Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of actinium
List article

Actinium (89Ac) has no stable isotopes and no characteristic terrestrial isotopic composition, thus a standard atomic weight cannot be given. There are 34 known isotopes, from 203Ac to 236Ac, and 7 isomers. Three isotopes are found in nature, 225Ac, 227Ac and 228Ac, as intermediate decay products of, respectively, 237Np, 235U, and 232Th. 228Ac and 225Ac are extremely rare, so almost all natural actinium is 227Ac.

The most stable isotopes are 227Ac with a half-life of 21.772 years, 225Ac with a half-life of 10.0 days, and 226Ac with a half-life of 29.37 hours. All other isotopes have half-lives under 10 hours, and most under a minute. The shortest-lived known isotope is 217Ac with a half-life of 69 ns.

Purified 227Ac comes into equilibrium with its decay products (227Th and 223Fr) after 185 days.

We don't have any images related to Isotopes of actinium yet.
We don't have any YouTube videos related to Isotopes of actinium yet.
We don't have any PDF documents related to Isotopes of actinium yet.
We don't have any Books related to Isotopes of actinium yet.
We don't have any archived web articles related to Isotopes of actinium yet.

List of isotopes

Nuclide2HistoricnameZNIsotopic mass (Da)34Half-lifeDecaymode5Daughterisotope6Spin andparity78Isotopicabundance
Excitation energy9
203Ac108911456+269−26 μsα199Fr(1/2+)
204Ac11891157.4+2.2−1.4 msα200Fr
205Ac12891167.7+2.7−1.6 ms13α201Fr9/2−?
206Ac89117206.01450(8)25(7) msα202Fr(3+)
206m1Ac80(50) keV15(6) msα202Fr
206m2Ac290(110)# keV41(16) msα202mFr(10−)
207Ac89118207.01195(6)31(8) ms[27(+11−6) ms]α203Fr9/2−#
208Ac89119208.01155(6)97(16) ms[95(+24−16) ms]α (99%)204Fr(3+)
β+ (1%)208Ra
208mAc506(26) keV28(7) ms[25(+9−5) ms]α (89%)204Fr(10−)
IT (10%)208Ac
β+ (1%)208Ra
209Ac89120209.00949(5)92(11) msα (99%)205Fr(9/2−)
β+ (1%)209Ra
210Ac89121210.00944(6)350(40) msα (96%)206Fr7+#
β+ (4%)210Ra
211Ac89122211.00773(8)213(25) msα (99.8%)207Fr9/2−#
β+ (.2%)211Ra
212Ac89123212.00781(7)920(50) msα (97%)208Fr6+#
β+ (3%)212Ra
213Ac89124213.00661(6)731(17) msα209Fr(9/2−)#
β+ (rare)213Ra
214Ac89125214.006902(24)8.2(2) sα (89%)210Fr(5+)#
β+ (11%)214Ra
215Ac89126215.006454(23)0.17(1) sα (99.91%)211Fr9/2−
β+ (.09%)215Ra
216Ac89127216.008720(29)440(16) μsα212Fr(1−)
216m1Ac38(5) keV441(7) μsα212Fr(9−)
216m2Ac422#(100#) keV~300 nsIT216Ac
217Ac89128217.009347(14)69(4) nsα213Fr9/2−
217mAc2012(20) keV740(40) ns(29/2)+
218Ac89129218.01164(5)1.08(9) μsα214Fr(1−)#
218mAc607(86)# keV103(11) nsIT218Ac(11+)
219Ac89130219.01242(5)11.8(15) μsα215Fr9/2−
220Ac89131220.014763(16)26.36(19) msα216Fr(3−)
221Ac89132221.01559(5)52(2) msα217Fr9/2−#
222Ac89133222.017844(6)5.0(5) sα (99(1)%)218Fr1−
β+ (1(1)%)14222Ra
222mAc78(21) keV1.05(5) minα (98.6%)218Fr5+#
β+ (1.4%)222Ra
IT?222Ac
223Ac89134223.019137(8)2.10(5) minα (99%)219Fr(5/2−)
EC (1%)223Ra
CD (3.2×10−9%)209Bi14C
224Ac89135224.021723(4)2.78(17) hβ+ (90.9%)224Ra0−
α (9.1%)220Fr
β− (1.6%)224Th
225Ac1589136225.023230(5)10.0(1) dα221Fr(3/2−)Trace16
CD (6×10−10%)211Bi14C
226Ac89137226.026098(4)29.37(12) hβ− (83%)226Th(1)(−#)
EC (17%)226Ra
α (.006%)222Fr
227AcActinium1789138227.0277521(26)21.772(3) yβ− (98.62%)227Th3/2−Trace18
α (1.38%)223Fr
228AcMesothorium 289139228.0310211(27)6.13(2) hβ−228Th3+Trace19
229Ac89140229.03302(4)62.7(5) minβ−229Th(3/2+)
230Ac89141230.03629(32)122(3) sβ−230Th(1+)
231Ac89142231.03856(11)7.5(1) minβ−231Th(1/2+)
232Ac89143232.04203(11)119(5) sβ−232Th(1+)
233Ac89144233.04455(32)#145(10) sβ−233Th(1/2+)
234Ac89145234.04842(43)#44(7) sβ−234Th
235Ac89146235.05123(38)#60(4) sβ−235Th1/2+#
236Ac2089147236.05530(54)#72+345−33 sβ−236Th
This table header & footer:
  • view

