Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of sodium
Sodium atoms differing in atomic weight

There are 20 isotopes of sodium (11Na), ranging from 17Na to 39Na (except for the still-unknown 36Na and 38Na), and five isomers (two for 22Na, and one each for 24Na, 26Na, and 32Na). 23Na is the only stable (and the only primordial) isotope. It is considered a monoisotopic element and it has a standard atomic weight of 22.98976928(2). Sodium has two radioactive cosmogenic isotopes (22Na, with a half-life of 2.6019(6) years; and 24Na, with a half-life of 14.9560(15) h). With the exception of those two isotopes, all other isotopes have half-lives under a minute, most under a second. The shortest-lived is the unbound 18Na, with a half-life of 1.3(4)×10−21 seconds (although the half-life of the similarly unbound 17Na is not measured).

Acute neutron radiation exposure (e.g., from a nuclear criticality accident) converts some of the stable 23Na (in the form of Na+ ion) in human blood plasma to 24Na. By measuring the concentration of this isotope, the neutron radiation dosage to the victim can be computed.

22Na is a positron-emitting isotope with a remarkably long half-life. It is used to create test-objects and point-sources for positron emission tomography.

We don't have any images related to Isotopes of sodium yet.
We don't have any YouTube videos related to Isotopes of sodium yet.
We don't have any PDF documents related to Isotopes of sodium yet.
We don't have any Books related to Isotopes of sodium yet.
We don't have any archived web articles related to Isotopes of sodium yet.

List of isotopes

Nuclide3ZNIsotopic mass (Da)456Half-life78Decaymode910Daughterisotope11Spin andparity121314Isotopicabundance
Excitation energy
17Na11617.037270(60)p16Ne(1/2+)
18Na11718.02688(10)1.3(4) zsp ?1517Ne1−#
19Na11819.013880(11)> 1 asp18Ne(5/2+)
20Na11920.0073543(12)447.9(2.3) msβ+ (75.0(4)%)20Ne2+
β+α (25.0(4)%)16O
21Na111020.99765446(5)22.4550(54) sβ+21Ne3/2+
22Na111121.99443742(18)2.6019(6) y16β+ (90.57(8)%)22Ne3+Trace17
ε (9.43(6)%)22Ne
22m1Na583.05(10) keV243(2) nsIT22Na1+
22m2Na657.00(14) keV19.6(7) psIT22Na0+
23Na111222.9897692820(19)Stable3/2+1
24Na111323.990963012(18)14.9560(15) hβ−24Mg4+Trace18
24mNa472.2074(8) keV20.18(10) msIT (99.95%)24Na1+
β− (0.05%)24Mg
25Na111424.9899540(13)59.1(6) sβ−25Mg5/2+
26Na111525.992635(4)1.07128(25) sβ−26Mg3+
26mNa82.4(4) keV4.35(16) μsIT26Na1+
27Na111626.994076(4)301(6) msβ− (99.902(24)%)27Mg5/2+
β−n (0.098(24)%)26Mg
28Na111727.998939(11)33.1(1.3) msβ− (99.42(12)%)28Mg1+
β−n (0.58(12)%)27Mg
29Na111829.002877(8)43.2(4) msβ− (78%)29Mg3/2+
β−n (22(3)%)28Mg
β−2n ?1927Mg ?
30Na111930.009098(5)45.9(7) msβ− (70.2(2.2)%)30Mg2+
β−n (28.6(2.2)%)29Mg
β−2n (1.24(19)%)28Mg
β−α (5.5(2)%×10−5)26Ne
31Na112031.013147(15)16.8(3) msβ− (> 63.2(3.5)%)31Mg3/2+
β−n (36.0(3.5)%)30Mg
β−2n (0.73(9)%)29Mg
β−3n (< 0.05%)28Mg
32Na112132.020010(40)12.9(3) msβ− (66.4(6.2)%)32Mg(3−)
β−n (26(6)%)31Mg
β−2n (7.6(1.5)%)30Mg
32mNa20625 keV24(2) μsIT32Na(0+,6−)
33Na112233.02553(48)8.2(4) msβ−n (47(6)%)32Mg(3/2+)
β− (40.0(6.7)%)33Mg
β−2n (13(3)%)31Mg
34Na112334.03401(64)5.5(1.0) msβ−2n (~50%)32Mg1+
β− (~35%)34Mg
β−n (~15%)33Mg
35Na112435.04061(72)#1.5(5) msβ−35Mg3/2+#
β−n ?2134Mg ?
β−2n ?2233Mg ?
37Na112637.05704(74)#1# ms [> 1.5 μs]β− ?2337Mg ?3/2+#
β−n ?2436Mg ?
β−2n ?2535Mg ?
39Na26112839.07512(80)#1# ms [> 400 ns]β− ?2739Mg ?3/2+#
β−n ?2838Mg ?
β−2n ?2937Mg ?
This table header & footer:
  • view

