-dimensions/

  213. "Kirin 9000S has about 6 billion fewer transistors than Kirin 9000, but its performance is stronger! How did you do it?". iNews. September 13, 2023. Retrieved September 24, 2023. https://inf.news/en/news/fe8aae471cb54698f4ddac2d2baf1abd.html

  214. "Apple Announces M4 SoC: Latest and Greatest Starts on 2024 iPad Pro". Anandtech. May 7, 2024. https://www.anandtech.com/show/21387/apple-announces-m4-soc-latest-and-greatest-starts-on-ipad-pro/

  215. "Apple introduces new M3 chip lineup, starting with the M3, M3 Pro, and M3 Max". Arstechnica. October 31, 2023. https://arstechnica.com/gadgets/2023/10/everything-to-know-about-apples-new-m3-m3-pro-and-m3-max-processors/

  216. "Apple introduces new M3 chip lineup, starting with the M3, M3 Pro, and M3 Max". Arstechnica. October 31, 2023. https://arstechnica.com/gadgets/2023/10/everything-to-know-about-apples-new-m3-m3-pro-and-m3-max-processors/

  217. "Apple introduces new M3 chip lineup, starting with the M3, M3 Pro, and M3 Max". Arstechnica. October 31, 2023. https://arstechnica.com/gadgets/2023/10/everything-to-know-about-apples-new-m3-m3-pro-and-m3-max-processors/

  218. Goldman, Joshua. "Apple A17 Pro Chip: The New Brain Inside iPhone 15 Pro, Pro Max". CNET. Retrieved September 12, 2023. https://www.cnet.com/tech/mobile/apple-a17-pro-chip-the-new-brain-inside-iphone-15-pro/

  219. "4th Gen Intel Xeon Scalable Sapphire Rapids Leaps Forward". ServeTheHome. January 10, 2023. https://www.servethehome.com/4th-gen-intel-xeon-scalable-sapphire-rapids-leaps-forward/

  220. "Wie vier Dies zu einem "monolithischen" Sapphire Rapids werden". hardwareLUXX. February 21, 2022. https://www.hardwareluxx.de/index.php/news/hardware/prozessoren/58175-isscc-2022-wie-vier-dies-zu-einem-monolithischen-sapphire-rapids-werden.html

  221. "Apple unveils M2 Pro and M2 Max: next-generation chips for next-level workflows". Apple (Press release). January 17, 2023. https://www.apple.com/newsroom/2023/01/apple-unveils-m2-pro-and-m2-max-next-generation-chips-for-next-level-workflows/

  222. "Apple unveils M2 Pro and M2 Max: next-generation chips for next-level workflows". Apple (Press release). January 17, 2023. https://www.apple.com/newsroom/2023/01/apple-unveils-m2-pro-and-m2-max-next-generation-chips-for-next-level-workflows/

  223. "Apple introduces M2 Ultra" (Press release). Apple. June 5, 2023. https://www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/

  224. "AMD EPYC Bergamo Launched 128 Cores Per Socket and 1024 Threads Per 1U". ServeTheHome. June 13, 2023. https://www.servethehome.com/amd-epyc-bergamo-launched-128-cores-per-socket-and-1024-threads-per-1u/

  225. "AMD Instinct MI300A Accelerators". AMD. Retrieved January 14, 2024. https://www.amd.com/en/products/accelerators/instinct/mi300/mi300a.html

  226. Alcorn, Paul (December 6, 2023). "AMD unveils Instinct MI300X GPU and MI300A APU, claims up to 1.6X lead over Nvidia's competing GPUs". Tom's Hardware. Retrieved January 14, 2024. https://www.tomshardware.com/pc-components/cpus/amd-unveils-instinct-mi300x-gpu-and-mi300a-apu-claims-up-to-16x-lead-over-nvidias-competing-gpus

  227. "China creates world's thinnest chip with 5931 transistors". 2025. https://www.intellinews.com/china-creates-world-s-thinnest-chip-with-5931-transistors-378131/

  228. Williams, Chris. "Nvidia's Tesla P100 has 15 billion transistors, 21TFLOPS". www.theregister.co.uk. Retrieved August 12, 2019. https://www.theregister.co.uk/2016/04/05/nvidia_gtc_telsa_p100_pascal/

  229. "Famous Graphics Chips: NEC μPD7220 Graphics Display Controller". IEEE Computer Society. Institute of Electrical and Electronics Engineers. August 22, 2018. Retrieved June 21, 2019. https://www.computer.org/publications/tech-news/chasing-pixels/famous-graphics-chips

  230. "GPU History: Hitachi ARTC HD63484. The second graphics processor". IEEE Computer Society. Institute of Electrical and Electronics Engineers. October 7, 2018. Retrieved June 21, 2019. https://www.computer.org/publications/tech-news/chasing-pixels/gpu-history-hitachi-artc-hd63484

  231. "Big Book of Amiga Hardware". https://bboah.com/index.php?action=artikel&cat=51&id=2174

  232. Russell, Jesse; Cohn, Ronald (May 2012). MOS Technology Agnus. Book on Demand. ISBN 978-5511916842. 978-5511916842

  233. "30 Years of Console Gaming". Klinger Photography. August 20, 2017. Retrieved June 19, 2019. https://klingerphotography.com/wp/2017/08/20/30-years-console-gaming/

  234. "30 Years of Console Gaming". Klinger Photography. August 20, 2017. Retrieved June 19, 2019. https://klingerphotography.com/wp/2017/08/20/30-years-console-gaming/

  235. "Sega Saturn". MAME. Retrieved July 18, 2019. https://github.com/mamedev/mame/blob/master/src/mame/drivers/saturn.cpp

  236. "ASIC CHIPS ARE INDUSTRY'S GAME WINNERS". The Washington Post. September 18, 1995. Retrieved June 19, 2019. https://www.washingtonpost.com/archive/business/1995/09/18/asic-chips-are-industrys-game-winners/50bcb622-e890-4d46-803f-39e007c489ca/

  237. "Is it Time to Rename the GPU?". Jon Peddie Research. IEEE Computer Society. July 9, 2018. Retrieved June 19, 2019. https://www.computer.org/publications/tech-news/chasing-pixels/is-it-time-to-rename-the-gpu

  238. "FastForward Sony Taps LSI Logic for PlayStation Video Game CPU Chip". FastForward. Retrieved January 29, 2014. http://patpend.net/technical/psx/LSI.htm

  239. "Reality Co-Processor − The Power In Nintendo64" (PDF). Silicon Graphics. August 26, 1997. Archived from the original (PDF) on May 19, 2020. Retrieved June 18, 2019. https://web.archive.org/web/20200519051320/http://www.hotchips.org/wp-content/uploads/hc_archives/hc09/3_Tue/HC9.S10/HC9.10.2.pdf

  240. "Imagination PowerVR PCX2 GPU". VideoCardz.net. Retrieved June 19, 2019. https://videocardz.net/gpu/imagination-powervr-pcx2/

  241. Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. Retrieved June 19, 2019. https://www.pcgamer.com/from-voodoo-to-geforce-the-awesome-history-of-3d-graphics/

  242. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  243. Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. Retrieved June 19, 2019. https://www.pcgamer.com/from-voodoo-to-geforce-the-awesome-history-of-3d-graphics/

  244. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  245. "RIVA128 Datasheet". SGS Thomson Microelectronics. Retrieved July 21, 2019. http://www.datasheetcatalog.com/datasheets_pdf/R/I/V/A/RIVA128.shtml

  246. Singer, Graham (April 3, 2013). "History of the Modern Graphics Processor, Part 2". TechSpot. Retrieved July 21, 2019. https://www.techspot.com/article/653-history-of-the-gpu-part-2/

  247. Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. Retrieved June 19, 2019. https://www.pcgamer.com/from-voodoo-to-geforce-the-awesome-history-of-3d-graphics/

  248. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  249. Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. Retrieved June 19, 2019. https://www.pcgamer.com/from-voodoo-to-geforce-the-awesome-history-of-3d-graphics/

  250. Singer, Graham (April 3, 2013). "History of the Modern Graphics Processor, Part 2". TechSpot. Retrieved July 21, 2019. https://www.techspot.com/article/653-history-of-the-gpu-part-2/

  251. "Remembering the Sega Dreamcast". Bit-Tech. September 29, 2009. Retrieved June 18, 2019. https://bit-tech.net/reviews/gaming/retro/remembering-the-sega-dreamcast/3/

  252. Weinberg, Neil (September 7, 1998). "Comeback kid". Forbes. Retrieved June 19, 2019. https://www.forbes.com/global/1998/0907/0111082a.html

  253. Charles, Bertie (1998). "Sega's New Dimension". Forbes. 162 (5–9). Forbes Incorporated: 206. The chip, etched in 0.25-micron detail — state-of-the-art for graphics processors — fits 10 million transistors https://books.google.com/books?id=rCO8AAAAIAAJ

  254. Hagiwara, Shiro; Oliver, Ian (November–December 1999). "Sega Dreamcast: Creating a Unified Entertainment World". IEEE Micro. 19 (6). IEEE Computer Society: 29–35. doi:10.1109/40.809375. Archived from the original on August 23, 2000. Retrieved June 27, 2019. https://archive.today/20000823204755/http://computer.org/micro/articles/dreamcast_2.htm

  255. "VideoLogic Neon 250 4MB". VideoCardz.net. Retrieved June 19, 2019. https://videocardz.net/videologic-neon-250-4mb/

  256. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  257. Shimpi, Anand Lal (November 21, 1998). "Fall Comdex '98 Coverage". AnandTech. Retrieved June 19, 2019. https://www.anandtech.com/show/103/6

  258. "NVIDIA GeForce 7800 GTX GPU Review". PC Perspective. June 22, 2005. Retrieved June 18, 2019. https://pcper.com/2005/06/nvidia-geforce-7800-gtx-gpu-review/

  259. "EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP" (PDF). Sony. April 21, 2003. Retrieved June 26, 2019. https://www.sie.com/content/dam/corporate/en/corporate/release/pdf/030421be.pdf

  260. Hennessy, John L.; Patterson, David A. (May 29, 2002). Computer Architecture: A Quantitative Approach (3 ed.). Morgan Kaufmann. p. 491. ISBN 978-0-08-050252-6. Retrieved April 9, 2013. 978-0-08-050252-6

  261. Diefendorff, Keith (April 19, 1999). "Sony's Emotionally Charged Chip: Killer Floating-Point "Emotion Engine" To Power PlayStation 2000" (PDF). Microprocessor Report. 13 (5). S2CID 29649747. Archived from the original (PDF) on February 28, 2019. Retrieved June 19, 2019. https://web.archive.org/web/20190228125309/http://pdfs.semanticscholar.org/9248/eea6c98e5a7fc45606d9d562a0e74707ce43.pdf

  262. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  263. "NVIDIA NV10 A3 GPU Specs". TechPowerUp. Retrieved June 19, 2019. https://www.techpowerup.com/gpu-specs/nvidia-nv10-a3.g165