Actinides vs fission products

Actinides and fission products by half-life
  • v
  • t
  • e
Actinides21 by decay chainHalf-life range (a)Fission products of 235U by yield22
4n4n + 14n + 24n + 34.5–7%0.04–1.25%<0.001%
228Ra№4–6 a155Euþ
248Bk23> 9 a
244Cmƒ241Puƒ250Cf227Ac№10–29 a90Sr85Kr113mCdþ
232238Puƒ243Cmƒ29–97 a137Cs151Smþ121mSn
249Cfƒ242mAmƒ141–351 a

No fission products have a half-lifein the range of 100 a–210 ka ...

241Amƒ251Cfƒ24430–900 a
226Ra№247Bk1.3–1.6 ka
240Pu229Th246Cmƒ243Amƒ4.7–7.4 ka
245Cmƒ250Cm8.3–8.5 ka
239Puƒ24.1 ka
230Th№231Pa№32–76 ka
236Npƒ233234U№150–250 ka99Tc₡126Sn
248Cm242Pu327–375 ka79Se₡
1.33 Ma135Cs₡
237Npƒ1.61–6.5 Ma93Zr107Pd
236U247Cmƒ15–24 Ma129I₡
244Pu80 Ma

... nor beyond 15.7 Ma25

232Th№238U№235Uƒ№0.7–14.1 Ga

Notable isotopes

Actinium-225

Main article: Actinium-225

Actinium-225 is a highly radioactive isotope with 136 neutrons. It is an alpha emitter and has a half-life of 9.919 days. As of 2024, it is being researched as a possible alpha source in targeted alpha therapy.262728 Actinium-225 undergoes a series of three alpha decays – via the short-lived francium-221 and astatine-217 – to 213Bi, which itself is used as an alpha source.29 Another benefit is that the decay chain of 225Ac ends in the nuclide 209Bi,30 which has a considerably shorter biological half-life than lead.3132 However, a major factor limiting its usage is the difficulty in producing the short-lived isotope, as it is most commonly isolated from aging parent nuclides (such as 233U); it may also be produced in cyclotrons, linear accelerators, or fast breeder reactors.33

Actinium-226

Actinium-226 is an isotope of actinium with a half-life of 29.37 hours. It mainly (83%) undergos beta decay, sometimes (17%) undergo electron capture, and rarely (0.006%) undergo alpha decay.34 There are researches on 226Ac to use it in SPECT.3536

Actinium-227

Actinium-227 is the most stable isotope of actinium, with a half-life of 21.772 years. It mainly (98.62%) undergos beta decay, but sometimes (1.38%) it will undergo alpha decay instead.37 227Ac is a member of the actinium series. It is found only in traces in uranium ores – one tonne of uranium in ore contains about 0.2 milligrams of 227Ac.3839 227Ac is prepared, in milligram amounts, by the neutron irradiation of 226Ra in a nuclear reactor.4041

