Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Mertens function
Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

M ( n ) = ∑ k = 1 n μ ( k ) , {\displaystyle M(n)=\sum _{k=1}^{n}\mu (k),}

where μ ( k ) {\displaystyle \mu (k)} is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows:

M ( x ) = M ( ⌊ x ⌋ ) . {\displaystyle M(x)=M(\lfloor x\rfloor ).}

Less formally, M ( x ) {\displaystyle M(x)} is the count of square-free integers up to x that have an even number of prime factors, minus the count of those that have an odd number.

The first 143 M(n) values are (sequence A002321 in the OEIS)

M(n)+0+1+2+3+4+5+6+7+8+9+10+11
0+10−1−1−2−1−2−2−2−1−2
12+−2−3−2−1−1−2−2−3−3−2−1−2
24+−2−2−1−1−1−2−3−4−4−3−2−1
36+−1−2−100−1−2−3−3−3−2−3
48+−3−3−3−2−2−3−3−2−2−10−1
60+−1−2−1−1−10−1−2−2−1−2−3
72+−3−4−3−3−3−2−3−4−4−4−3−4
84+−4−3−2−1−1−2−2−1−1012
96+211110−1−2−2−3−2−3
108+−3−4−5−4−4−5−6−5−5−5−4−3
120+−3−3−2−1−1−1−1−2−2−1−2−3
132+−3−2−1−1−1−2−3−4−4−3−2−1

The Mertens function slowly grows in positive and negative directions both on average and in peak value, oscillating in an apparently chaotic manner passing through zero when n has the values

2, 39, 40, 58, 65, 93, 101, 145, 149, 150, 159, 160, 163, 164, 166, 214, 231, 232, 235, 236, 238, 254, 329, 331, 332, 333, 353, 355, 356, 358, 362, 363, 364, 366, 393, 401, 403, 404, 405, 407, 408, 413, 414, 419, 420, 422, 423, 424, 425, 427, 428, ... (sequence A028442 in the OEIS).

Because the Möbius function only takes the values −1, 0, and +1, the Mertens function moves slowly, and there is no x such that |M(x)| > x. H. Davenport demonstrated that, for any fixed h,

∑ n = 1 x μ ( n ) exp ⁡ ( i 2 π n θ ) = O ( x log h ⁡ x ) {\displaystyle \sum _{n=1}^{x}\mu (n)\exp(i2\pi n\theta )=O\left({\frac {x}{\log ^{h}x}}\right)}

uniformly in θ {\displaystyle \theta } . This implies, for θ = 0 {\displaystyle \theta =0} that

M ( x ) = O ( x log h ⁡ x )   . {\displaystyle M(x)=O\left({\frac {x}{\log ^{h}x}}\right)\ .}

The Mertens conjecture went further, stating that there would be no x where the absolute value of the Mertens function exceeds the square root of x. The Mertens conjecture was proven false in 1985 by Andrew Odlyzko and Herman te Riele. However, the Riemann hypothesis is equivalent to a weaker conjecture on the growth of M(x), namely M(x) = O(x1/2 + ε). Since high values for M(x) grow at least as fast as x {\displaystyle {\sqrt {x}}} , this puts a rather tight bound on its rate of growth. Here, O refers to big O notation.

The true rate of growth of M(x) is not known. An unpublished conjecture of Steve Gonek states that

0 < lim sup x → ∞ | M ( x ) | x ( log ⁡ log ⁡ log ⁡ x ) 5 / 4 < ∞ . {\displaystyle 0<\limsup _{x\to \infty }{\frac {|M(x)|}{{\sqrt {x}}(\log \log \log x)^{5/4}}}<\infty .}

Probabilistic evidence towards this conjecture is given by Nathan Ng. In particular, Ng gives a conditional proof that the function e − y / 2 M ( e y ) {\displaystyle e^{-y/2}M(e^{y})} has a limiting distribution ν {\displaystyle \nu } on R {\displaystyle \mathbb {R} } . That is, for all bounded Lipschitz continuous functions f {\displaystyle f} on the reals we have that

lim Y → ∞ 1 Y ∫ 0 Y f ( e − y / 2 M ( e y ) ) d y = ∫ − ∞ ∞ f ( x ) d ν ( x ) , {\displaystyle \lim _{Y\to \infty }{\frac {1}{Y}}\int _{0}^{Y}f{\big (}e^{-y/2}M(e^{y}){\big )}\,dy=\int _{-\infty }^{\infty }f(x)\,d\nu (x),}

if one assumes various conjectures about the Riemann zeta function.

Related Image Collections Add Image
We don't have any YouTube videos related to Mertens function yet.
We don't have any PDF documents related to Mertens function yet.
We don't have any Books related to Mertens function yet.
We don't have any archived web articles related to Mertens function yet.