  264. Singer, Graham (April 3, 2013). "History of the Modern Graphics Processor, Part 2". TechSpot. Retrieved July 21, 2019. https://www.techspot.com/article/653-history-of-the-gpu-part-2/

  265. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  266. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  267. Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. Retrieved June 19, 2019. https://www.pcgamer.com/from-voodoo-to-geforce-the-awesome-history-of-3d-graphics/

  268. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  269. Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. Retrieved June 19, 2019. https://www.pcgamer.com/from-voodoo-to-geforce-the-awesome-history-of-3d-graphics/

  270. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  271. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  272. "NVIDIA GeForce 7800 GTX GPU Review". PC Perspective. June 22, 2005. Retrieved June 18, 2019. https://pcper.com/2005/06/nvidia-geforce-7800-gtx-gpu-review/

  273. IGN Staff (November 4, 2000). "Gamecube Versus PlayStation 2". IGN. Retrieved November 22, 2015. https://ign.com/articles/2000/11/04/gamecube-versus-playstation-2

  274. Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. Retrieved June 19, 2019. https://www.pcgamer.com/from-voodoo-to-geforce-the-awesome-history-of-3d-graphics/

  275. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  276. Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. Retrieved June 19, 2019. https://www.pcgamer.com/from-voodoo-to-geforce-the-awesome-history-of-3d-graphics/

  277. "NVIDIA NV2A GPU Specs". TechPowerUp. Retrieved July 21, 2019. https://www.techpowerup.com/gpu-specs/nvidia-nv2a.g401

  278. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  279. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  280. "ATI Xenos GPU Specs". TechPowerUp. Retrieved June 21, 2019. https://www.techpowerup.com/gpu-specs/ati-xenos.g424

  281. International, GamesIndustry (July 14, 2005). "TSMC to manufacture X360 GPU". Eurogamer. Retrieved August 22, 2006. https://www.eurogamer.net/articles/news140705tsmc

  282. "NVIDIA Playstation 3 RSX 65nm Specs". TechPowerUp. Retrieved June 21, 2019. https://www.techpowerup.com/gpu-specs/playstation-3-rsx-65nm.c1682

  283. "PS3 Graphics Chip Goes 65nm in Fall". Edge Online. June 26, 2008. Archived from the original on July 25, 2008. https://web.archive.org/web/20080725024026/http://www.edge-online.com/news/ps3-graphics-chip-goes-65nm-fall/

  284. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  285. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  286. "NVIDIA's 1.4 Billion Transistor GPU: GT200 Arrives as the GeForce GTX 280 & 260". AnandTech.com. Retrieved August 9, 2014. http://www.anandtech.com/video/showdoc.aspx?i=3334

  287. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  288. "The Radeon HD 4850 & 4870: AMD Wins at $199 and $299". AnandTech.com. Retrieved August 9, 2014. http://www.anandtech.com/video/showdoc.aspx?i=3341

  289. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  290. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  291. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  292. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  293. Glaskowsky, Peter. "ATI and Nvidia face off-obliquely". CNET. Archived from the original on January 27, 2012. Retrieved August 9, 2014. https://web.archive.org/web/20120127213001/http://news.cnet.com/8301-13512_3-10369441-23.html

  294. Glaskowsky, Peter. "ATI and Nvidia face off-obliquely". CNET. Archived from the original on January 27, 2012. Retrieved August 9, 2014. https://web.archive.org/web/20120127213001/http://news.cnet.com/8301-13512_3-10369441-23.html

  295. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  296. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  297. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  298. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  299. Woligroski, Don (December 22, 2011). "AMD Radeon HD 7970". TomsHardware.com. Retrieved August 9, 2014. http://www.tomshardware.com/reviews/radeon-hd-7970-benchmark-tahiti-gcn,3104.html

  300. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  301. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  302. "NVIDIA Kepler GK110 Architecture" (PDF). NVIDIA. 2012. Retrieved January 9, 2024. https://staff.cs.manchester.ac.uk/~fumie/internal/KeplerArchitecture.pdf

  303. Smith, Ryan (November 12, 2012). "NVIDIA Launches Tesla K20 & K20X: GK110 Arrives At Last". AnandTech. http://www.anandtech.com/show/6446/nvidia-launches-tesla-k20-k20x-gk110-arrives-at-last

  304. "Whitepaper: NVIDIA GeForce GTX 680" (PDF). NVIDIA. 2012. Archived from the original (PDF) on April 17, 2012. https://web.archive.org/web/20120417045615/http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf

  305. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  306. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  307. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  308. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  309. Kan, Michael (August 18, 2020). "Xbox Series X May Give Your Wallet a Workout Due to High Chip Manufacturing Costs". PCMag. Retrieved September 5, 2020. https://uk.pcmag.com/video-game-consoles/128235/xbox-series-x-may-give-your-wallet-a-workout-due-to-high-chip-manufacturing-costs

  310. "AMD Xbox One GPU". www.techpowerup.com. Retrieved February 5, 2020. https://www.techpowerup.com/gpu-specs/xbox-one-gpu.c2086

  311. "AMD PlayStation 4 GPU". www.techpowerup.com. Retrieved February 5, 2020. https://www.techpowerup.com/gpu-specs/playstation-4-gpu.c2085

  312. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  313. "AMD Xbox One S GPU". www.techpowerup.com. Retrieved February 5, 2020. https://www.techpowerup.com/gpu-specs/xbox-one-s-gpu.c2866

  314. "AMD PlayStation 4 Pro GPU". www.techpowerup.com. Retrieved February 5, 2020. https://www.techpowerup.com/gpu-specs/playstation-4-pro-gpu.c2876

  315. Smith, Ryan (June 29, 2016). "The AMD RX 480 Preview". Anandtech.com. Retrieved February 22, 2017. http://www.anandtech.com/show/10446/the-amd-radeon-rx-480-preview

  316. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  317. Schor, David (July 22, 2018). "VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP". WikiChip Fuse. Retrieved May 31, 2019. https://fuse.wikichip.org/news/1497/vlsi-2018-globalfoundries-12nm-leading-performance-12lp/

  318. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  319. Schor, David (July 22, 2018). "VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP". WikiChip Fuse. Retrieved May 31, 2019. https://fuse.wikichip.org/news/1497/vlsi-2018-globalfoundries-12nm-leading-performance-12lp/

  320. Harris, Mark (April 5, 2016). "Inside Pascal: NVIDIA's Newest Computing Platform". Nvidia developer blog. https://devblogs.nvidia.com/parallelforall/inside-pascal/

  321. "GPU Database: Pascal". TechPowerUp. July 26, 2023. https://www.techpowerup.com/gpu-specs/?architecture=Pascal&sort=generation

  322. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  323. "GPU Database: Pascal". TechPowerUp. July 26, 2023. https://www.techpowerup.com/gpu-specs/?architecture=Pascal&sort=generation

  324. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  325. "GPU Database: Pascal". TechPowerUp. July 26, 2023. https://www.techpowerup.com/gpu-specs/?architecture=Pascal&sort=generation

  326. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  327. "GPU Database: Pascal". TechPowerUp. July 26, 2023. https://www.techpowerup.com/gpu-specs/?architecture=Pascal&sort=generation

  328. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  329. "GPU Database: Pascal". TechPowerUp. July 26, 2023. https://www.techpowerup.com/gpu-specs/?architecture=Pascal&sort=generation

  330. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  331. "GPU Database: Pascal". TechPowerUp. July 26, 2023. https://www.techpowerup.com/gpu-specs/?architecture=Pascal&sort=generation

  332. Kan, Michael (August 18, 2020). "Xbox Series X May Give Your Wallet a Workout Due to High Chip Manufacturing Costs". PCMag. Retrieved September 5, 2020. https://uk.pcmag.com/video-game-consoles/128235/xbox-series-x-may-give-your-wallet-a-workout-due-to-high-chip-manufacturing-costs

  333. "AMD Xbox One X GPU". www.techpowerup.com. Retrieved February 5, 2020. https://www.techpowerup.com/gpu-specs/xbox-one-x-gpu.c2977

  334. "Radeon's next-generation Vega architecture" (PDF). http://radeon.com/_downloads/vega-whitepaper-11.6.17.pdf

  335. Durant, Luke; Giroux, Olivier; Harris, Mark; Stam, Nick (May 10, 2017). "Inside Volta: The World's Most Advanced Data Center GPU". Nvidia developer blog. https://devblogs.nvidia.com/parallelforall/inside-volta/

  336. "NVIDIA TURING GPU ARCHITECTURE: Graphics Reinvented" (PDF). Nvidia. 2018. Retrieved June 28, 2019. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

  337. "NVIDIA GeForce GTX 1650". www.techpowerup.com. Retrieved February 5, 2020. https://www.techpowerup.com/gpu-specs/geforce-gtx-1650.c3366

  338. "NVIDIA GeForce GTX 1660 Ti". www.techpowerup.com. Retrieved February 5, 2020. https://www.techpowerup.com/gpu-specs/geforce-gtx-1660-ti.c3364

  339. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019. http://vintage3d.org/dbn.php

  340. "AMD Radeon RX 5700 XT". www.techpowerup.com. Retrieved February 5, 2020. https://www.techpowerup.com/gpu-specs/radeon-rx-5700-xt.c3339

  341. "AMD Radeon RX 5500 XT". www.techpowerup.com. Retrieved February 5, 2020. https://www.techpowerup.com/gpu-specs/radeon-rx-5500-xt.c3468

  342. "AMD Arcturus GPU Specs". TechPowerUp. Retrieved November 10, 2022. https://www.techpowerup.com/gpu-specs/amd-arcturus.g927

  343. Walton, Jared (May 14, 2020). "Nvidia Unveils Its Next-Generation 7nm Ampere A100 GPU for Data Centers, and It's Absolutely Massive". Tom's Hardware. https://www.tomshardware.com/news/nvidia-ampere-A100-gpu-7nm

  344. "Nvidia Ampere Architecture". www.nvidia.com. Retrieved May 15, 2020. https://www.nvidia.com/en-gb/data-center/ampere-architecture/

  345. "NVIDIA GA102 GPU Specs". Techpowerup. Retrieved September 5, 2020. https://www.techpowerup.com/gpu-specs/nvidia-ga102.g930

  346. "'Giant Step into the Future': NVIDIA CEO Unveils GeForce RTX 30 Series GPUs". www.nvidia.com. September 2020. Retrieved September 5, 2020. https://blogs.nvidia.com/blog/2020/09/01/nvidia-ceo-geforce-rtx-30-series-gpus

  347. "NVIDIA GA103 GPU Specs". TechPowerUp. Retrieved March 21, 2023. https://www.techpowerup.com/gpu-specs/nvidia-ga103.g989

  348. "NVIDIA GeForce RTX 3070 Specs". TechPowerUp. Retrieved September 20, 2021. https://www.techpowerup.com/gpu-specs/geforce-rtx-3070.c3674

