Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of astatine

Astatine (85At) has 41 known isotopes, all of which are radioactive; their mass numbers range from 188 to 229 (though 189At is undiscovered). There are also 24 known metastable excited states. The longest-lived isotope is 210At, which has a half-life of 8.1 hours; the longest-lived isotope existing in naturally occurring decay chains is 219At with a half-life of 56 seconds.

List of isotopes

Nuclide1ZNIsotopic mass (Da)23Half-lifeDecaymode4Daughterisotope5Spin andparity67Isotopicabundance
Excitation energy8
188At985103190+350−80 μsα (~50%)184Bi
p (~50%)187Po
190At10851051.0+14−4 msα186Bi(10−)
191At11851061.7+11−5 msα187Bi(1/2+)
191mAt50(30) keV2.1+4−3 msα187Bi(7/2−)
192At1285107192.00314(28)11.5(6) msα188Bi3+#
β+ (rare)192Po
β+, SF (0.42%)(various)
192mAt0(40) keV88(6) msα188mBi(9−, 10−)
β+ (rare)192Po
β+, SF (0.42%)(various)
193At1385108192.99984(6)28+5−4 msα189Bi(1/2+)
193m1At8(9) keV21(5) msα189m1Bi(7/2−)
193m2At42(9) keV27+4−3 msIT (76%)193At(13/2+)
α (24%)189m2Bi
194At1485109193.99873(20)286(7) msα (91.7%#)190Bi(5-)
β+ (8.3%#)194Po
β+, SF (0.032%#)(various)
194mAt-20(40) keV323(7) msα (91.7%#)190Bi(10-)
β+ (8.3%#)194Po
β+, SF (0.032%#)(various)
195At1585110194.996268(10)290(20) msα191mBi(1/2+)
β+?195Po
195mAt29(7) keV143(3) msα (88%)191Bi(7/2-)
IT (12%)195At
β+?195Po
196At1685111195.99579(6)377(4) msα (97.5%)192Bi(3+)
β+ (2.5%)196Po
196m1At−40(40) keV20# msα192mBi(10−)
196m2At157.9(1) keV11(2) μsIT196At(5+)
197At1785112196.99319(5)388.2(5.6) msα (96.1%)193Bi(9/2−)
β+ (3.9%)197Po
197m1At45(8) keV2.0(2) sα193m1Bi(1/2+)
IT (<0.004%)197At
β+?197Po
197m2At310.7(2) keV1.3(2) μsIT197At(13/2+)
198At85113197.99284(5)4.2(3) sα (94%)194Bi(3+)
β+ (6%)198Po
198mAt330(90)# keV1.0(2) s(10−)
199At85114198.99053(5)6.92(13) sα (89%)195Bi(9/2−)
β+ (11%)199Po
200At85115199.990351(26)43.2(9) sα (57%)196Bi(3+)
β+ (43%)200Po
200m1At112.7(30) keV47(1) sα (43%)196Bi(7+)
IT200At
β+200Po
200m2At344(3) keV3.5(2) s(10−)
201At85116200.988417(9)85(3) sα (71%)197Bi(9/2−)
β+ (29%)201Po
202At85117201.98863(3)184(1) sβ+ (88%)202Po(2, 3)+
α (12%)198Bi
202m1At190(40) keV182(2) s(7+)
202m2At580(40) keV460(50) ms(10−)
203At85118202.986942(13)7.37(13) minβ+ (69%)203Po9/2−
α (31%)199Bi
204At85119203.987251(26)9.2(2) minβ+ (96%)204Po7+
α (3.8%)200Bi
204mAt587.30(20) keV108(10) msIT204At(10−)
205At85120204.986074(16)26.2(5) minβ+ (90%)205Po9/2−
α (10%)201Bi
205mAt2339.65(23) keV7.76(14) μs29/2+
206At85121205.986667(22)30.6(13) minβ+ (99.11%)206Po(5)+
α (0.9%)202Bi
206mAt807(3) keV410(80) ns(10)−
207At85122206.985784(23)1.80(4) hβ+ (91%)207Po9/2−
α (8.6%)203Bi
208At85123207.986590(28)1.63(3) hβ+ (99.5%)208Po6+
α (0.55%)204Bi
209At85124208.986173(8)5.41(5) hβ+ (96%)209Po9/2−
α (4.0%)205Bi
210At85125209.987148(8)8.1(4) hβ+ (99.8%)210Po(5)+
α (0.18%)206Bi
210m1At2549.6(2) keV482(6) μs(15)−
210m2At4027.7(2) keV5.66(7) μs(19)+
211At85126210.9874963(30)7.214(7) hEC (58.2%)211Po9/2−
α (42%)207Bi
212At85127211.990745(8)314(2) msα18208Bi(1−)
212m1At223(7) keV119(3) msα208Bi(9−)
212m2At4771.6(11) keV152(5) μsIT212At(25−)
213At85128212.992937(5)125(6) nsα19209Bi9/2−
214At85129213.996372(5)558(10) nsα210Bi1−
214m1At59(9) keV265(30) nsα20210Bi
214m2At232(5) keV760(15) nsα21210mBi229−
215At85130214.998653(7)0.10(2) msα211Bi9/2−Trace23
216At85131216.002423(4)0.30(3) msα24212Bi1−
216mAt161(11) keV25100# μsα212m1Bi269−#
217At85132217.004719(5)32.3(4) msα (99.98%)213Bi9/2−Trace27
β− (.012%)217Rn
218At85133218.008694(12)1.27(6) s28α (~100%)214Bi(2−,3−)Trace29
β− (?)218Rn
219At85134219.011162(4)56(3) sα (97%)215Bi(9/2−)Trace30
β− (3.0%)219Rn
220At85135220.015433(15)3.71(4) minβ− (92%)220Rn3(−#)
α (8.0%)216Bi
221At85136221.018017(15)2.3(2) minβ−221Rn3/2−#
222At85137222.022494(17)54(10) sβ−222Rn
223At85138223.025151(15)50(7) sβ−223Rn3/2−#
224At85139224.029749(24)2.5(1.5) minβ−224Rn2+#
225At85140225.03253(32)#3# sβ−225Rn1/2+#
226At85141226.03721(32)#7# minβ−226Rn2+#
227At85142227.04018(32)#5# sβ−227Rn1/2+#
228At85143228.04496(43)#1# minβ−228Rn3+#
229At85144229.04819(43)#1# sβ−229Rn1/2+#
This table header & footer:
  • view