Ra 88 226 + n 0 1 ⟶ Ra 88 227 → 42.2   min β − Ac 89 227 {\displaystyle {\ce {^{226}_{88}Ra + ^{1}_{0}n -> ^{227}_{88}Ra ->[\beta^-][42.2 \ {\ce {min}}] ^{227}_{89}Ac}}}

227Ac is highly radioactive and was therefore studied for use as an active element of radioisotope thermoelectric generators, for example in spacecraft. The oxide of 227Ac pressed with beryllium is also an efficient neutron source with the activity exceeding that of the standard americium-beryllium and radium-beryllium pairs.42 In all those applications, 227Ac (a beta source) is merely a progenitor which generates alpha-emitting isotopes upon its decay. Beryllium captures alpha particles and emits neutrons owing to its large cross-section for the (α,n) nuclear reaction:

Be 4 9 + He 2 4 ⟶ C 6 12 + n 0 1 + γ {\displaystyle {\ce {^{9}_{4}Be + ^{4}_{2}He -> ^{12}_{6}C + ^{1}_{0}n + \gamma}}}

The 227AcBe neutron sources can be applied in a neutron probe – a standard device for measuring the quantity of water present in soil, as well as moisture/density for quality control in highway construction.4344 Such probes are also used in well logging applications, in neutron radiography, tomography and other radiochemical investigations.45

The medium half-life of 227Ac makes it a very convenient radioactive isotope in modeling the slow vertical mixing of oceanic waters. The associated processes cannot be studied with the required accuracy by direct measurements of current velocities (of the order 50 meters per year). However, evaluation of the concentration depth-profiles for different isotopes allows estimating the mixing rates. The physics behind this method is as follows: oceanic waters contain homogeneously dispersed 235U. Its decay product, 231Pa, gradually precipitates to the bottom, so that its concentration first increases with depth and then stays nearly constant. 231Pa decays to 227Ac; however, the concentration of the latter isotope does not follow the 231Pa depth profile, but instead increases toward the sea bottom. This occurs because of the mixing processes which raise some additional 227Ac from the sea bottom. Thus analysis of both 231Pa and 227Ac depth profiles allows researchers to model the mixing behavior.4647

See also

Notes

References

  1. G. D. Considine, ed. (2005). "Chemical Elements". Van Nostrand's Encyclopedia of Chemistry. Wiley-Interscience. p. 332. ISBN 978-0-471-61525-5. 978-0-471-61525-5

  2. mAc – Excited nuclear isomer. /wiki/Nuclear_isomer

  3. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  4. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  5. Modes of decay: EC:Electron captureCD:Cluster decayIT:Isomeric transition /wiki/Electron_capture

  6. Bold italics symbol as daughter – Daughter product is nearly stable.

  7. ( ) spin value – Indicates spin with weak assignment arguments.

  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  9. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  10. Wang, J. G.; Gan, Z. G.; Zhang, Z. Y.; et al. (1 March 2024). "α-decay properties of new neutron-deficient isotope 203Ac". Physics Letters B. 850: 138503. doi:10.1016/j.physletb.2024.138503. ISSN 0370-2693. https://doi.org/10.1016%2Fj.physletb.2024.138503

  11. Huang, M. H.; Gan, Z. G.; Zhang, Z. Y.; et al. (10 November 2022). "α decay of the new isotope 204Ac". Physics Letters B. 834: 137484. Bibcode:2022PhLB..83437484H. doi:10.1016/j.physletb.2022.137484. ISSN 0370-2693. S2CID 252730841. https://doi.org/10.1016%2Fj.physletb.2022.137484

  12. Zhang, Z. Y.; Gan, Z. G.; Ma, L.; et al. (January 2014). "α decay of the new neutron-deficient isotope 205Ac". Physical Review C. 89 (1): 014308. Bibcode:2014PhRvC..89a4308Z. doi:10.1103/PhysRevC.89.014308. http://journals.aps.org/prc/abstract/10.1103/PhysRevC.89.014308