  349. "NVIDIA GA106 specs". TechPowerUp. Retrieved March 22, 2023. https://www.techpowerup.com/gpu-specs/nvidia-ga106.g966

  350. "NVIDIA GA107 GPU Specs". TechPowerUp. Retrieved March 21, 2023. https://www.techpowerup.com/gpu-specs/nvidia-ga107.g988

  351. "MI250X die size estimates". Twitter. November 17, 2021. https://twitter.com/Locuza_/status/1460987998934384640

  352. "AMD Instinct MI250 Professional Graphics Card". VideoCardz. November 2, 2022. https://videocardz.net/amd-instinct-mi250

  353. "AMD's Instinct MI250X OAM Card Pictured: Aldebaran's Massive Die Revealed". Tom's Hardware. November 17, 2021. https://www.tomshardware.com/news/amd-instinct-mi250x-pictured

  354. "AMD MI250X and Toplogies Explained at HC34". ServeTheHome. August 22, 2022. https://www.servethehome.com/amd-mi250x-and-toplogies-explained-at-hc34-hpe-gigabyte-supermicro/

  355. "Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips". HPCWire. March 22, 2022. Retrieved March 23, 2022. https://www.hpcwire.com/2022/03/22/nvidia-launches-hopper-h100-gpu-new-dgxs-and-grace-megachips/

  356. "NVIDIA details AD102 GPU, up to 18432 CUDA cores, 76.3B transistors and 608 mm2". VideoCardz. September 20, 2022. https://videocardz.com/newz/nvidia-details-ad102-gpu-up-to-18432-cuda-cores-76-3b-transistors-and-608-mm%C2%B2

  357. "NVIDIA confirms Ada 102/103/104 GPU specs, AD104 has more transistors than GA102". VideoCardz. September 23, 2022. https://videocardz.com/newz/nvidia-confirms-ada-102-103-104-gpu-specs-ad104-has-more-transistors-than-ga102

  358. "NVIDIA confirms Ada 102/103/104 GPU specs, AD104 has more transistors than GA102". VideoCardz. September 23, 2022. https://videocardz.com/newz/nvidia-confirms-ada-102-103-104-gpu-specs-ad104-has-more-transistors-than-ga102

  359. "Alleged Nvidia AD106 and AD107 GPU Pics, Specs, Die Sizes Revealed". Tom's Hardware. February 3, 2023. https://www.tomshardware.com/news/nvidia-ad106-and-ad107-gpus-pictured

  360. "NVIDIA GeForce RTX 4060 Ti "AD106-350" GPU Pictured, Uses Samsung GDDR6 Dies". WCCFtech. April 28, 2023. https://wccftech.com/nvidia-geforce-rtx-4060-ti-ad106-350-gpu-pictured-uses-samsung-gddr6-dies/

  361. "Alleged Nvidia AD106 and AD107 GPU Pics, Specs, Die Sizes Revealed". Tom's Hardware. February 3, 2023. https://www.tomshardware.com/news/nvidia-ad106-and-ad107-gpus-pictured

  362. "NVIDIA's Smallest Ada GPU, The AD107-400, For GeForce RTX 4060 GPUs Pictured". WCCFtech. May 21, 2023. https://wccftech.com/nvidias-smallest-ada-gpu-the-ad107-400-for-geforce-rtx-4060-gpus-pictured/

  363. "AMD Unveils World's Most Advanced Gaming Graphics Cards, Built on Groundbreaking AMD RDNA 3 Architecture with Chiplet Design". AMD (Press release). November 3, 2022. https://www.amd.com/en/press-releases/2022-11-03-amd-unveils-world-s-most-advanced-gaming-graphics-cards-built

  364. "AMD Announces the $999 Radeon RX 7900 XTX... (endnote RX-819)". TechPowerUp. November 4, 2022. https://www.techpowerup.com/300632/amd-announces-the-usd-999-radeon-rx-7900-xtx-and-usd-899-rx-7900-xt-5nm-rdna3-displayport-2-1-fsr-3-0-fluidmotion

  365. "AMD Navi 31 GPU Specs". TechPowerUp. Retrieved November 7, 2023. https://www.techpowerup.com/gpu-specs/amd-navi-31.g998

  366. "AMD Navi 32 GPU Specs". TechPowerUp. Retrieved November 7, 2023. https://www.techpowerup.com/gpu-specs/amd-navi-32.g1000

  367. "AMD Navi 33 GPU Specs". TechPowerUp. Retrieved March 21, 2023. https://www.techpowerup.com/gpu-specs/amd-navi-33.g1001

  368. "AMD Has a GPU to Rival Nvidia's H100". HPCWire. June 13, 2023. Retrieved June 14, 2023. https://www.hpcwire.com/2023/06/13/amd-has-a-gpu-to-rival-nvidias-h100/

  369. "AMD Aqua Vanjaram Specs". TechPowerUp. Retrieved January 14, 2024. https://www.techpowerup.com/gpu-specs/amd-aqua-vanjaram.g1023

  370. "NVIDIA Blackwell Platform Arrives to Power a New Era of Computing" (Press release). March 18, 2024. https://www.globenewswire.com/news-release/2024/03/18/2848181/0/en/NVIDIA-Blackwell-Platform-Arrives-to-Power-a-New-Era-of-Computing.html

  371. "NVIDIA GeForce RTX 5090 Specs". TechPowerUp. January 17, 2025. Retrieved January 17, 2025. https://www.techpowerup.com/gpu-specs/geforce-rtx-5090.c4216

  372. "Taiwan Company UMC Delivers 65nm FPGAs to Xilinx." SDA-ASIA Thursday, November 9, 2006. https://web.archive.org/web/20081023020234/http://www.sda-asia.com/sda/features/psecom,id,734,srn,2,nodeid,21,_language,Singapore.html

  373. ""Altera's new 40nm FPGAs — 2.5 billion transistors!". pldesignline.com. Archived from the original on June 19, 2010. Retrieved January 22, 2009. https://web.archive.org/web/20100619104139/http://www.pldesignline.com/207800871

  374. "Design of a High-Density SoC FPGA at 20nm" (PDF). 2014. Archived from the original (PDF) on April 23, 2016. Retrieved July 16, 2017. https://web.archive.org/web/20160423215925/http://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-12-day2-epub/HC26.12-5-FPGAs-epub/HC26.12.510-SoC-FPGA-20nm-Vest-Altera.pdf

  375. Maxfield, Clive (October 2011). "New Xilinx Virtex-7 2000T FPGA provides equivalent of 20 million ASIC gates". EETimes. AspenCore. Retrieved September 4, 2019. https://www.eetimes.com/document.asp?doc_id=1316816

  376. Greenhill, D.; Ho, R.; Lewis, D.; Schmit, H.; Chan, K. H.; Tong, A.; Atsatt, S.; How, D.; McElheny, P. (February 2017). "3.3 a 14nm 1GHz FPGA with 2.5D transceiver integration". 2017 IEEE International Solid-State Circuits Conference (ISSCC). pp. 54–55. doi:10.1109/ISSCC.2017.7870257. ISBN 978-1-5090-3758-2. S2CID 2135354. 978-1-5090-3758-2

  377. "3.3 A 14nm 1GHz FPGA with 2.5D transceiver integration | DeepDyve". May 17, 2017. Archived from the original on May 17, 2017. Retrieved September 19, 2019. https://web.archive.org/web/20170517193955/https://www.deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/3-3-a-14nm-1ghz-fpga-with-2-5d-transceiver-integration-dOpKM0jD74

  378. Santarini, Mike (May 2014). "Xilinx Ships Industry's First 20-nm All Programmable Devices" (PDF). Xcell journal. No. 86. Xilinx. p. 14. Retrieved June 3, 2014. http://www.xilinx.com/publications/archives/xcell/Xcell86.pdf

  379. Gianelli, Silvia (January 2015). "Xilinx Delivers the Industry's First 4M Logic Cell Device, Offering >50M Equivalent ASIC Gates and 4X More Capacity than Competitive Alternatives". www.xilinx.com. Retrieved August 22, 2019. https://www.xilinx.com/news/press/2015/xilinx-delivers-the-industry-s-first-4m-logic-cell-device-offering-50m-equivalent-asic-gates-and-4x-more-capacity-than-competitive-alternatives.html

  380. Estimate

  381. Sims, Tara (August 2019). "Xilinx Announces the World's Largest FPGA Featuring 9 Million System Logic Cells". www.xilinx.com. Retrieved August 22, 2019. https://www.xilinx.com/news/press/2019/xilinx-announces-the-world-s-largest-fpga-featuring-9-million-system-logic-cells.html

  382. Verheyde, Arne (August 2019). "Xilinx Introduces World's Largest FPGA With 35 Billion Transistors". www.tomshardware.com. Retrieved August 23, 2019. https://www.tomshardware.com/news/xilinx-world-largest-fpga,40212.html

  383. Cutress, Ian (August 2019). "Xilinx Announces World Largest FPGA: Virtex Ultrascale+ VU19P with 9m Cells". www.anandtech.com. Retrieved September 25, 2019. https://www.anandtech.com/show/14798/xilinx-announces-world-largest-fpga-virtex-ultrascale-vu19p-with-9m-cells

  384. Abazovic, Fuad (May 2019). "Xilinx 7nm Versal taped out last year". Retrieved September 30, 2019. https://fudzilla.com/news/ai/48791-xilinx-7nm-versal-taped-out-last-year

  385. Cutress, Ian (August 2019). "Hot Chips 31 Live Blogs: Xilinx Versal AI Engine". Retrieved September 30, 2019. https://www.anandtech.com/show/14768/hot-chips-31-live-blogs-xilinx-versal-ai-engine

  386. Krewell, Kevin (August 2019). "Hot Chips 2019 highlights new AI strategies". Retrieved September 30, 2019. https://www.electronicproducts.com/News/Hot_Chips_2019_highlights_new_AI_strategies.aspx

  387. Estimate

  388. Leibson, Steven (November 6, 2019). "Intel announces Intel Stratix 10 GX 10M FPGA, worlds highest capacity with 10.2 million logic elements". Retrieved November 7, 2019. https://blogs.intel.com/psg/intel-announces-intel-stratix-10-gx-10m-fpga-worlds-highest-capacity-with-10-2-million-logic-elements-targets-asic-prototyping-and-emulation-markets/

  389. Verheyde, Arne (November 6, 2019). "Intel Introduces World's Largest FPGA With 43.3 Billion Transistors". Retrieved November 7, 2019. https://www.tomshardware.com/news/intel-introduces-worlds-largest-fpga-with-433-billion-transistors

  390. Versal Premium are confirmed to be shipping in 1H 2021 but nothing was mentioned about the VP1802 in particular. Usually Xilinx makes separate news for the release of its biggest devices so the VP1802 is likely to be released later.