Alpha decay

Alpha decay characteristics for sample astatine isotopes31
MassnumberMassexcess32Massexcess ofdaughter33Averageenergy ofalphadecayHalf-life34Probabilityof alphadecay35Alphadecayhalf-life
207−13.243 MeV−19.116 MeV5.873 MeV1.80 h8.6%20.9 h
208−12.491 MeV−18.243 MeV5.752 MeV1.63 h0.55%12.3 d
209−12.880 MeV−18.638 MeV5.758 MeV5.41 h4.1%5.5 d
210−11.972 MeV−17.604 MeV5.632 MeV8.1 h0.175%193 d
211−11.647 MeV−17.630 MeV5.983 MeV7.21 h41.8%17.2 h
212−8.621 MeV−16.436 MeV7.825 MeV0.31 s≈100%0.31 s
213−6.579 MeV−15.834 MeV9.255 MeV125 ns100%125 ns
214−3.380 MeV−12.366 MeV8.986 MeV558 ns100%558 ns
21910.397 MeV4.073 MeV6.324 MeV56 s97%58 s
22014.350 MeV8.298 MeV6.052 MeV3.71 min8%46.4 min
2213616.810 MeV11.244 MeV5.566 MeV2.3 minexperimentallyalpha stable

Astatine has 23 nuclear isomers (nuclei with one or more nucleons – protons or neutrons – in an excited state). A nuclear isomer may also be called a "meta-state"; this means the system has more internal energy than the "ground state" (the state with the lowest possible internal energy), making the former likely to decay into the latter. There may be more than one isomer for each isotope. The most stable of them is astatine-202m1,37 which has a half-life of about 3 minutes; this is longer than those of all ground states except those of isotopes 203–211 and 220. The least stable one is astatine-214m1; its half-life of 265 ns is shorter than those of all ground states except that of astatine-213.38

