Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Totient summatory function
Arithmetical function

In number theory, the totient summatory function Φ ( n ) {\displaystyle \Phi (n)} is a summatory function of Euler's totient function defined by

Φ ( n ) := ∑ k = 1 n φ ( k ) , n ∈ N . {\displaystyle \Phi (n):=\sum _{k=1}^{n}\varphi (k),\quad n\in \mathbb {N} .}

It is the number of ordered pairs of coprime integers (p,q), where 1 ≤ pqn.

The first few values are 0, 1, 2, 4, 6, 10, 12, 18, 22, 28, 32, ... (sequence A002088 in the OEIS). Values for powers of 10 are 1, 32, 3044, 304192, 30397486, 3039650754, ... (sequence A064018 in the OEIS).

We don't have any images related to Totient summatory function yet.
We don't have any YouTube videos related to Totient summatory function yet.
We don't have any PDF documents related to Totient summatory function yet.
We don't have any Books related to Totient summatory function yet.
We don't have any archived web articles related to Totient summatory function yet.

Properties

Applying Möbius inversion to the totient function yields

Φ ( n ) = ∑ k = 1 n k ∑ d ∣ k μ ( d ) d = 1 2 ∑ k = 1 n μ ( k ) ⌊ n k ⌋ ( 1 + ⌊ n k ⌋ ) . {\displaystyle \Phi (n)=\sum _{k=1}^{n}k\sum _{d\mid k}{\frac {\mu (d)}{d}}={\frac {1}{2}}\sum _{k=1}^{n}\mu (k)\left\lfloor {\frac {n}{k}}\right\rfloor \left(1+\left\lfloor {\frac {n}{k}}\right\rfloor \right).}

Φ(n) has the asymptotic expansion

Φ ( n ) ∼ 1 2 ζ ( 2 ) n 2 + O ( n log ⁡ n ) = 3 π 2 n 2 + O ( n log ⁡ n ) , {\displaystyle \Phi (n)\sim {\frac {1}{2\zeta (2)}}n^{2}+O\left(n\log n\right)={\frac {3}{\pi ^{2}}}n^{2}+O\left(n\log n\right),}

where ζ(2) is the Riemann zeta function evaluated at 2, which is π 2 6 {\displaystyle {\frac {\pi ^{2}}{6}}} .1

Reciprocal totient summatory function

The summatory function of the reciprocal of the totient is

S ( n ) := ∑ k = 1 n 1 φ ( k ) . {\displaystyle S(n):=\sum _{k=1}^{n}{\frac {1}{\varphi (k)}}.}

Edmund Landau showed in 1900 that this function has the asymptotic behavior

S ( n ) ∼ A ( γ + log ⁡ n ) + B + O ( log ⁡ n n ) , {\displaystyle S(n)\sim A(\gamma +\log n)+B+O\left({\frac {\log n}{n}}\right),}

where γ is the Euler–Mascheroni constant,

A = ∑ k = 1 ∞ μ ( k ) 2 k φ ( k ) = ζ ( 2 ) ζ ( 3 ) ζ ( 6 ) = ∏ p ∈ P ( 1 + 1 p ( p − 1 ) ) , {\displaystyle A=\sum _{k=1}^{\infty }{\frac {\mu (k)^{2}}{k\varphi (k)}}={\frac {\zeta (2)\zeta (3)}{\zeta (6)}}=\prod _{p\in \mathbb {P} }\left(1+{\frac {1}{p(p-1)}}\right),}

and

B = ∑ k = 1 ∞ μ ( k ) 2 log ⁡ k k φ ( k ) = A ∏ p ∈ P ( log ⁡ p p 2 − p + 1 ) . {\displaystyle B=\sum _{k=1}^{\infty }{\frac {\mu (k)^{2}\log k}{k\,\varphi (k)}}=A\,\prod _{p\in \mathbb {P} }\left({\frac {\log p}{p^{2}-p+1}}\right).}

The constant A = 1.943596... is sometimes known as Landau's totient constant. The sum ∑ k = 1 ∞ 1 / ( k φ ( k ) ) {\displaystyle \textstyle \sum _{k=1}^{\infty }1/(k\;\varphi (k))} converges to

∑ k = 1 ∞ 1 k φ ( k ) = ζ ( 2 ) ∏ p ∈ P ( 1 + 1 p 2 ( p − 1 ) ) = 2.20386 … . {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{k\varphi (k)}}=\zeta (2)\prod _{p\in \mathbb {P} }\left(1+{\frac {1}{p^{2}(p-1)}}\right)=2.20386\ldots .}

In this case, the product over the primes in the right side is a constant known as the totient summatory constant,2 and its value is

∏ p ∈ P ( 1 + 1 p 2 ( p − 1 ) ) = 1.339784 … . {\displaystyle \prod _{p\in \mathbb {P} }\left(1+{\frac {1}{p^{2}(p-1)}}\right)=1.339784\ldots .}

See also

References

  1. Weisstein, Eric W., "Riemann Zeta Function \zeta(2)", MathWorld /wiki/Eric_W._Weisstein

  2. OEIS: A065483 /wiki/On-Line_Encyclopedia_of_Integer_Sequences