Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of tellurium

There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104 to 142. These are listed in the table below.

Naturally-occurring tellurium on Earth consists of eight isotopes. Two of these have been found to be radioactive: 128Te and 130Te undergo double beta decay with half-lives of, respectively, 2.2×1024 (2.2 septillion) years (the longest half-life of all nuclides proven to be radioactive) and 8.2×1020 (820 quintillion) years. The longest-lived artificial radioisotope of tellurium is 121Te with a half-life of about 19 days. Several nuclear isomers have longer half-lives, the longest being 121mTe with a half-life of 154 days.

The very-long-lived radioisotopes 128Te and 130Te are the two most common isotopes of tellurium. Of elements with at least one stable isotope, only indium and rhenium likewise have a radioisotope in greater abundance than a stable one.

It has been claimed that electron capture of 123Te was observed, but more recent measurements of the same team have disproved this. The half-life of 123Te is longer than 9.2 × 1016 years, and probably much longer. This apparent stability is a rare violation of the Mattauch isobar rule.

124Te is used as the starting material in the production of certain radionuclides by a cyclotron or other particle accelerator, such as iodine-123 and iodine-124.

With the exception of beryllium, tellurium is the lightest element observed to have isotopes capable of undergoing alpha decay, with isotopes 104Te to 109Te being seen to undergo this mode of decay. Some lighter elements, namely those in the vicinity of 8Be, have isotopes with delayed alpha emission (following proton or beta emission) as a rare branch.

We don't have any images related to Isotopes of tellurium yet.
We don't have any YouTube videos related to Isotopes of tellurium yet.
We don't have any PDF documents related to Isotopes of tellurium yet.
We don't have any Books related to Isotopes of tellurium yet.
We don't have any archived web articles related to Isotopes of tellurium yet.

List of isotopes

Nuclide4ZNIsotopic mass (Da)567Half-life8910Decaymode1112Daughterisotope13Spin andparity141516Natural abundance (mole fraction)
Excitation energyNormal proportion17Range of variation
104Te5252103.94672(34)<4 nsα100Sn0+
105Te5253104.94330(32)633(66) nsα101Sn(7/2+)
106Te5254105.93750(11)78(11) μsα102Sn0+
107Te5255106.93488(11)#3.22(9) msα (70%)103Sn5/2+#
β+ (30%)107Sb
108Te5256107.9293805(58)2.1(1) sα (49%)104Sn0+
β+ (48.6%)108Sb
β+, p (2.4%)107Sn
β+, α (<0.065%)104In
109Te5257108.9273045(47)4.4(2) sβ+ (86.7%)109Sb(5/2+)
β+, p (9.4%)108Sn
α (3.9%)105Sn
β+, α (<0.0049%)105In
110Te5258109.9224581(71)18.6(8) sβ+110Sb0+
111Te5259110.9210006(69)26.2(6) sβ+111Sb(5/2)+
β+, p (?%)110Sn
112Te5260111.9167278(90)2.0(2) minβ+112Sb0+
113Te5261112.915891(30)1.7(2) minβ+113Sb(7/2+)
114Te5262113.912088(26)15.2(7) minβ+114Sb0+
115Te5263114.911902(30)5.8(2) minβ+115Sb7/2+
115m1Te1810(6) keV6.7(4) minβ+115Sb(1/2+)
115m2Te280.05(20) keV7.5(2) μsIT115Te11/2−
116Te5264115.908466(26)2.49(4) hβ+116Sb0+
117Te5265116.908646(14)62(2) minEC (75%)117Sb1/2+
β+ (25%)
117mTe296.1(5) keV103(3) msIT117Te(11/2−)
118Te5266117.905860(20)6.00(2) dEC118Sb0+
119Te5267118.9064057(78)16.05(5) hEC (97.94%)119Sb1/2+
β+ (2.06%)
119mTe260.96(5) keV4.70(4) dEC (99.59%)119Sb11/2−
β+ (0.41%)
120Te5268119.9040658(19)Observationally Stable190+9(1)×10−4
121Te5269120.904945(28)19.31(7) dβ+121Sb1/2+
121mTe293.974(22) keV164.7(5) dIT (88.6%)121Te11/2−
β+ (11.4%)121Sb
122Te5270121.9030447(15)Stable0+0.0255(12)
123Te5271122.9042710(15)Observationally Stable201/2+0.0089(3)
123mTe247.47(4) keV119.2(1) dIT123Te11/2−
124Te5272123.9028183(15)Stable0+0.0474(14)
125Te215273124.9044312(15)Stable1/2+0.0707(15)
125mTe22144.775(8) keV57.40(15) dIT125Te11/2−
126Te5274125.9033121(15)Stable0+0.1884(25)
127Te235275126.9052270(15)9.35(7) hβ−127I3/2+
127mTe2488.23(7) keV106.1(7) dIT (97.86%)127Te11/2−
β− (2.14%)127I
128Te25265276127.90446124(76)2.25(9)×1024 y27β−β−128Xe0+0.3174(8)
128mTe2790.8(3) keV363(27) nsIT128Te(10+)
129Te285277128.90659642(76)69.6(3) minβ−129I3/2+
129mTe29105.51(3) keV33.6(1) dIT (64%)129Te11/2−
β− (36%)129I
130Te30315278129.906222745(11)7.91(21)×1020 yβ−β−130Xe0+0.3408(62)
130m1Te2146.41(4) keV186(11) nsIT130Te7−
130m2Te2667.2(8) keV1.90(8) μsIT130Te(10+)
130m3Te4373.9(9) keV53(8) nsIT130Te(15−)
131Te325279130.908522210(65)25.0(1) minβ−131I3/2+
131m1Te33182.258(18) keV32.48(11) hβ− (74.1%)131I11/2−
IT (25.9%)131Te
131m2Te1940.0(4) keV93(12) msIT131Te(23/2+)
132Te345280131.9085467(37)3.204(13) dβ−132I0+
132m1Te1774.80(9) keV145(8) nsIT132Te6+
132m2Te1925.47(9) keV28.5(9) μsIT132Te7−
132m3Te2723.3(8) keV3.62(6) μsIT132Te(10+)
133Te5281132.9109633(22)12.5(3) minβ−133I3/2+#
133m1Te334.26(4) keV55.4(4) minβ− (83.5%)133I(11/2−)
IT (16.5%)133Te
133m2Te1610.4(5) keV100(5) nsIT133Te(19/2−)
134Te5282133.9113964(29)41.8(8) minβ−134I0+
134mTe1691.34(16) keV164.5(7) nsIT134Te6+
135Te5283134.9165547(18)19.0(2) sβ−135I(7/2−)
135mTe1554.89(16) keV511(20) nsIT135Te(19/2−)
136Te5284135.9201012(24)17.63(9) sβ− (98.63%)136I0+
β−, n (1.37%)135I
137Te5285136.9255994(23)2.49(5) sβ− (97.06%)137I3/2−#
β−, n (2.94%)136I
138Te5286137.9294725(41)1.46(25) sβ− (95.20%)138I0+
β−, n (4.80%)137I
139Te5287138.9353672(38)724(81) msβ−139I5/2−#
140Te5288139.939487(15)351(5) msβ− (?%)140I0+
β−, n (?%)139I
141Te5289140.94560(43)#193(16) msβ−141I5/2−#
142Te5290141.95003(54)#147(8) msβ−142I0+
143Te5291142.95649(54)#120(8) msβ−143I7/2+#
144Te5292143.96112(32)#93(60) msβ−144I0+
145Te5293144.96778(32)#75# ms[>550 ns]β−145I
This table header & footer:
  • view