Representations

As an integral

Using the Euler product, one finds that

1 ζ ( s ) = ∏ p ( 1 − p − s ) = ∑ n = 1 ∞ μ ( n ) n s , {\displaystyle {\frac {1}{\zeta (s)}}=\prod _{p}(1-p^{-s})=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n^{s}}},}

where ζ ( s ) {\displaystyle \zeta (s)} is the Riemann zeta function, and the product is taken over primes. Then, using this Dirichlet series with Perron's formula, one obtains

1 2 π i ∫ c − i ∞ c + i ∞ x s s ζ ( s ) d s = M ( x ) , {\displaystyle {\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }{\frac {x^{s}}{s\zeta (s)}}\,ds=M(x),}

where c > 1.

Conversely, one has the Mellin transform

1 ζ ( s ) = s ∫ 1 ∞ M ( x ) x s + 1 d x , {\displaystyle {\frac {1}{\zeta (s)}}=s\int _{1}^{\infty }{\frac {M(x)}{x^{s+1}}}\,dx,}

which holds for Re ⁡ ( s ) > 1 {\displaystyle \operatorname {Re} (s)>1} .

A curious relation given by Mertens himself involving the second Chebyshev function is

ψ ( x ) = M ( x 2 ) log ⁡ 2 + M ( x 3 ) log ⁡ 3 + M ( x 4 ) log ⁡ 4 + ⋯ . {\displaystyle \psi (x)=M\left({\frac {x}{2}}\right)\log 2+M\left({\frac {x}{3}}\right)\log 3+M\left({\frac {x}{4}}\right)\log 4+\cdots .}

Assuming that the Riemann zeta function has no multiple non-trivial zeros, one has the "exact formula" by the residue theorem:

M ( x ) = ∑ ρ x ρ ρ ζ ′ ( ρ ) − 2 + ∑ n = 1 ∞ ( − 1 ) n − 1 ( 2 π ) 2 n ( 2 n ) ! n ζ ( 2 n + 1 ) x 2 n . {\displaystyle M(x)=\sum _{\rho }{\frac {x^{\rho }}{\rho \zeta '(\rho )}}-2+\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}(2\pi )^{2n}}{(2n)!n\zeta (2n+1)x^{2n}}}.}

Weyl conjectured that the Mertens function satisfied the approximate functional-differential equation

y ( x ) 2 − ∑ r = 1 N B 2 r ( 2 r ) ! D t 2 r − 1 y ( x t + 1 ) + x ∫ 0 x y ( u ) u 2 d u = x − 1 H ( log ⁡ x ) , {\displaystyle {\frac {y(x)}{2}}-\sum _{r=1}^{N}{\frac {B_{2r}}{(2r)!}}D_{t}^{2r-1}y\left({\frac {x}{t+1}}\right)+x\int _{0}^{x}{\frac {y(u)}{u^{2}}}\,du=x^{-1}H(\log x),}

where H(x) is the Heaviside step function, B are Bernoulli numbers, and all derivatives with respect to t are evaluated at t = 0.

There is also a trace formula involving a sum over the Möbius function and zeros of the Riemann zeta function in the form

∑ n = 1 ∞ μ ( n ) n g ( log ⁡ n ) = ∑ γ h ( γ ) ζ ′ ( 1 / 2 + i γ ) + 2 ∑ n = 1 ∞ ( − 1 ) n ( 2 π ) 2 n ( 2 n ) ! ζ ( 2 n + 1 ) ∫ − ∞ ∞ g ( x ) e − x ( 2 n + 1 / 2 ) d x , {\displaystyle \sum _{n=1}^{\infty }{\frac {\mu (n)}{\sqrt {n}}}g(\log n)=\sum _{\gamma }{\frac {h(\gamma )}{\zeta '(1/2+i\gamma )}}+2\sum _{n=1}^{\infty }{\frac {(-1)^{n}(2\pi )^{2n}}{(2n)!\zeta (2n+1)}}\int _{-\infty }^{\infty }g(x)e^{-x(2n+1/2)}\,dx,}

where the first sum on the right-hand side is taken over the non-trivial zeros of the Riemann zeta function, and (gh) are related by the Fourier transform, such that

2 π g ( x ) = ∫ − ∞ ∞ h ( u ) e i u x d u . {\displaystyle 2\pi g(x)=\int _{-\infty }^{\infty }h(u)e^{iux}\,du.}

As a sum over Farey sequences

Another formula for the Mertens function is

M ( n ) = − 1 + ∑ a ∈ F n e 2 π i a , {\displaystyle M(n)=-1+\sum _{a\in {\mathcal {F}}_{n}}e^{2\pi ia},}

where F n {\displaystyle {\mathcal {F}}_{n}} is the Farey sequence of order n.