  391. Cutress, Ian (August 2020). "Hot Chips 2020 Live Blog: Xilinx Versal ACAPs". Retrieved September 9, 2020. https://www.anandtech.com/show/16002/hot-chips-2020-live-blog-xilinx-versal-acaps-900am-pt

  392. "Xilinx Announces Full Production Shipments of 7nm Versal AI Core and Versal Prime Series Devices". April 27, 2021. Retrieved May 8, 2021. https://www.xilinx.com/news/press/2021/xilinx-announces-full-production-shipments-of-7nm-versal-ai-core-and-versal-prime-series-devices.html

  393. The DRAM memory of Robert Dennard history-computer.com http://history-computer.com/ModernComputer/Basis/dram.html

  394. "Late 1960s: Beginnings of MOS memory" (PDF). Semiconductor History Museum of Japan. January 23, 2019. Retrieved June 27, 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi718E.pdf

  395. "1970: Semiconductors compete with magnetic cores". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/storageengine/semiconductors-compete-with-magnetic-cores/

  396. "2.1.1 Flash Memory". TU Wien. Retrieved June 20, 2019. http://www.iue.tuwien.ac.at/phd/windbacher/node14.html

  397. Shilov, Anton. "SK Hynix Starts Production of 128-Layer 4D NAND, 176-Layer Being Developed". www.anandtech.com. Retrieved September 16, 2019. https://www.anandtech.com/show/14589/sk-hynix-128-layer-4d-nand

  398. "Samsung Begins Production of 100+ Layer Sixth-Generation V-NAND Flash". PC Perspective. August 11, 2019. Retrieved September 16, 2019. https://pcper.com/2019/08/samsung-begins-production-of-100-layer-sixth-generation-v-nand-flash/

  399. "1966: Semiconductor RAMs Serve High-speed Storage Needs". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/siliconengine/semiconductor-rams-serve-high-speed-storage-needs/

  400. "Specifications for Toshiba "TOSCAL" BC-1411". Old Calculator Web Museum. Archived from the original on July 3, 2017. Retrieved May 8, 2018. http://www.oldcalculatormuseum.com/s-toshbc1411.html

  401. "Toshiba "Toscal" BC-1411 Desktop Calculator". Old Calculator Web Museum. Archived from the original on May 20, 2007. http://www.oldcalculatormuseum.com/toshbc1411.html

  402. "1966: Semiconductor RAMs Serve High-speed Storage Needs". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/siliconengine/semiconductor-rams-serve-high-speed-storage-needs/

  403. Castrucci, Paul (May 10, 1966). "IBM first in IC memory" (PDF). IBM News. Vol. 3, no. 9. IBM Corporation. Retrieved June 19, 2019 – via Computer History Museum. https://archive.computerhistory.org/resources/access/text/2017/02/102770626-05-01-acc.pdf

  404. "1970: Semiconductors compete with magnetic cores". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/storageengine/semiconductors-compete-with-magnetic-cores/

  405. "Late 1960s: Beginnings of MOS memory" (PDF). Semiconductor History Museum of Japan. January 23, 2019. Retrieved June 27, 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi718E.pdf

  406. "1970: Semiconductors compete with magnetic cores". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/storageengine/semiconductors-compete-with-magnetic-cores/

  407. "Late 1960s: Beginnings of MOS memory" (PDF). Semiconductor History Museum of Japan. January 23, 2019. Retrieved June 27, 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi718E.pdf

  408. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  409. "1970s: SRAM evolution" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi724E.pdf

  410. Pimbley, J. (2012). Advanced CMOS Process Technology. Elsevier. p. 7. ISBN 9780323156806. 9780323156806

  411. "Late 1960s: Beginnings of MOS memory" (PDF). Semiconductor History Museum of Japan. January 23, 2019. Retrieved June 27, 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi718E.pdf

  412. "Intel: 35 Years of Innovation (1968–2003)" (PDF). Intel. 2003. Archived from the original (PDF) on November 4, 2021. Retrieved June 26, 2019. https://web.archive.org/web/20211104070452/https://www.intel.com/Assets/PDF/General/35yrs.pdf

  413. The DRAM memory of Robert Dennard history-computer.com http://history-computer.com/ModernComputer/Basis/dram.html

  414. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 362–363. ISBN 9783540342588. The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 μm2 memory cell size, a die size just under 10 mm2, and sold for around $21. 9783540342588

  415. "1970: Semiconductors compete with magnetic cores". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/storageengine/semiconductors-compete-with-magnetic-cores/

  416. "Manufacturers in Japan enter the DRAM market and integration densities are improved" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi745E.pdf

  417. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  418. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  419. "Silicon Gate MOS 2102A". Intel. Retrieved June 27, 2019. https://drive.google.com/file/d/0B9rh9tVI0J5mMmZlYWRlMDQtNDYzYS00OWJkLTg4YzYtZDYzMzc5Y2ZlYmVk/view

  420. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  421. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  422. "One of the Most Successful 16K Dynamic RAMs: The 4116". National Museum of American History. Smithsonian Institution. Retrieved June 20, 2019. http://smithsonianchips.si.edu/augarten/p50.htm

  423. "1970: Semiconductors compete with magnetic cores". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/storageengine/semiconductors-compete-with-magnetic-cores/

  424. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  425. Component Data Catalog (PDF). Intel. 1978. pp. 3–94. Retrieved June 27, 2019. http://bitsavers.trailing-edge.com/components/intel/_dataBooks/1978_Intel_Component_Data_Catalog.pdf

  426. "1970s: SRAM evolution" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi724E.pdf

  427. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  428. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  429. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  430. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  431. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  432. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  433. "The Cutting Edge of IC Technology: The First 294,912-Bit (288K) Dynamic RAM". National Museum of American History. Smithsonian Institution. Retrieved June 20, 2019. http://smithsonianchips.si.edu/augarten/p66.htm

  434. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  435. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  436. Pimbley, J. (2012). Advanced CMOS Process Technology. Elsevier. p. 7. ISBN 9780323156806. 9780323156806

  437. "Computer History for 1984". Computer Hope. Retrieved June 25, 2019. https://www.computerhope.com/history/1984.htm

  438. "Japanese Technical Abstracts". Japanese Technical Abstracts. 2 (3–4). University Microfilms: 161. 1987. The announcement of 1M DRAM in 1984 began the era of megabytes. https://books.google.com/books?id=Fa0kAQAAIAAJ

  439. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  440. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  441. "KM48SL2000-7 Datasheet". Samsung. August 1992. Retrieved June 19, 2019. https://www.datasheetarchive.com/KM48SL2000-7-datasheet.html

  442. "Electronic Design". Electronic Design. 41 (15–21). Hayden Publishing Company. 1993. The first commercial synchronous DRAM, the Samsung 16-Mbit KM48SL2000, employs a single-bank architecture that lets system designers easily transition from asynchronous to synchronous systems. https://books.google.com/books?id=QmpJAQAAIAAJ

  443. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  444. Breaking the gigabit barrier, DRAMs at ISSCC portend major system-design impact. (dynamic random access memory; International Solid-State Circuits Conference; Hitachi Ltd. and NEC Corp. research and development), January 9, 1995

  445. "Japanese Company Profiles" (PDF). Smithsonian Institution. 1996. Retrieved June 27, 2019. http://smithsonianchips.si.edu/ice/cd/PROF96/JAPAN.PDF

  446. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  447. "History: 1990s". SK Hynix. Archived from the original on February 5, 2021. Retrieved July 6, 2019. https://web.archive.org/web/20210205032928/https://www.skhynix.com/eng/about/history1990.jsp

  448. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  449. "History: 1990s". SK Hynix. Archived from the original on February 5, 2021. Retrieved July 6, 2019. https://web.archive.org/web/20210205032928/https://www.skhynix.com/eng/about/history1990.jsp

  450. "Samsung 50nm 2GB DDR3 chips are industry's smallest". SlashGear. September 29, 2008. Retrieved June 25, 2019. https://www.slashgear.com/samsung-50nm-2gb-ddr3-chips-are-industrys-smallest-2917676/

  451. Shilov, Anton (July 19, 2017). "Samsung Increases Production Volumes of 8 GB HBM2 Chips Due to Growing Demand". AnandTech. Retrieved June 29, 2019. https://www.anandtech.com/show/11643/samsung-increases-8gb-hbm2-production-volume

  452. "Samsung Unleashes a Roomy DDR4 256GB RAM". Tom's Hardware. September 6, 2018. Archived from the original on June 21, 2019. Retrieved June 21, 2019. https://web.archive.org/web/20190621205106/https://www.tomshardware.co.uk/samsung-256gb-ddr4-ram,news-59123.html

  453. "First 3D Nanotube and RRAM ICs Come Out of Foundry". IEEE Spectrum: Technology, Engineering, and Science News. July 19, 2019. Retrieved September 16, 2019. This wafer was made just last Friday... and it's the first monolithic 3D IC ever fabricated within a foundry https://spectrum.ieee.org/first-3d-nanotube-and-rram-ics-come-out-of-foundry

  454. "Three Dimensional Monolithic System-on-a-Chip". www.darpa.mil. Retrieved September 16, 2019. https://www.darpa.mil/program/three-dimensional-monolithic-system-on-a-chip

  455. "DARPA 3DSoC Initiative Completes First Year, Update Provided at ERI Summit on Key Steps Achieved to Transfer Technology into SkyWater's 200mm U.S. Foundry". Skywater Technology Foundry (Press release). July 25, 2019. Retrieved September 16, 2019. https://www.skywatertechnology.com/press-releases/darpa-3dsoc-initiative-completes-first-year-update-provided-at-eri-summit-on-key-steps-achieved-to-transfer-technology-into-skywaters-200mm-u-s-foundry/

  456. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  457. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  458. "DD28F032SA Datasheet". Intel. Retrieved June 27, 2019. http://www.datasheetcatalog.com/datasheets_pdf/D/D/2/8/DD28F032SA.shtml

  459. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  460. "TOSHIBA ANNOUNCES 0.13 MICRON 1Gb MONOLITHIC NAND FEATURING LARGE BLOCK SIZE FOR IMPROVED WRITE/ERASE SPEED PERFORMANCE". Toshiba. September 9, 2002. Archived from the original on March 11, 2006. Retrieved March 11, 2006. https://web.archive.org/web/20060311224004/http://www.toshiba.com/taec/news/press_releases/2002/to-230.jsp

  461. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  462. "TOSHIBA AND SANDISK INTRODUCE A ONE GIGABIT NAND FLASH MEMORY CHIP, DOUBLING CAPACITY OF FUTURE FLASH PRODUCTS". Toshiba. November 12, 2001. Retrieved June 20, 2019. http://www.toshiba.co.jp/about/press/2001_11/pr1202.htm

  463. "Our Proud Heritage from 2000 to 2009". Samsung Semiconductor. Samsung. Retrieved June 25, 2019. https://www.samsung.com/semiconductor/about-us/history-03/