Sodium-22

Sodium-22 is a radioactive isotope of sodium, undergoing positron emission to 22Ne with a half-life of 2.6019(6) years. 22Na is being investigated as an efficient generator of "cold positrons" (antimatter) to produce muons for catalyzing fusion of deuterium. It is also commonly used as a positron source in positron annihilation spectroscopy.30

Sodium-23

Sodium-23 is an isotope of sodium with an atomic mass of 22.98976928. It is the only stable isotope of sodium and also the only primordial isotope. Because of its abundance, sodium-23 is used in nuclear magnetic resonance in various research fields, including materials science and battery research.31 Sodium-23 relaxation has applications in studying cation-biomolecule interactions, intracellular and extracellular sodium, ion transport in batteries, and quantum information processing.32

Sodium-24

Sodium-24 is radioactive and can be created from common sodium-23 by neutron activation. With a half-life of 14.9560(15) h, 24Na decays to 24Mg by emission of an electron and two gamma rays.3334

Exposure of the human body to intense neutron radiation creates 24Na in the blood plasma. Measurements of its quantity can be done to determine the absorbed radiation dose of a patient.35 This can be used to determine the type of medical treatment required.

When sodium is used as coolant in fast breeder reactors, 24Na is created, which makes the coolant radioactive. When the 24Na decays, it causes a buildup of magnesium in the coolant. Since the half-life is short, the 24Na portion of the coolant ceases to be radioactive within a few days after removal from the reactor. Leakage of the hot sodium from the primary loop may cause radioactive fires,36 as it can ignite in contact with air (and explodes in contact with water). For this reason the primary cooling loop is within a containment vessel.

Sodium has been proposed as a casing for a salted bomb, as it would convert to 24Na and produce intense gamma-ray emissions for a few days.3738

Notes

References

  1. Ahn, D.S.; et al. (2022-11-14). "Discovery of 39Na". Physical Review Letters. 129 (21) 212502: 212502. Bibcode:2022PhRvL.129u2502A. doi:10.1103/PhysRevLett.129.212502. PMID 36461972. S2CID 253591660. https://doi.org/10.1103%2FPhysRevLett.129.212502

  2. Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s /wiki/Tropical_year

  3. mNa – Excited nuclear isomer. /wiki/Nuclear_isomer

  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  5. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  6. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  7. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  10. Modes of decay: IT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Isomeric_transition

  11. Bold symbol as daughter – Daughter product is stable.

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. ( ) spin value – Indicates spin with weak assignment arguments.

  14. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  15. Decay mode shown has been observed, but its intensity is not known experimentally.