This formula is used in the proof of the Franel–Landau theorem.3

As a determinant

M(n) is the determinant of the n × n Redheffer matrix, a (0, 1) matrix in which aij is 1 if either j is 1 or i divides j.

As a sum of the number of points under n-dimensional hyperboloids

M ( x ) = 1 − ∑ 2 ≤ a ≤ x 1 + ∑ a ≥ 2 ∑ b ≥ 2 a b ≤ x 1 − ∑ a ≥ 2 ∑ b ≥ 2 ∑ c ≥ 2 a b c ≤ x 1 + ∑ a ≥ 2 ∑ b ≥ 2 ∑ c ≥ 2 ∑ d ≥ 2 a b c d ≤ x 1 − ⋯ {\displaystyle M(x)=1-\sum _{2\leq a\leq x}1+{\underset {ab\leq x}{\sum _{a\geq 2}\sum _{b\geq 2}}}1-{\underset {abc\leq x}{\sum _{a\geq 2}\sum _{b\geq 2}\sum _{c\geq 2}}}1+{\underset {abcd\leq x}{\sum _{a\geq 2}\sum _{b\geq 2}\sum _{c\geq 2}\sum _{d\geq 2}}}1-\cdots }

This formulation expanding the Mertens function suggests asymptotic bounds obtained by considering the Piltz divisor problem, which generalizes the Dirichlet divisor problem of computing asymptotic estimates for the summatory function of the divisor function.

Other properties

From 4 we have

∑ d = 1 n M ( ⌊ n / d ⌋ ) = 1   . {\displaystyle \sum _{d=1}^{n}M(\lfloor n/d\rfloor )=1\ .}

Furthermore, from 5

∑ d = 1 n M ( ⌊ n / d ⌋ ) d = Φ ( n )   , {\displaystyle \sum _{d=1}^{n}M(\lfloor n/d\rfloor )d=\Phi (n)\ ,}

where Φ ( n ) {\displaystyle \Phi (n)} is the totient summatory function.

Calculation

Neither of the methods mentioned previously leads to practical algorithms to calculate the Mertens function. Using sieve methods similar to those used in prime counting, the Mertens function has been computed for all integers up to an increasing range of x.67

PersonYearLimit
Mertens1897104
von Sterneck18971.5×105
von Sterneck19015×105
von Sterneck19125×106
Neubauer1963108
Cohen and Dress19797.8×109
Dress19931012
Lioen and van de Lune19941013
Kotnik and van de Lune20031014
Boncompagni201181017
Kuznetsov201291022
Helfgott and Thompson2021101023

The Mertens function for all integer values up to x may be computed in O(x log log x) time. A combinatorial algorithm has been developed incrementally starting in 1870 by Ernst Meissel,11 Lehmer,12 Lagarias-Miller-Odlyzko,13 and Deléglise-Rivat14 that computes isolated values of M(x) in O(x2/3(log log x)1/3) time; a further improvement by Harald Helfgott and Lola Thompson in 2021 improves this to O(x3/5(log x)3/5+ε),15 and an algorithm by Lagarias and Odlyzko based on integrals of the Riemann zeta function achieves a running time of O(x1/2+ε).16

See OEIS: A084237 for values of M(x) at powers of 10.

Known upper bounds

Ng notes that the Riemann hypothesis (RH) is equivalent to

M ( x ) = O ( x exp ⁡ ( C ⋅ log ⁡ x log ⁡ log ⁡ x ) ) , {\displaystyle M(x)=O\left({\sqrt {x}}\exp \left({\frac {C\cdot \log x}{\log \log x}}\right)\right),}

for some positive constant C > 0 {\displaystyle C>0} . Other upper bounds have been obtained by Maier, Montgomery, and Soundarajan assuming the RH including

| M ( x ) | ≪ x exp ⁡ ( C 2 ⋅ ( log ⁡ x ) 39 61 ) | M ( x ) | ≪ x exp ⁡ ( log ⁡ x ( log ⁡ log ⁡ x ) 14 ) . {\displaystyle {\begin{aligned}|M(x)|&\ll {\sqrt {x}}\exp \left(C_{2}\cdot (\log x)^{\frac {39}{61}}\right)\\|M(x)|&\ll {\sqrt {x}}\exp \left({\sqrt {\log x}}(\log \log x)^{14}\right).\end{aligned}}}