  464. "TOSHIBA ANNOUNCES 1 GIGABYTE COMPACTFLASH CARD". Toshiba. September 9, 2002. Archived from the original on March 11, 2006. Retrieved March 11, 2006. https://web.archive.org/web/20060311212118/http://www.toshiba.com/taec/news/press_releases/2002/to-231.jsp

  465. "Our Proud Heritage from 2000 to 2009". Samsung Semiconductor. Samsung. Retrieved June 25, 2019. https://www.samsung.com/semiconductor/about-us/history-03/

  466. "History". Samsung Electronics. Samsung. Retrieved June 19, 2019. https://www.samsung.com/us/aboutsamsung/company/history/

  467. "TOSHIBA COMMERCIALIZES INDUSTRY'S HIGHEST CAPACITY EMBEDDED NAND FLASH MEMORY FOR MOBILE CONSUMER PRODUCTS". Toshiba. April 17, 2007. Archived from the original on November 23, 2010. Retrieved November 23, 2010. https://web.archive.org/web/20101123023805/http://www.toshiba.com/taec/news/press_releases/2007/memy_07_470.jsp

  468. "Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices". Toshiba. August 7, 2008. Retrieved June 21, 2019. https://www.toshiba.co.jp/about/press/2008_08/pr0701.htm

  469. "Toshiba Launches Industry's Largest Embedded NAND Flash Memory Modules". Toshiba. June 17, 2010. Retrieved June 21, 2019. https://www.toshiba.co.jp/about/press/2010_06/pr1701.htm

  470. "Samsung e·MMC Product family" (PDF). Samsung Electronics. December 2011. Archived from the original (PDF) on November 8, 2019. Retrieved July 15, 2019. https://web.archive.org/web/20191108055325/http://www.mt-system.ru/sites/default/files/klmxgxge4a-x001mmc4_41_2ynm_based_emmc1_1.pdf

  471. Shilov, Anton (December 5, 2017). "Samsung Starts Production of 512 GB UFS NAND Flash Memory: 64-Layer V-NAND, 860 MB/s Reads". AnandTech. Retrieved June 23, 2019. https://www.anandtech.com/show/12120/samsung-starts-production-of-512-gb-ufs-chips

  472. Manners, David (January 30, 2019). "Samsung makes 1TB flash eUFS module". Electronics Weekly. Retrieved June 23, 2019. https://www.electronicsweekly.com/news/business/samsung-makes-1tb-flash-module-2019-01/

  473. Tallis, Billy (October 17, 2018). "Samsung Shares SSD Roadmap for QLC NAND And 96-layer 3D NAND". AnandTech. Retrieved June 27, 2019. https://www.anandtech.com/show/13497/samsung-shares-ssd-roadmap-for-qlc-nand-and-96layer-3d-nand

  474. "Micron's 232 Layer NAND Now Shipping". AnandTech. July 26, 2022. https://www.anandtech.com/print/17509/microns-232-layer-nand-now-shipping

  475. "232-Layer NAND". Micron. Retrieved October 17, 2022. https://www.micron.com/products/nand-flash/232-layer-nand

  476. "First to Market, Second to None: the World's First 232-Layer NAND". Micron. July 26, 2022. https://www.micron.com/about/blog/2022/july/first-to-market-second-to-none-the-worlds-first-232-layer-nand

  477. "Comparison: Latest 3D NAND Products from YMTC, Samsung, SK hynix and Micron". TechInsights. January 11, 2023. https://www.techinsights.com/blog/comparison-latest-3d-nand-products-ymtc-samsung-sk-hynix-and-micron

  478. Han-Way Huang (December 5, 2008). Embedded System Design with C805. Cengage Learning. p. 22. ISBN 978-1-111-81079-5. Archived from the original on April 27, 2018. 978-1-111-81079-5

  479. Marie-Aude Aufaure; Esteban Zimányi (January 17, 2013). Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lectures. Springer. p. 136. ISBN 978-3-642-36318-4. Archived from the original on April 27, 2018. 978-3-642-36318-4

  480. "1965: Semiconductor Read-Only-Memory Chips Appear". Computer History Museum. Retrieved June 20, 2019. https://www.computerhistory.org/siliconengine/semiconductor-read-only-memory-chips-appear/

  481. "1965: Semiconductor Read-Only-Memory Chips Appear". Computer History Museum. Retrieved June 20, 2019. https://www.computerhistory.org/siliconengine/semiconductor-read-only-memory-chips-appear/

  482. "1971: Reusable semiconductor ROM introduced". The Storage Engine. Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/storageengine/reusable-semiconductor-rom-introduced/

  483. "1965: Semiconductor Read-Only-Memory Chips Appear". Computer History Museum. Retrieved June 20, 2019. https://www.computerhistory.org/siliconengine/semiconductor-read-only-memory-chips-appear/

  484. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  485. Iizuka, H.; Masuoka, F.; Sato, Tai; Ishikawa, M. (1976). "Electrically alterable avalanche-injection-type MOS READ-ONLY memory with stacked-gate structure". IEEE Transactions on Electron Devices. 23 (4): 379–387. Bibcode:1976ITED...23..379I. doi:10.1109/T-ED.1976.18415. ISSN 0018-9383. S2CID 30491074. /wiki/Bibcode_(identifier)

  486. μCOM-43 SINGLE CHIP MICROCOMPUTER: USERS' MANUAL (PDF). NEC Microcomputers. January 1978. Retrieved June 27, 2019. https://en.wikichip.org/w/images/9/9c/%C2%B5COM-43_SINGLE_CHIP_MICROCOMPUTER_USERS_MANUAL.pdf

  487. "Intel: 35 Years of Innovation (1968–2003)" (PDF). Intel. 2003. Archived from the original (PDF) on November 4, 2021. Retrieved June 26, 2019. https://web.archive.org/web/20211104070452/https://www.intel.com/Assets/PDF/General/35yrs.pdf

  488. "2716: 16K (2K x 8) UV ERASABLE PROM" (PDF). Intel. Archived from the original (PDF) on September 13, 2020. Retrieved June 27, 2019. https://web.archive.org/web/20200913213609/https://amigan.yatho.com/2716EPROM.pdf

  489. "1965: Semiconductor Read-Only-Memory Chips Appear". Computer History Museum. Retrieved June 20, 2019. https://www.computerhistory.org/siliconengine/semiconductor-read-only-memory-chips-appear/

  490. "1982 CATALOG" (PDF). NEC Electronics. Retrieved June 20, 2019. http://bitsavers.trailing-edge.com/components/nec/_dataBooks/1982_NEC_Microcomputer_Catalog.pdf

  491. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  492. Component Data Catalog (PDF). Intel. 1978. pp. 1–3. Retrieved June 27, 2019. http://bitsavers.trailing-edge.com/components/intel/_dataBooks/1978_Intel_Component_Data_Catalog.pdf

  493. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  494. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  495. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  496. "27256 Datasheet" (PDF). Intel. Retrieved July 2, 2019. https://datasheet.octopart.com/D27256-2-Intel-datasheet-17852618.pdf

  497. "History of Fujitsu's Semiconductor Business". Fujitsu. Retrieved July 2, 2019. https://www.fujitsu.com/jp/group/fsl/en/business/semiconductor/history/

  498. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  499. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  500. "D27512-30 Datasheet" (PDF). Intel. Retrieved July 2, 2019. https://www.datasheet.live/index.php?title=Special:PdfViewer&url=https%3A%2F%2Fpdf.datasheet.live%2Fe6dbd5cf%2Fintel.com%2FD27512-30.pdf

  501. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  502. "Japanese Company Profiles" (PDF). Smithsonian Institution. 1996. Retrieved June 27, 2019. http://smithsonianchips.si.edu/ice/cd/PROF96/JAPAN.PDF

  503. "A Computer Pioneer Rediscovered, 50 Years On". The New York Times. April 20, 1994. Archived from the original on November 4, 2016. https://web.archive.org/web/20161104051054/http://www.nytimes.com/1994/04/20/news/20iht-zuse.html

  504. "History of Computers and Computing, Birth of the modern computer, Relays computer, George Stibitz". history-computer.com. Retrieved August 22, 2019. Initially the 'Complex Number Computer' performed only complex multiplication and division, but later a simple modification enabled it to add and subtract as well. It used about 400-450 binary relays, 6-8 panels, and ten multiposition, multipole relays called "crossbars" for temporary storage of numbers. https://history-computer.com/ModernComputer/Relays/Stibitz.html

  505. "1953: Transistorized Computers Emerge". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/siliconengine/transistorized-computers-emerge/

  506. "ETL Mark III Transistor-Based Computer". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019. http://museum.ipsj.or.jp/en/computer/dawn/0011.html

  507. "Brief History". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019. http://museum.ipsj.or.jp/en/computer/main/history.html

  508. "1962: Aerospace systems are first the applications for ICs in computers | The Silicon Engine | Computer History Museum". www.computerhistory.org. Retrieved September 2, 2019. https://www.computerhistory.org/siliconengine/aerospace-systems-are-first-the-applications-for-ics-in-computers/

  509. "Brief History". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019. http://museum.ipsj.or.jp/en/computer/main/history.html

  510. "PDP-8 (Straight 8) Computer Functional Restoration". www.pdp8.net. Retrieved August 22, 2019. backplanes contain 230 cards, approximately 10,148 diodes, 1409 transistors, 5615 resistors, and 1674 capacitors https://www.pdp8.net/straight8/functional_restore.shtml

  511. "1953: Transistorized Computers Emerge". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/siliconengine/transistorized-computers-emerge/

  512. "1953: Transistorized Computers Emerge". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/siliconengine/transistorized-computers-emerge/

  513. "1953: Transistorized Computers Emerge". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/siliconengine/transistorized-computers-emerge/

  514. "IBM 608 calculator". IBM. January 23, 2003. Retrieved March 8, 2021. https://www.ibm.com/ibm/history/exhibits/vintage/vintage_4506VV2214.html

  515. "1953: Transistorized Computers Emerge". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/siliconengine/transistorized-computers-emerge/

  516. "ETL Mark III Transistor-Based Computer". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019. http://museum.ipsj.or.jp/en/computer/dawn/0011.html

  517. "【NEC】 NEAC-2201". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019. http://museum.ipsj.or.jp/en/computer/dawn/0018.html

  518. "【Hitachi and Japanese National Railways】 MARS-1". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019. http://museum.ipsj.or.jp/en/computer/dawn/0030.html

  519. The IBM 7070 Data Processing System. Avery et al. (page 167) https://www.computer.org/csdl/proceedings/afips/1958/5053/00/50530165.pdf

  520. "【Matsushita Electric Industrial】 MADIC-I transistor-based computer". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019. http://museum.ipsj.or.jp/en/computer/dawn/0066.html

  521. "【NEC】 NEAC-2203". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019. http://museum.ipsj.or.jp/en/computer/dawn/0025.html