  16. Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s /wiki/Tropical_year

  17. Cosmogenic nuclide /wiki/Cosmogenic_nuclide

  18. Cosmogenic nuclide /wiki/Cosmogenic_nuclide

  19. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  20. Gray, T. J.; Allmond, J. M.; Xu, Z.; King, T. T.; Lubna, R. S.; Crawford, H. L.; Tripathi, V.; Crider, B. P.; Grzywacz, R.; Liddick, S. N.; Macchiavelli, A. O.; Miyagi, T.; Poves, A.; Andalib, A.; Argo, E.; Benetti, C.; Bhattacharya, S.; Campbell, C. M.; Carpenter, M. P.; Chan, J.; Chester, A.; Christie, J.; Clark, B. R.; Cox, I.; Doetsch, A. A.; Dopfer, J.; Duarte, J. G.; Fallon, P.; Frotscher, A.; Gaballah, T.; Harke, J. T.; Heideman, J.; Huegen, H.; Holt, J. D.; Jain, R.; Kitamura, N.; Kolos, K.; Kondev, F. G.; Laminack, A.; Longfellow, B.; Luitel, S.; Madurga, M.; Mahajan, R.; Mogannam, M. J.; Morse, C.; Neupane, S.; Nowicki, A.; Ogunbeku, T. H.; Ong, W.-J.; Porzio, C.; Prokop, C. J.; Rasco, B. C.; Ronning, E. K.; Rubino, E.; Ruland, T. J.; Rykaczewski, K. P.; Schaedig, L.; Seweryniak, D.; Siegl, K.; Singh, M.; Stuchbery, A. E.; Tabor, S. L.; Tang, T. L.; Wheeler, T.; Winger, J. A.; Wood, J. L. (13 June 2023). "Microsecond Isomer at the N = 20 Island of Shape Inversion Observed at FRIB". Physical Review Letters. 130 (24). arXiv:2302.11607. doi:10.1103/PhysRevLett.130.242501. /wiki/ArXiv_(identifier)

  21. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  22. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  23. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  24. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  25. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  26. Ahn, D.S.; et al. (2022-11-14). "Discovery of 39Na". Physical Review Letters. 129 (21) 212502: 212502. Bibcode:2022PhRvL.129u2502A. doi:10.1103/PhysRevLett.129.212502. PMID 36461972. S2CID 253591660. https://doi.org/10.1103%2FPhysRevLett.129.212502

  27. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  28. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  29. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  30. Saro, Matúš; Kršjak, Vladimír; Petriska, Martin; Slugeň, Vladimír (2019-07-29). "Sodium-22 source contribution determination in positron annihilation measurements using GEANT4". AIP Conference Proceedings. 2131 (1): 020039. Bibcode:2019AIPC.2131b0039S. doi:10.1063/1.5119492. ISSN 0094-243X. S2CID 201349680. https://aip.scitation.org/doi/abs/10.1063/1.5119492

  31. Gotoh, Kazuma (8 February 2021). "23Na Solid-State NMR Analyses for Na-Ion Batteries and Materials". Batteries & Supercaps. 4 (8): 1267–127. doi:10.1002/batt.202000295. S2CID 233827472. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202000295

  32. Song, Yifan; Yin, Yu; Chen, Qinlong; Marchetti, Alessandro; Kong, Xueqian (2023). "23Na relaxometry: An overview of theory and applications". Magnetic Resonance Letters. 3 (2): 150–174. doi:10.1016/j.mrl.2023.04.001. https://doi.org/10.1016%2Fj.mrl.2023.04.001

  33. "sodium-24". Encyclopædia Britannica. https://www.britannica.com/science/sodium-24

  34. Ekendahl, Daniela; Rubovič, Peter; Žlebčík, Pavel; Hupka, Ivan; Huml, Ondřej; Bečková, Věra; Malá, Helena (7 November 2019). "Neutron dose assessment using samples of human blood and hair". Radiation Protection Dosimetry. 186 (2–3): 202–205. doi:10.1093/rpd/ncz202. PMID 31702764. /wiki/Doi_(identifier)

  35. Ekendahl, Daniela; Rubovič, Peter; Žlebčík, Pavel; Hupka, Ivan; Huml, Ondřej; Bečková, Věra; Malá, Helena (7 November 2019). "Neutron dose assessment using samples of human blood and hair". Radiation Protection Dosimetry. 186 (2–3): 202–205. doi:10.1093/rpd/ncz202. PMID 31702764. /wiki/Doi_(identifier)

  36. Unusual occurrences during LMFR operation, Proceedings of a Technical Committee meeting held in Vienna, 9–13 November 1998, IAEA. Pages 84, 122. https://www-pub.iaea.org/MTCD/Publications/PDF/te_1180_prn.pdf

  37. "Science: fy for Doomsday". Time. November 24, 1961. Archived from the original on March 14, 2016. http://content.time.com/time/magazine/article/0,9171,828877,00.html

  38. Clark, W. H. (1961). "Chemical and Thermonuclear Explosives". Bulletin of the Atomic Scientists. 17 (9): 356–360. Bibcode:1961BuAtS..17i.356C. doi:10.1080/00963402.1961.11454268. /wiki/Bulletin_of_the_Atomic_Scientists