Alpha decay energy follows the same trend as for other heavy elements.39 Lighter astatine isotopes have quite high energies of alpha decay, which become lower as the nuclei become heavier. However, astatine-211 has a significantly higher energy than the previous isotope; it has a nucleus with 126 neutrons, and 126 is a magic number (corresponding to a filled neutron shell). Despite having a similar half-life time as the previous isotope (8.1 hours for astatine-210 and 7.2 hours for astatine-211), the alpha decay probability is much higher for the latter: 41.8 percent versus just 0.18 percent.4041 The two following isotopes release even more energy, with astatine-213 releasing the highest amount of energy of all astatine isotopes. For this reason, it is the shortest-lived astatine isotope.42 Even though heavier astatine isotopes release less energy, no long-lived astatine isotope exists; this happens due to the increasing role of beta decay.43 This decay mode is especially important for astatine: as early as 1950, it was postulated that the element has no beta-stable isotopes (i.e. ones that do not undergo beta decay at all),44 though nuclear mass measurements reveal that 215At is in fact beta-stable, as it has the lowest mass of all isobars with A = 215.45 A beta decay mode has been found for all other astatine isotopes except for 212-216At and their isomers.4647 Among other isotopes: astatine-210 and the lighter isotopes decay by positron emission; astatine-217 and the heavier isotopes undergo beta decay; and astatine-211 decays by electron capture instead.48 Astatine-212 and astatine-216 are expected to decay either way.

The most stable isotope of astatine is astatine-210, which has a half-life of about 8.1 hours. This isotope's primary decay mode is positron emission to the relatively long-lived alpha emitter, polonium-210. In total, only five isotopes of astatine have half-lives exceeding one hour: those between 207 and 211. The least stable ground state isotope is astatine-213, with a half-life of about 125 nanoseconds. It undergoes alpha decay to the extremely long-lived (in practice, stable) isotope bismuth-209.49

See also

Daughter products other than astatine

Notes

References

  1. mAt – Excited nuclear isomer. /wiki/Nuclear_isomer

  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  4. Modes of decay: EC:Electron captureIT:Isomeric transition /wiki/Electron_capture

  5. Bold italics symbol as daughter – Daughter product is nearly stable.

  6. ( ) spin value – Indicates spin with weak assignment arguments.

  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  9. Kokkonen, Henna. "Decay properties of the new isotopes 188At and 190At" (PDF). University of Jyväskylä. Retrieved 8 June 2023. https://jyx.jyu.fi/bitstream/handle/123456789/87126/URN%3ANBN%3Afi%3Ajyu-202305243198.pdf?sequence=1

  10. Kokkonen, Henna. "Decay properties of the new isotopes 188At and 190At" (PDF). University of Jyväskylä. Retrieved 8 June 2023. https://jyx.jyu.fi/bitstream/handle/123456789/87126/URN%3ANBN%3Afi%3Ajyu-202305243198.pdf?sequence=1

  11. Kettunen, H.; Enqvist, T.; Grahn, T.; Greenlees, P.T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kuusiniemi, P.; Leino, M.; Leppänen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Uusitalo, J. (1 August 2003). "Alpha-decay studies of the new isotopes 191At and 193At" (PDF). The European Physical Journal A - Hadrons and Nuclei. 17 (4): 537–558. Bibcode:2003EPJA...17..537K. doi:10.1140/epja/i2002-10162-1. ISSN 1434-601X. S2CID 122384851. Retrieved 23 June 2023. https://link.springer.com/content/pdf/10.1140/epja/i2002-10162-1.pdf

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641. S2CID 233794940. https://doi.org/10.1088%2F1674-1137%2Fabddae

  13. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641. S2CID 233794940. https://doi.org/10.1088%2F1674-1137%2Fabddae

  14. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641. S2CID 233794940. https://doi.org/10.1088%2F1674-1137%2Fabddae

  15. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641. S2CID 233794940. https://doi.org/10.1088%2F1674-1137%2Fabddae

  16. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641. S2CID 233794940. https://doi.org/10.1088%2F1674-1137%2Fabddae

  17. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641. S2CID 233794940. https://doi.org/10.1088%2F1674-1137%2Fabddae