  13. Huang, M. H.; Gan, Z. G.; Zhang, Z. Y.; et al. (10 November 2022). "α decay of the new isotope 204Ac". Physics Letters B. 834: 137484. Bibcode:2022PhLB..83437484H. doi:10.1016/j.physletb.2022.137484. ISSN 0370-2693. S2CID 252730841. https://doi.org/10.1016%2Fj.physletb.2022.137484

  14. This decay mode has been observed, but only an upper limit of branching ratio is experimentally known[1]

  15. Has medical uses /wiki/Nuclear_medicine

  16. Intermediate decay product of 237Np /wiki/Neptunium-237

  17. Source of element's name

  18. Intermediate decay product of 235U /wiki/Decay_product

  19. Intermediate decay product of 232Th /wiki/Thorium-232

  20. Chen, L.; et al. (2010). "Discovery and investigation of heavy neutron-rich isotopes with time-resolved Schottky spectrometry in the element range from thallium to actinium" (PDF). Physics Letters B. 691 (5): 234–237. Bibcode:2010PhLB..691..234C. doi:10.1016/j.physletb.2010.05.078. http://epubs.surrey.ac.uk/7511/2/10_esr-trans-pb_plb_chen_preprint.pdf

  21. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here. /wiki/Polonium

  22. Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor. /wiki/Thermal_neutron

  23. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4."The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 [years]. No growth of Cf248 was detected, and a lower limit for the β− half-life can be set at about 104 [years]. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 [years]." /wiki/Bibcode_(identifier)

  24. This is the heaviest nuclide with a half-life of at least four years before the "sea of instability". /wiki/Sea_of_instability

  25. Excluding those "classically stable" nuclides with half-lives significantly in excess of 232Th; e.g., while 113mCd has a half-life of only fourteen years, that of 113Cd is eight quadrillion years. /wiki/Primordial_nuclide

  26. A. Scheinberg, David; R. McDevitt, Michael (1 October 2011). "Actinium-225 in Targeted Alpha-Particle Therapeutic Applications". Current Radiopharmaceuticals. 4 (4): 306–320. doi:10.2174/1874471011104040306. PMC 5565267. PMID 22202153. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565267

  27. Reissig, Falco; Bauer, David; Zarschler, Kristof; Novy, Zbynek; Bendova, Katerina; Ludik, Marie-Charlotte; Kopka, Klaus; Pietzsch, Hans-Jürgen; Petrik, Milos; Mamat, Constantin (20 April 2021). "Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA—A Proof of Concept Study". Cancers. 13 (8): 1974. doi:10.3390/cancers13081974. PMC 8073976. PMID 33923965. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073976

  28. Bidkar, Anil P.; Zerefa, Luann; Yadav, Surekha; VanBrocklin, Henry F.; Flavell, Robert R. (2024). "Actinium-225 targeted alpha particle therapy for prostate cancer". Theranostics. 14 (7): 2969–2992. doi:10.7150/thno.96403. /wiki/Doi_(identifier)

  29. Ahenkorah, Stephen; Cassells, Irwin; Deroose, Christophe M.; Cardinaels, Thomas; Burgoyne, Andrew R.; Bormans, Guy; Ooms, Maarten; Cleeren, Frederik (21 April 2021). "Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside". Pharmaceutics. 13 (5): 599. doi:10.3390/pharmaceutics13050599. PMC 8143329. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143329

  30. Bismuth-209 decays into thallium-205 with a half-life exceeding 1019 years, but this half-life is so long that for practical purposes bismuth-209 can be considered stable. /wiki/Isotopes_of_thallium

  31. Handbook on the toxicology of metals. Volume 2: Specific metals (Fourth ed.). Amsterdam Boston Heidelberg London: Elsevier, Aademic Press. 2015. p. 655. ISBN 978-0-12-398293-3. 978-0-12-398293-3

  32. Wani, Ab Latif; Ara, Anjum; Usmani, Jawed Ahmad (1 June 2015). "Lead toxicity: a review". Interdisciplinary Toxicology. 8 (2): 55–64. doi:10.1515/intox-2015-0009. PMC 4961898. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961898

  33. Dhiman, Deeksha; Vatsa, Rakhee; Sood, Ashwani (September 2022). "Challenges and opportunities in developing Actinium-225 radiopharmaceuticals". Nuclear Medicine Communications. 43 (9): 970–977. doi:10.1097/MNM.0000000000001594. PMID 35950353. /wiki/Doi_(identifier)

  34. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  35. Koniar, Helena; Rodríguez-Rodríguez, Cristina; Radchenko, Valery; Yang, Hua; Kunz, Peter; Rahmim, Arman; Uribe, Carlos; Schaffer, Paul (2022-09-12). "SPECT imaging of 226Ac as a theranostic isotope for 225Ac radiopharmaceutical development". Physics in Medicine and Biology. 67 (18). doi:10.1088/1361-6560/ac8b5f. ISSN 1361-6560. PMID 35985341. /wiki/Doi_(identifier)

  36. Koniar, Helena; Wharton, Luke; Ingham, Aidan; Rodríguez-Rodríguez, Cristina; Kunz, Peter; Radchenko, Valery; Yang, Hua; Rahmim, Arman; Uribe, Carlos; Schaffer, Paul (2024-07-16). "In vivoquantitative SPECT imaging of actinium-226: feasibility and proof-of-concept". Physics in Medicine and Biology. 69 (15). doi:10.1088/1361-6560/ad5c37. ISSN 1361-6560. PMID 38925140. https://doi.org/10.1088%2F1361-6560%2Fad5c37

  37. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  38. Hagemann, French (1950). "The Isolation of Actinium". Journal of the American Chemical Society. 72 (2): 768–771. doi:10.1021/ja01158a033. /wiki/Doi_(identifier)

  39. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 946. ISBN 978-0-08-037941-8. 978-0-08-037941-8

  40. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 946. ISBN 978-0-08-037941-8. 978-0-08-037941-8

  41. Emeleus, H. J. (1987). Advances in inorganic chemistry and radiochemistry. Academic Press. pp. 16–. ISBN 978-0-12-023631-2. 978-0-12-023631-2

  42. Russell, Alan M. and Lee, Kok Loong (2005) Structure-property relations in nonferrous metals. Wiley. ISBN 0-471-64952-X, pp. 470–471 https://books.google.com/books?id=fIu58uZTE-gC&pg=PA470

  43. Majumdar, D. K. (2004) Irrigation Water Management: Principles and Practice. ISBN 81-203-1729-7 p. 108 https://books.google.com/books?id=hf1j9v4v3OEC&pg=PA108

  44. Chandrasekharan, H. and Gupta, Navindu (2006) Fundamentals of Nuclear Science – Application in Agriculture. ISBN 81-7211-200-9 pp. 202 ff https://books.google.com/books?id=45IDh4Lt8xsC&pg=PA203

  45. Dixon, W. R.; Bielesch, Alice; Geiger, K. W. (1957). "Neutron Spectrum of an Actinium–Beryllium Source". Can. J. Phys. 35 (6): 699–702. Bibcode:1957CaJPh..35..699D. doi:10.1139/p57-075. /wiki/Bibcode_(identifier)

  46. Nozaki, Yoshiyuki (1984). "Excess 227Ac in deep ocean water". Nature. 310 (5977): 486–488. Bibcode:1984Natur.310..486N. doi:10.1038/310486a0. S2CID 4344946. /wiki/Bibcode_(identifier)

  47. Geibert, W.; Rutgers Van Der Loeff, M. M.; Hanfland, C.; Dauelsberg, H.-J. (2002). "Actinium-227 as a deep-sea tracer: sources, distribution and applications". Earth and Planetary Science Letters. 198 (1–2): 147–165. Bibcode:2002E&PSL.198..147G. doi:10.1016/S0012-821X(02)00512-5. https://doi.pangaea.de/10.1594/PANGAEA.90616