Known explicit upper bounds without assuming the RH are given by:17

| M ( x ) | < 12590292 ⋅ x log 236 / 75 ⁡ ( x ) ,    for  x > exp ⁡ ( 12282.3 ) | M ( x ) | < 0.6437752 ⋅ x log ⁡ x ,    for  x > 1. {\displaystyle {\begin{aligned}|M(x)|&<{\frac {12590292\cdot x}{\log ^{236/75}(x)}},\ {\text{ for }}x>\exp(12282.3)\\|M(x)|&<{\frac {0.6437752\cdot x}{\log x}},\ {\text{ for }}x>1.\end{aligned}}}

It is possible to simplify the above expression into a less restrictive but illustrative form as:

M ( x ) = O ( x log π ⁡ ( x ) ) . {\displaystyle {\begin{aligned}M(x)=O\left({\frac {x}{\log ^{\pi }(x)}}\right).\end{aligned}}}

See also

Notes

References

  1. Davenport, H. (November 1937). "On Some Infinite Series Involving Arithmetical Functions (Ii)". The Quarterly Journal of Mathematics. Original Series. 8 (1): 313–320. doi:10.1093/qmath/os-8.1.313. /wiki/Doi_(identifier)

  2. Nathan Ng (October 25, 2018). "The distribution of the summatory function of the Mobius function". arXiv:math/0310381. /wiki/ArXiv_(identifier)

  3. Edwards, Ch. 12.2.

  4. Lehman, R.S. (1960). "On Liouville's Function". Math. Comput. 14: 311–320.

  5. Kanemitsu, S.; Yoshimoto, M. (1996). "Farey series and the Riemann hypothesis". Acta Arithmetica. 75 (4): 351–374. doi:10.4064/aa-75-4-351-374. https://doi.org/10.4064%2Faa-75-4-351-374

  6. Kotnik, Tadej; van de Lune, Jan (November 2003). "Further systematic computations on the summatory function of the Möbius function". Modelling, Analysis and Simulation. MAS-R0313. https://ir.cwi.nl/pub/4116

  7. Hurst, Greg (2016). "Computations of the Mertens Function and Improved Bounds on the Mertens Conjecture". arXiv:1610.08551 [math.NT]. /wiki/ArXiv_(identifier)

  8. Sloane, N. J. A. (ed.). "Sequence A084237". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  9. Sloane, N. J. A. (ed.). "Sequence A084237". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  10. Sloane, N. J. A. (ed.). "Sequence A084237". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  11. Meissel, Ernst (1870). "Ueber die Bestimmung der Primzahlenmenge innerhalb gegebener Grenzen". Mathematische Annalen (in German). 2 (4): 636–642. doi:10.1007/BF01444045. ISSN 0025-5831. S2CID 119828499. https://eudml.org/doc/156468

  12. Lehmer, Derrick Henry (April 1, 1958). "ON THE EXACT NUMBER OF PRIMES LESS THAN A GIVEN LIMIT". Illinois J. Math. 3 (3): 381–388. Retrieved February 1, 2017. https://projecteuclid.org/download/pdf_1/euclid.ijm/1255455259

  13. Lagarias, Jeffrey; Miller, Victor; Odlyzko, Andrew (April 11, 1985). "Computing π ( x ) {\displaystyle \pi (x)} : The Meissel–Lehmer method" (PDF). Mathematics of Computation. 44 (170): 537–560. doi:10.1090/S0025-5718-1985-0777285-5. Retrieved September 13, 2016. https://www.ams.org/mcom/1985-44-170/S0025-5718-1985-0777285-5/S0025-5718-1985-0777285-5.pdf

  14. Rivat, Joöl; Deléglise, Marc (1996). "Computing the summation of the Möbius function". Experimental Mathematics. 5 (4): 291–295. doi:10.1080/10586458.1996.10504594. ISSN 1944-950X. S2CID 574146. https://projecteuclid.org/euclid.em/1047565447

  15. Helfgott, Harald; Thompson, Lola (2023). "Summing μ ( n ) {\displaystyle \mu (n)} : a faster elementary algorithm". Research in Number Theory. 9 (1): 6. doi:10.1007/s40993-022-00408-8. ISSN 2363-9555. PMC 9731940. PMID 36511765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731940

  16. Lagarias, Jeffrey; Odlyzko, Andrew (June 1987). "Computing π ( x ) {\displaystyle \pi (x)} : An analytic method". Journal of Algorithms. 8 (2): 173–191. doi:10.1016/0196-6774(87)90037-X. https://www.sciencedirect.com/science/article/abs/pii/019667748790037X

  17. El Marraki, M. (1995). "Fonction sommatoire de la fonction de Möbius, 3. Majorations asymptotiques effectives fortes". Journal de théorie des nombres de Bordeaux. 7 (2). http://www.numdam.org/item/JTNB_1995__7_2_407_0/