See also

Daughter products other than tellurium

References

  1. Many isotopes are expected to have longer half-lives, but decay has not yet been observed in these, allowing only a lower limit to be placed on their half-lives

  2. A. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of 123Te". Physical Review C. 67 (1): 014323. arXiv:hep-ex/0211015. Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323. S2CID 119523039. /wiki/ArXiv_(identifier)

  3. A. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of 123Te". Physical Review C. 67 (1): 014323. arXiv:hep-ex/0211015. Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323. S2CID 119523039. /wiki/ArXiv_(identifier)

  4. mTe – Excited nuclear isomer. /wiki/Nuclear_isomer

  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  6. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  7. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Bold half-life – nearly stable, half-life longer than age of universe. /wiki/Age_of_universe

  10. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  11. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  12. Modes of decay: EC:Electron captureIT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Electron_capture

  13. Bold symbol as daughter – Daughter product is stable.

  14. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  15. ( ) spin value – Indicates spin with weak assignment arguments.

  16. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  17. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  18. Order of ground state and isomer is uncertain.

  19. Believed to undergo β+β+ decay to 120Sn with a half-life over 1.6×1021 years

  20. Believed to undergo electron capture to 123Sb with a half-life over 9.2×1016 years

  21. Fission product /wiki/Fission_product

  22. Fission product /wiki/Fission_product

  23. Fission product /wiki/Fission_product

  24. Fission product /wiki/Fission_product

  25. Fission product /wiki/Fission_product

  26. Primordial radionuclide /wiki/Primordial_nuclide

  27. Longest measured half-life of any nuclide

  28. Fission product /wiki/Fission_product

  29. Fission product /wiki/Fission_product

  30. Fission product /wiki/Fission_product

  31. Primordial radionuclide /wiki/Primordial_nuclide

  32. Fission product /wiki/Fission_product

  33. Fission product /wiki/Fission_product

  34. Fission product /wiki/Fission_product