  522. "【Toshiba】 TOSBAC-2100". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019. http://museum.ipsj.or.jp/en/computer/dawn/0022.html

  523. 7090 Data Processing System https://web.archive.org/web/20050121014723/http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP7090.html

  524. Luigi Logrippo. "My first two computers: Elea 9003 and Elea 6001: Memories of a 'bare-metal' programmer". https://www.site.uottawa.ca/~luigi/papers/elea.htm

  525. "【Mitsubishi Electric】 MELCOM 1101". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019. http://museum.ipsj.or.jp/en/computer/dawn/0039.html

  526. Erich Bloch (1959). The Engineering Design of the Stretch Computer (PDF). Eastern Joint Computer Conference. /wiki/Erich_Bloch

  527. "【NEC】NEAC-L2". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019. http://museum.ipsj.or.jp/en/computer/main/0102.html

  528. Thornton, James (1970). Design of a Computer: the Control Data 6600. p. 20. /wiki/James_E._Thornton

  529. "PDP-8 (Straight 8) Computer Functional Restoration". www.pdp8.net. Retrieved August 22, 2019. backplanes contain 230 cards, approximately 10,148 diodes, 1409 transistors, 5615 resistors, and 1674 capacitors https://www.pdp8.net/straight8/functional_restore.shtml

  530. "Digital Equipment PDP-8/S". https://www.ricomputermuseum.org/collections-gallery/equipment/pdp-8s

  531. "The PDP-8/S - an exercise in cost reduction" https://retrocomputingforum.com/t/the-pdp-8-s-an-exercise-in-cost-reduction/1599

  532. "PDP-8/S" http://computermuseum.informatik.uni-stuttgart.de/dev_en/pdp8s/index.html

  533. "The Digital Equipment Corporation PDP-8: Models and Options: The PDP-8/I". http://homepage.divms.uiowa.edu/~jones/pdp8/models/#PDP8I

  534. James F. O'Loughlin. "PDP-8/I: bigger on the inside yet smaller on the outside". http://bitsavers.org/magazines/Electronics/Electronics_V41_N19_19680916_PDP8I.pdf

  535. Jan M. Rabaey, Digital Integrated Circuits, Fall 2001: Course Notes, Chapter 6: Designing Combinatorial Logic Gates in CMOS, retrieved October 27, 2012. http://bwrc.eecs.berkeley.edu/Classes/ic541ca/ic541ca%5Ff01/Notes/chapter6.pdf

  536. Richard F. Tinder (January 2000). Engineering Digital Design. Academic Press. ISBN 978-0-12-691295-1. 978-0-12-691295-1

  537. Engineers, Institute of Electrical Electronics (2000). 100-2000 (7th ed.). doi:10.1109/IEEESTD.2000.322230. ISBN 978-0-7381-2601-2. IEEE Std 100-2000. 978-0-7381-2601-2

  538. Engineers, Institute of Electrical Electronics (2000). 100-2000 (7th ed.). doi:10.1109/IEEESTD.2000.322230. ISBN 978-0-7381-2601-2. IEEE Std 100-2000. 978-0-7381-2601-2

  539. Engineers, Institute of Electrical Electronics (2000). 100-2000 (7th ed.). doi:10.1109/IEEESTD.2000.322230. ISBN 978-0-7381-2601-2. IEEE Std 100-2000. 978-0-7381-2601-2

  540. Engineers, Institute of Electrical Electronics (2000). 100-2000 (7th ed.). doi:10.1109/IEEESTD.2000.322230. ISBN 978-0-7381-2601-2. IEEE Std 100-2000. 978-0-7381-2601-2

  541. Smith, Kevin (August 11, 1983). "Image processor handles 256 pixels simultaneously". Electronics.

  542. Smith, Kevin (August 11, 1983). "Image processor handles 256 pixels simultaneously". Electronics.

  543. Smith, Kevin (August 11, 1983). "Image processor handles 256 pixels simultaneously". Electronics.

  544. Kanellos, Michael (February 9, 2005). "Cell chip: Hit or hype?". CNET News. Archived from the original on October 25, 2012. https://web.archive.org/web/20121025113906/https://news.cnet.com/Cell-chip-Hit-or-hype/2010-1006_3-5568046.html

  545. "Intelligence Processing Unit"

  546. Kennedy, Patrick (June 2019). "Hands-on With a Graphcore C2 IPU PCIe Card at Dell Tech World". servethehome.com. Retrieved December 29, 2019. https://www.servethehome.com/hands-on-with-a-graphcore-c2-ipu-pcie-card-at-dell-tech-world/

  547. "Colossus – Graphcore". en.wikichip.org. Retrieved December 29, 2019. https://en.wikichip.org/wiki/graphcore/microarchitectures/colossus

  548. Graphcore. "IPU Technology". www.graphcore.ai. https://www.graphcore.ai/products/ipu

  549. Hruska, Joel (August 2019). "Cerebras Systems Unveils 1.2 Trillion Transistor Wafer-Scale Processor for AI". extremetech.com. Retrieved September 6, 2019. https://www.extremetech.com/extreme/296906-cerebras-systems-unveils-1-2-trillion-transistor-wafer-scale-processor-for-ai

  550. Feldman, Michael (August 2019). "Machine Learning chip breaks new ground with waferscale integration". nextplatform.com. Retrieved September 6, 2019. https://www.nextplatform.com/2019/08/21/machine-learning-chip-breaks-new-ground-with-waferscale-integration/

  551. Cutress, Ian (August 2019). "Hot Chips 31 Live Blogs: Cerebras' 1.2 Trillion Transistor Deep Learning Processor". anandtech.com. Retrieved September 6, 2019. https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

  552. "A Look at Cerebras Wafer-Scale Engine: Half Square Foot Silicon Chip". WikiChip Fuse. November 16, 2019. Retrieved December 2, 2019. https://fuse.wikichip.org/news/3010/a-look-at-cerebras-wafer-scale-engine-half-square-foot-silicon-chip/

  553. Everett, Joseph (August 26, 2020). "World's largest CPU has 850,000 7 nm cores that are optimized for AI and 2.6 trillion transistors". TechReportArticles. https://www.techreportarticles.com/news/artificial-intelligence/worlds-largest-cpu-chip-has-850000-7nm-cores-optimized-for-ai-most-powerful-processor/

  554. "Cerebras Unveils 2nd Gen Wafer Scale Engine: 850,000 Cores, 2.6 Trillion Transistors - ExtremeTech". www.extremetech.com. April 21, 2021. Retrieved April 22, 2021. https://www.extremetech.com/computing/322070-cerebras-unveils-2nd-gen-wafer-scale-engine-850000-cores-2-6-trillion-transistors

  555. "Cerebras Wafer Scale Engine WSE-2 and CS-2 at Hot Chips 34". ServeTheHome. August 23, 2022. https://www.servethehome.com/cerebras-wafer-scale-engine-wse-2-and-cs-2-at-hot-chips-34/

  556. "NVIDIA NVLink4 NVSwitch at Hot Chips 34". ServeTheHome. August 22, 2022. https://www.servethehome.com/nvidia-nvlink4-nvswitch-at-hot-chips-34/

  557. Schor, David (April 6, 2019). "TSMC Starts 5-Nanometer Risk Production". WikiChip Fuse. Retrieved April 7, 2019. https://fuse.wikichip.org/news/2207/tsmc-starts-5-nanometer-risk-production/

  558. "1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated". Computer History Museum. Retrieved July 17, 2019. https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/

  559. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 321–3. ISBN 9783540342588. 9783540342588

  560. "1963: Complementary MOS Circuit Configuration is Invented". Computer History Museum. Retrieved July 6, 2019. https://www.computerhistory.org/siliconengine/complementary-mos-circuit-configuration-is-invented/

  561. "1964: First Commercial MOS IC Introduced". Computer History Museum. Retrieved July 17, 2019. https://www.computerhistory.org/siliconengine/first-commercial-mos-ic-introduced/

  562. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. p. 330. ISBN 9783540342588. 9783540342588

  563. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  564. Pimbley, J. (2012). Advanced CMOS Process Technology. Elsevier. p. 7. ISBN 9780323156806. 9780323156806

  565. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. p. 330. ISBN 9783540342588. 9783540342588

  566. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 362–363. ISBN 9783540342588. The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 μm2 memory cell size, a die size just under 10 mm2, and sold for around $21. 9783540342588

  567. "1970: Semiconductors compete with magnetic cores". Computer History Museum. Retrieved June 19, 2019. https://www.computerhistory.org/storageengine/semiconductors-compete-with-magnetic-cores/

  568. Lambrechts, Wynand; Sinha, Saurabh; Abdallah, Jassem Ahmed; Prinsloo, Jaco (2018). Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques. CRC Press. p. 59. ISBN 9781351248655. 9781351248655

  569. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  570. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  571. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  572. "1970s: Development and evolution of microprocessors" (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019. https://web.archive.org/web/20190627161417/http://www.shmj.or.jp/english/pdf/ic/exhibi748E.pdf

  573. "NEC 751 (uCOM-4)". The Antique Chip Collector's Page. Archived from the original on May 25, 2011. Retrieved June 11, 2010. https://web.archive.org/web/20110525202756/http://www.antiquetech.com/chips/NEC751.htm

  574. "1973: 12-bit engine-control microprocessor (Toshiba)" (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019. https://web.archive.org/web/20190627203018/http://www.shmj.or.jp/english/pdf/ic/exhibi739E.pdf

  575. Belzer, Jack; Holzman, Albert G.; Kent, Allen (1978). Encyclopedia of Computer Science and Technology: Volume 10 – Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification. CRC Press. p. 402. ISBN 9780824722609. 9780824722609

  576. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  577. "Intel Microprocessor Quick Reference Guide". Intel. Retrieved June 27, 2019. https://www.intel.com/pressroom/kits/quickrefyr.htm

  578. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  579. "1978: Double-well fast CMOS SRAM (Hitachi)" (PDF). Semiconductor History Museum of Japan. Retrieved July 5, 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi727E.pdf

  580. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  581. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  582. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE. https://core.ac.uk/download/pdf/4426308.pdf

  583. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  584. "Reality Co-Processor − The Power In Nintendo64" (PDF). Silicon Graphics. August 26, 1997. Archived from the original (PDF) on May 19, 2020. Retrieved June 18, 2019. https://web.archive.org/web/20200519051320/http://www.hotchips.org/wp-content/uploads/hc_archives/hc09/3_Tue/HC9.S10/HC9.10.2.pdf

  585. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  586. "0.18-micron Technology". TSMC. Retrieved June 30, 2019. https://www.tsmc.com/english/dedicatedFoundry/technology/0.18um.htm

  587. 65nm CMOS Process Technology http://www.fujitsu.com/downloads/MICRO/fma/pr/PressKit/65nmProcessTechnology.pdf

  588. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  589. "EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP" (PDF). Sony. April 21, 2003. Retrieved June 26, 2019. https://www.sie.com/content/dam/corporate/en/corporate/release/pdf/030421be.pdf

  590. Pires, Francisco (October 5, 2022). "Water-Based Chips Could be Breakthrough for Neural Networking, AI: Wetware has gained an entirely new meaning". Tom's Hardware. Retrieved October 5, 2022.Diefendorff, Keith (15 November 1999). "Hal Makes Sparcs Fly". Microprocessor Report, Volume 13, Number 5. https://www.tomshardware.com/news/water-based-chips-could-be-breakthrough-for-neural-networking-ai

  591. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  592. 65nm CMOS Process Technology http://www.fujitsu.com/downloads/MICRO/fma/pr/PressKit/65nmProcessTechnology.pdf

  593. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  594. "Memory". STOL (Semiconductor Technology Online). Archived from the original on November 2, 2023. Retrieved June 25, 2019. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html

  595. "EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP" (PDF). Sony. April 21, 2003. Retrieved June 26, 2019. https://www.sie.com/content/dam/corporate/en/corporate/release/pdf/030421be.pdf

  596. "Our Proud Heritage from 2000 to 2009". Samsung Semiconductor. Samsung. Retrieved June 25, 2019. https://www.samsung.com/semiconductor/about-us/history-03/

  597. 65nm CMOS Process Technology http://www.fujitsu.com/downloads/MICRO/fma/pr/PressKit/65nmProcessTechnology.pdf

  598. Cutress, Ian. "Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review". AnandTech. Retrieved June 19, 2019. https://www.anandtech.com/show/13405/intel-10nm-cannon-lake-and-core-i3-8121u-deep-dive-review/3

  599. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007. https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf

  600. "Samsung Shows Industry's First 2-Gigabit DDR2 SDRAM". Samsung Semiconductor. Samsung. September 20, 2004. Retrieved June 25, 2019. https://www.samsung.com/semiconductor/insights/news-events/samsung-shows-industrys-first-2-gigabit-ddr2-sdram/

  601. Williams, Martyn (July 12, 2004). "Fujitsu, Toshiba begin 65nm chip trial production". InfoWorld. Retrieved June 26, 2019. https://www.infoworld.com/article/2667082/fujitsu--toshiba-begin-65nm-chip-trial-production.html

  602. "Our Proud Heritage from 2000 to 2009". Samsung Semiconductor. Samsung. Retrieved June 25, 2019. https://www.samsung.com/semiconductor/about-us/history-03/

  603. Elpida's presentation at Via Technology Forum 2005 and Elpida 2005 Annual Report

  604. "Fujitsu Introduces World-class 65-Nanometer Process Technology for Advanced Server, Mobile Applications". Archived from the original on September 27, 2011. Retrieved June 20, 2019. https://web.archive.org/web/20110927115254/http://www.fujitsu.com/us/news/pr/fma_20050920-1.html

  605. 65nm CMOS Process Technology http://www.fujitsu.com/downloads/MICRO/fma/pr/PressKit/65nmProcessTechnology.pdf

  606. "History". Samsung Electronics. Samsung. Retrieved June 19, 2019. https://www.samsung.com/us/aboutsamsung/company/history/

  607. Cutress, Ian. "Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review". AnandTech. Retrieved June 19, 2019. https://www.anandtech.com/show/13405/intel-10nm-cannon-lake-and-core-i3-8121u-deep-dive-review/3

  608. "History". Samsung Electronics. Samsung. Retrieved June 19, 2019. https://www.samsung.com/us/aboutsamsung/company/history/

  609. "TOSHIBA COMMERCIALIZES INDUSTRY'S HIGHEST CAPACITY EMBEDDED NAND FLASH MEMORY FOR MOBILE CONSUMER PRODUCTS". Toshiba. April 17, 2007. Archived from the original on November 23, 2010. Retrieved November 23, 2010. https://web.archive.org/web/20101123023805/http://www.toshiba.com/taec/news/press_releases/2007/memy_07_470.jsp

  610. "Panasonic starts to sell a New-generation UniPhier System LSI". Panasonic. October 10, 2007. Retrieved July 2, 2019. http://panasonic.co.jp/corp/news/official.data/data.dir/en071010-3/en071010-3.html

  611. "Intel Now Packs 100 Million Transistors in Each Square Millimeter". IEEE Spectrum: Technology, Engineering, and Science News. March 30, 2017. Retrieved November 14, 2018. https://spectrum.ieee.org/intel-now-packs-100-million-transistors-in-each-square-millimeter

  612. "Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices". Toshiba. August 7, 2008. Retrieved June 21, 2019. https://www.toshiba.co.jp/about/press/2008_08/pr0701.htm

  613. "40nm Technology". TSMC. Retrieved June 30, 2019. https://www.tsmc.com/english/dedicatedFoundry/technology/40nm.htm

  614. "Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology". Toshiba. February 11, 2009. Retrieved June 21, 2019. http://www.toshiba.co.jp/about/press/2009_02/pr1102.htm

  615. "Intel Now Packs 100 Million Transistors in Each Square Millimeter". IEEE Spectrum: Technology, Engineering, and Science News. March 30, 2017. Retrieved November 14, 2018. https://spectrum.ieee.org/intel-now-packs-100-million-transistors-in-each-square-millimeter

  616. "History: 2010s". SK Hynix. Archived from the original on April 29, 2021. Retrieved July 8, 2019. https://web.archive.org/web/20210429202547/https://www.skhynix.com/eng/about/history2010.jsp

  617. "History". Samsung Electronics. Samsung. Retrieved June 19, 2019. https://www.samsung.com/us/aboutsamsung/company/history/

  618. "Intel Now Packs 100 Million Transistors in Each Square Millimeter". IEEE Spectrum: Technology, Engineering, and Science News. March 30, 2017. Retrieved November 14, 2018. https://spectrum.ieee.org/intel-now-packs-100-million-transistors-in-each-square-millimeter

  619. Shimpi, Anand Lal (June 8, 2012). "SandForce Demos 19nm Toshiba & 20nm IMFT NAND Flash". AnandTech. Retrieved June 19, 2019. https://www.anandtech.com/show/5960/sandforce-demos-19nm-toshiba-20nm-imft-nand-flash

  620. "History: 2010s". SK Hynix. Archived from the original on April 29, 2021. Retrieved July 8, 2019. https://web.archive.org/web/20210429202547/https://www.skhynix.com/eng/about/history2010.jsp

  621. Schor, David (April 16, 2019). "TSMC Announces 6-Nanometer Process". WikiChip Fuse. Retrieved May 31, 2019. https://fuse.wikichip.org/news/2261/tsmc-announces-6-nanometer-process/

  622. "16/12nm Technology". TSMC. Retrieved June 30, 2019. https://www.tsmc.com/english/dedicatedFoundry/technology/16nm.htm

  623. "VLSI 2018: Samsung's 8nm 8LPP, a 10nm extension". WikiChip Fuse. July 1, 2018. Retrieved May 31, 2019. https://fuse.wikichip.org/news/1443/vlsi-2018-samsungs-8nm-8lpp-a-10nm-extension/

  624. "Samsung Mass Producing 128Gb 3-bit MLC NAND Flash". Tom's Hardware. April 11, 2013. Archived from the original on June 21, 2019. Retrieved June 21, 2019. https://web.archive.org/web/20190621175628/https://www.tomshardware.co.uk/NAND-128Gb-Mass-Production-3-bit-MLC,news-43458.html

  625. "Intel Now Packs 100 Million Transistors in Each Square Millimeter". IEEE Spectrum: Technology, Engineering, and Science News. March 30, 2017. Retrieved November 14, 2018. https://spectrum.ieee.org/intel-now-packs-100-million-transistors-in-each-square-millimeter

  626. "VLSI 2018: Samsung's 8nm 8LPP, a 10nm extension". WikiChip Fuse. July 1, 2018. Retrieved May 31, 2019. https://fuse.wikichip.org/news/1443/vlsi-2018-samsungs-8nm-8lpp-a-10nm-extension/

  627. Schor, David (April 16, 2019). "TSMC Announces 6-Nanometer Process". WikiChip Fuse. Retrieved May 31, 2019. https://fuse.wikichip.org/news/2261/tsmc-announces-6-nanometer-process/

  628. "10nm Technology". TSMC. Retrieved June 30, 2019. https://www.tsmc.com/english/dedicatedFoundry/technology/10nm.htm

  629. Schor, David (July 22, 2018). "VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP". WikiChip Fuse. Retrieved May 31, 2019. https://fuse.wikichip.org/news/1497/vlsi-2018-globalfoundries-12nm-leading-performance-12lp/

  630. "Can TSMC maintain their process technology lead". SemiWiki. April 29, 2020. https://semiwiki.com/semiconductor-manufacturers/intel/285192-can-tsmc-maintain-their-process-technology-lead/

  631. Jones, Scotten (May 3, 2019). "TSMC and Samsung 5nm Comparison". Semiwiki. Retrieved July 30, 2019. https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/8157-tsmc-and-samsung-5nm-comparison/

  632. Nenni, Daniel (January 2, 2019). "Samsung vs TSMC 7nm Update". Semiwiki. Retrieved July 6, 2019. https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/7926-samsung-vs-tsmc-7nm-update/

  633. "7nm Technology". TSMC. Retrieved June 30, 2019. https://www.tsmc.com/english/dedicatedFoundry/technology/7nm.htm

  634. "VLSI 2018: Samsung's 8nm 8LPP, a 10nm extension". WikiChip Fuse. July 1, 2018. Retrieved May 31, 2019. https://fuse.wikichip.org/news/1443/vlsi-2018-samsungs-8nm-8lpp-a-10nm-extension/

  635. Nenni, Daniel (January 2, 2019). "Samsung vs TSMC 7nm Update". Semiwiki. Retrieved July 6, 2019. https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/7926-samsung-vs-tsmc-7nm-update/

  636. "Can TSMC maintain their process technology lead". SemiWiki. April 29, 2020. https://semiwiki.com/semiconductor-manufacturers/intel/285192-can-tsmc-maintain-their-process-technology-lead/

  637. Schor, David (June 15, 2018). "A Look at Intel's 10nm Std Cell as TechInsights Reports on the i3-8121U, finds Ruthenium". WikiChip Fuse. Retrieved May 31, 2019. https://fuse.wikichip.org/news/1371/a-look-at-intels-10nm-std-cell-as-techinsights-reports-on-the-i3-8121u-finds-ruthenium/

  638. "Can TSMC maintain their process technology lead". SemiWiki. April 29, 2020. https://semiwiki.com/semiconductor-manufacturers/intel/285192-can-tsmc-maintain-their-process-technology-lead/

  639. "Samsung Foundry update 2019". SemiWiki. August 6, 2019. https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/259664-samsung-foundry-update-2019/

  640. Jones, Scotten, 7nm, 5nm and 3nm Logic, current and projected processes https://semiwiki.com/semiconductor/intel/7544-7nm-5nm-and-3nm-logic-current-and-projected-processes/

  641. Shilov, Anton. "Samsung Completes Development of 5nm EUV Process Technology". AnandTech. Retrieved May 31, 2019. https://www.anandtech.com/show/14231/samsung-completes-development-of-5-nm-euv-process-technology

  642. Jones, Scotten (May 3, 2019). "TSMC and Samsung 5nm Comparison". Semiwiki. Retrieved July 30, 2019. https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/8157-tsmc-and-samsung-5nm-comparison/

  643. Nenni, Daniel (January 2, 2019). "Samsung vs TSMC 7nm Update". Semiwiki. Retrieved July 6, 2019. https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/7926-samsung-vs-tsmc-7nm-update/

  644. "Can TSMC maintain their process technology lead". SemiWiki. April 29, 2020. https://semiwiki.com/semiconductor-manufacturers/intel/285192-can-tsmc-maintain-their-process-technology-lead/

  645. Schor, David (April 6, 2019). "TSMC Starts 5-Nanometer Risk Production". WikiChip Fuse. Retrieved April 7, 2019. https://fuse.wikichip.org/news/2207/tsmc-starts-5-nanometer-risk-production/

  646. "Can TSMC maintain their process technology lead". SemiWiki. April 29, 2020. https://semiwiki.com/semiconductor-manufacturers/intel/285192-can-tsmc-maintain-their-process-technology-lead/

  647. "Samsung Foundry update 2019". SemiWiki. August 6, 2019. https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/259664-samsung-foundry-update-2019/

  648. "Samsung Foundry Innovations Power the Future of Big Data, AI/ML and Smart, Connected Devices". October 7, 2021. https://news.samsung.com/global/samsung-foundry-innovations-power-the-future-of-big-data-ai-ml-and-smart-connected-devices

  649. "Qualcomm confirms Snapdragon 8 Gen 1 is made using Samsung's 4nm process". December 2, 2021. https://www.sammobile.com/news/qualcomm-snapdragon-8-gen-1-made-using-samsung-4nm-process/

  650. Wilde, Damien (January 14, 2022). "List of Snapdragon 8 Gen 1 smartphones available since December 2021". 9to5Google. https://9to5google.com/2022/01/14/heres-every-smartphone-confirmed-to-use-the-qualcomm-snapdragon-8-gen-1-chip/

  651. "Can TSMC maintain their process technology lead". SemiWiki. April 29, 2020. https://semiwiki.com/semiconductor-manufacturers/intel/285192-can-tsmc-maintain-their-process-technology-lead/

  652. "TSMC Extends Its 5nm Family With A New Enhanced-Performance N4P Node". WikiChip. October 26, 2021. https://fuse.wikichip.org/news/6439/tsmc-extends-its-5nm-family-with-a-new-enhanced-performance-n4p-node/

  653. "MediaTek Launches Dimensity 9000 built on TSMC N4 process". December 16, 2021. https://corp.mediatek.com/news-events/press-releases/mediatek-officially-launches-dimensity-9000-flagship-chip-and-announces-adoption-by-global-device-makers

  654. "Can TSMC maintain their process technology lead". SemiWiki. April 29, 2020. https://semiwiki.com/semiconductor-manufacturers/intel/285192-can-tsmc-maintain-their-process-technology-lead/

  655. "TSMC Extends Its 5nm Family With A New Enhanced-Performance N4P Node". WikiChip. October 26, 2021. https://fuse.wikichip.org/news/6439/tsmc-extends-its-5nm-family-with-a-new-enhanced-performance-n4p-node/

  656. "TSMC Expands Advanced Technology Leadership with N4P Process (press release)". TSMC. October 26, 2021. https://pr.tsmc.com/english/news/2874

  657. "Can TSMC maintain their process technology lead". SemiWiki. April 29, 2020. https://semiwiki.com/semiconductor-manufacturers/intel/285192-can-tsmc-maintain-their-process-technology-lead/

  658. Armasu, Lucian (January 11, 2019), "Samsung Plans Mass Production of 3nm GAAFET Chips in 2021", www.tomshardware.com https://www.tomshardware.com/news/samsung-3nm-gaafet-production-2021,38426.html

  659. "Samsung Foundry Innovations Power the Future of Big Data, AI/ML and Smart, Connected Devices". October 7, 2021. https://news.samsung.com/global/samsung-foundry-innovations-power-the-future-of-big-data-ai-ml-and-smart-connected-devices

  660. "Samsung Starts 3nm Production: The Gate-All-Around (GAAFET) Era Begins". AnandTech. June 30, 2022. https://www.anandtech.com/print/17474/samsung-starts-3nm-production-the-gaafet-era-begins

  661. "Can TSMC maintain their process technology lead". SemiWiki. April 29, 2020. https://semiwiki.com/semiconductor-manufacturers/intel/285192-can-tsmc-maintain-their-process-technology-lead/

  662. "TSMC Plans New Fab for 3nm". EE Times. December 12, 2016. Retrieved September 26, 2019. https://www.eetimes.com/document.asp?doc_id=1330971

  663. "TSMC Roadmap Update: 3nm in Q1 2023, 3nm Enhanced in 2024, 2nm in 2025". www.anandtech.com. October 18, 2021. https://www.anandtech.com/show/17013/tsmc-update-3nm-in-q1-2023-3nm-enhanced-in-2024-2nm-in-2025

  664. "TSMC Introduces N4X Process (press release)". TSMC. December 16, 2021. https://pr.tsmc.com/english/news/2895

  665. "The Future Is Now (blog post)". TSMC. December 16, 2021. https://www.tsmc.com/english/news-events/blog-article-20211216

  666. "TSMC Unveils N4X Node". AnandTech. December 17, 2021. https://www.anandtech.com/print/17123/tsmc-unveils-n4x-node-high-voltages-for-high-clocks

  667. "TSMC Roadmap Update: 3nm in Q1 2023, 3nm Enhanced in 2024, 2nm in 2025". www.anandtech.com. October 18, 2021. https://www.anandtech.com/show/17013/tsmc-update-3nm-in-q1-2023-3nm-enhanced-in-2024-2nm-in-2025

  668. "TSMC roadmap update". AnandTech. April 22, 2022. https://www.anandtech.com/print/17356/tsmc-roadmap-update-n3e-in-2024-n2-in-2026-major-changes-incoming

  669. "Samsung Foundry Innovations Power the Future of Big Data, AI/ML and Smart, Connected Devices". October 7, 2021. https://news.samsung.com/global/samsung-foundry-innovations-power-the-future-of-big-data-ai-ml-and-smart-connected-devices

  670. Smith, Ryan (June 13, 2022). "Intel 4 Process Node In Detail: 2x Density Scaling, 20% Improved Performance". AnandTech. https://www.anandtech.com/print/17448/intel-4-process-node-in-detail-2x-density-scaling-20-improved-performance

  671. Alcorn, Paul (March 24, 2021). "Intel Fixes 7nm, Meteor Lake and Granite Rapids Coming in 2023". Tom's Hardware. Retrieved June 1, 2021. https://www.tomshardware.com/news/intel-fixes-7nm-meteor-lake-and-granite-rapids-coming-in-2023

  672. Cutress, Dr Ian. "Intel's Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!". www.anandtech.com. Retrieved July 27, 2021. https://www.anandtech.com/show/16823/intel-accelerated-offensive-process-roadmap-updates-to-10nm-7nm-4nm-3nm-20a-18a-packaging-foundry-emib-foveros

  673. Cutress, Dr Ian (February 17, 2022). "Intel Discloses Multi-Generation Xeon Scalable Roadmap: New E-Core Only Xeons in 2024". www.anandtech.com. https://www.anandtech.com/show/17259/intel-discloses-multigeneration-xeon-scalable-roadmap-new-ecore-only-xeons-in-2024

  674. Cutress, Dr Ian. "Intel's Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!". www.anandtech.com. Retrieved July 27, 2021. https://www.anandtech.com/show/16823/intel-accelerated-offensive-process-roadmap-updates-to-10nm-7nm-4nm-3nm-20a-18a-packaging-foundry-emib-foveros

  675. Cutress, Dr Ian (February 17, 2022). "Intel Discloses Multi-Generation Xeon Scalable Roadmap: New E-Core Only Xeons in 2024". www.anandtech.com. https://www.anandtech.com/show/17259/intel-discloses-multigeneration-xeon-scalable-roadmap-new-ecore-only-xeons-in-2024

  676. Cutress, Dr Ian. "Intel's Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!". www.anandtech.com. Retrieved July 27, 2021. https://www.anandtech.com/show/16823/intel-accelerated-offensive-process-roadmap-updates-to-10nm-7nm-4nm-3nm-20a-18a-packaging-foundry-emib-foveros

  677. Cutress, Dr Ian (February 17, 2022). "Intel Discloses Multi-Generation Xeon Scalable Roadmap: New E-Core Only Xeons in 2024". www.anandtech.com. https://www.anandtech.com/show/17259/intel-discloses-multigeneration-xeon-scalable-roadmap-new-ecore-only-xeons-in-2024

  678. Cutress, Dr Ian. "Intel's Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!". www.anandtech.com. Retrieved July 27, 2021. https://www.anandtech.com/show/16823/intel-accelerated-offensive-process-roadmap-updates-to-10nm-7nm-4nm-3nm-20a-18a-packaging-foundry-emib-foveros

  679. "Samsung Foundry Innovations Power the Future of Big Data, AI/ML and Smart, Connected Devices". October 7, 2021. https://news.samsung.com/global/samsung-foundry-innovations-power-the-future-of-big-data-ai-ml-and-smart-connected-devices

  680. "TSMC Roadmap Update: 3nm in Q1 2023, 3nm Enhanced in 2024, 2nm in 2025". www.anandtech.com. October 18, 2021. https://www.anandtech.com/show/17013/tsmc-update-3nm-in-q1-2023-3nm-enhanced-in-2024-2nm-in-2025

  681. "TSMC roadmap update". AnandTech. April 22, 2022. https://www.anandtech.com/print/17356/tsmc-roadmap-update-n3e-in-2024-n2-in-2026-major-changes-incoming

  682. "Samsung Electronics Unveils Plans for 1.4nm Process Technology and Investment for Production Capacity at Samsung Foundry Forum 2022". Samsung Global Newsroom. October 4, 2022. https://news.samsung.com/global/samsung-electronics-unveils-plans-for-1-4nm-process-technology-and-investment-for-production-capacity-at-samsung-foundry-forum-2022

  683. Gate-count estimates for performing quantum chemistry on small quantum computers https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.022305

  684. Does gate count matter? Hardware efficiency of logic-minimization techniques for cryptographic primitives https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/does-gate-count-matter-lwc2019.pdf

  685. Quantum Algorithm for Spectral Measurement with a Lower Gate Count https://ieeexplore.ieee.org/abstract/document/5537061

  686. Quantum Gate Count Analysis https://ieeexplore.ieee.org/abstract/document/10391119