  18. Theoretically capable of β+ decay to 212Po or β− decay to 212Rn; the branching ratios are expected to be <3×10−2% and <2×10−6% (partial half-lives >17.4 min and >182 d) respectively.[5][1][6]

  19. Theoretically capable of electron capture to 213Po; the branching ratio is expected to be <2.5×10−12% (partial half-life >57.9 d).[7]

  20. Theoretically capable of isomeric transition to 214At[1]

  21. Theoretically capable of isomeric transition to 214At[1][8]

  22. "214At α decay (760 ns)" (PDF). NNDC Chart of Nuclides. https://www.nndc.bnl.gov/ensnds/210/Bi/a_decay_760_ns.pdf

  23. Intermediate decay product of 235U /wiki/Decay_product

  24. Theoretically capable of electron capture to 216Po or β− decay to 216Rn; the branching ratios are expected to be <3×10−7% and <6×10−3% (partial half-lives >1.2 d and >5.0 s) respectively.[5][1][10]

  25. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  26. "216At α decay: J=9" (PDF). NNDC Chart of Nuclides. https://www.nndc.bnl.gov/ensnds/212/Bi/a_decay_j_9.pdf

  27. Intermediate decay product of 237Np /wiki/Neptunium-237

  28. Cubiss, J. G.; Andreyev, A. N.; Barzakh, A. E.; Andel, B.; Antalic, S.; Cocolios, T. E.; Goodacre, T. Day; Fedorov, D. V.; Fedosseev, V. N.; Ferrer, R.; Fink, D. A.; Gaffney, L. P.; Ghys, L.; Huyse, M.; Kalaninová, Z.; Köster, U.; Marsh, B. A.; Molkanov, P. L.; Rossel, R. E.; Rothe, S.; Seliverstov, M. D.; Sels, S.; Sjödin, A. M.; Stryjczyk, M.; L.Truesdale, V.; Van Beveren, C.; Van Duppen, P.; Wilson, G. L. (2019-06-14). "Fine structure in the α decay of At218". Physical Review C. 99 (6). American Physical Society (APS): 064317. doi:10.1103/physrevc.99.064317. ISSN 2469-9985. S2CID 197508141. https://doi.org/10.1103%2Fphysrevc.99.064317

  29. Intermediate decay product of 238U /wiki/Uranium-238

  30. Intermediate decay product of 235U /wiki/Decay_product

  31. In the table, under the words "mass excess", the energy equivalents are given rather than the real mass excesses; "mass excess daughter" stands for the energy equivalent of the mass excess sum of the daughter of the isotope and the alpha particle; "alpha decay half-life" refers to the half-life if decay modes other than alpha are omitted.

  32. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  33. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  34. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  35. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  36. Since astatine-221 has not been shown to undergo alpha decay, the alpha decay energy is theoretical. The value for mass excess is calculated rather than measured.

  37. "m1" means that this state of the isotope is the next possible one above – energy greater than – the ground state. "m2" and similar designations refer to further higher energy states. The number may be dropped if there is only one well-established meta state, such as astatine-216m. Note that other designation techniques exist.

  38. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  39. Lavrukhina & Pozdnyakov 1966, p. 232. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция [Analytical Chemistry of Technetium, Promethium, Astatine, and Francium] (in Russian). Nauka.

  40. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  41. This means that if decay modes other than alpha are omitted, then astatine-210 has an alpha half-life of 4,628.6 hours (128.9 days) and astatine-211 has one of 17.2 hours (0.9 days). Therefore, astatine-211 is less stable toward alpha decay than the lighter isotope, and is more likely to undergo alpha decay in the same time period.

  42. Lavrukhina & Pozdnyakov 1966, p. 232. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция [Analytical Chemistry of Technetium, Promethium, Astatine, and Francium] (in Russian). Nauka.

  43. Lavrukhina & Pozdnyakov 1966, p. 232. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция [Analytical Chemistry of Technetium, Promethium, Astatine, and Francium] (in Russian). Nauka.

  44. Rankama, Kalervo (1956). Isotope geology (2nd ed.). Pergamon Press. p. 403. ISBN 978-0-470-70800-2. {{cite book}}: ISBN / Date incompatibility (help) 978-0-470-70800-2

  45. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001. https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf

  46. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  47. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  48. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  49. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra