Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Frankia
Genus of bacteria

Frankia is a genus of nitrogen-fixing bacteria that live in symbiosis with actinorhizal plants, similar to the Rhizobium bacteria found in the root nodules of legumes in the family Fabaceae. Frankia also initiate the forming of root nodules.

This genus was originally named by Jørgen Brunchorst, in 1886 to honor the German biologist Albert Bernhard Frank. Brunchorst considered the organism he had identified to be a filamentous fungus. Becking [de; nl] redefined the genus in 1970 as containing prokaryotic actinomycetes and created the family Frankiaceae within the Actinomycetales. He retained the original name of Frankia for the genus.

Related Image Collections Add Image
We don't have any YouTube videos related to Frankia yet.
We don't have any PDF documents related to Frankia yet.
We don't have any Books related to Frankia yet.
We don't have any archived web articles related to Frankia yet.

Overview

Most Frankia strains are specific to different plant species. The bacteria are filamentous and convert atmospheric nitrogen into ammonia via the enzyme nitrogenase, a process known as nitrogen fixation. They do this while living in root nodules on actinorhizal plants. The bacteria can supply most or all of the nitrogen requirements of the host plant. As a result, actinorhizal plants colonise and often thrive in soils that are low in plant nutrients.3

Several Frankia genomes are now available which may help clarify how the symbiosis between prokaryote and plant evolved, how the environmental and geographical adaptations occurred, the metabolic diversity, and the horizontal gene flow among the symbiotic prokaryotes.4

Frankia can resist low concentration of heavy metals such as, Cu, Co, and Zn.5 Frankia may be an advantage for degraded soil. Degraded soil is known as soil that is heavy metal rich or nutrient depleted due to a drought. Frankia is a nitrogen-fixed organism, explaining why it is able to resist heavy metals.6

Frankia is a gram-positive Bacteria that is found on the roots of plants. The fact that Frankia is gram-positive means that the bacteria is made up of thick cell walls made out of protein called peptidologlycan. This helps with the resistance of the heavy metals that may be in the degraded soil.7

Frankia tolerates a narrow range of temperatures and soil pH levels. It grows best at around 30 degrees Celsius with an environment pH between 6.5 and 7.8 These facts shows that Frankia is very sensitive to its environment. Though Frankia would not be suitable for all agriculture it does demonstrate possibilities in select areas, or in temperature controlled environments.

Symbiont plants

Main article: Actinorhizal plant

Nodule Formation

Frankia forms nodules via two methods of root infection, intercellularly and intracellularly.10 Intracellular infection is characterized by initial root-hair deformation which is then infected by the filamentous Frankia. The Frankia then moves within the root cells and forms a pre-nodule which is characterized by a bump on the root. This then gives rise to a Nodule primordium which feeds the bacteria via the vascular tissue of the plant allowing the nodule to mature.11

In contrast the intercellular infection does not have root hair deformation. Instead, the filamentous Frankia invades the roots in the space between cells on the root. After this invasion a Nodule primordium is created similarly to the intracellular mode of formation and the nodule matures.12

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)13 and National Center for Biotechnology Information (NCBI).14

16S rRNA based LTP_10_2024151617120 marker proteins based GTDB 09-RS220181920
Frankia

F. coriariae Nouioui et al. 2017

F. casuarinae Nouioui et al. 2016

F. canadensis Normand et al. 201821

F. umida Normand et al. 2023

F. alni (Woronin 1866) Von Tubeuf 1895

F. torreyi Nouioui et al. 2019

"F. gtarii" Nouioui et al. 2023

"F. tisai" Nouioui et al. 2023

F. inefficax Nouioui et al. 2017

F. asymbiotica Nouioui et al. 2017

F. saprophytica Nouioui et al. 2018

F. discariae Nouioui et al. 2017

F. soli Gtari et al. 2020

F. irregularis Nouioui et al. 2018

F. colletiae Nouioui et al. 2023

F. elaeagni (Schroeter 1886) Becking 1970 ex Nouioui et al. 2016

ProtofrankiaFrankia s.s.PseudofrankiaParafrankia
Protofrankia

"Ca. Frankia meridionalis" Nguyen et al. 2019

"Ca. Frankia californiensis" Normand et al. 201722

P. coriariae [incl. "Ca. P. datiscae" (Persson et al. 2011) Gtari 2022]

Pseudofrankia

P. inefficax

P. asymbiotica

P. saprophytica

Parafrankia

P. discariae

P. soli

P. irregularis

P. colletiae

P. elaeagni

Frankia

F. casuarinae

F. canadensis

F. umida ["Ca. F. nodulisporulans" Herrera-Belaroussi et al. 2020]

F. alni

F. torreyi

"Ca. F. alpina" Pozzi et al. 2020 [incl. "F. subtilis" Brunchorst 1886]

"F. gtarii"

"F. tisai"

Species incertae sedis:

  • F. nepalensis Nouioui et al. 2023

See also

References

  1. Pawlowski, Katharina (2009-06-17). Prokaryotic Symbionts in Plants. Springer Science & Business Media. p. 107. ISBN 9783540754602. 9783540754602

  2. "Frankia taxonomy". Archived from the original on 2011-07-27. Retrieved 2011-01-14. https://web.archive.org/web/20110727030311/http://web.uconn.edu/mcbstaff/benson/Frankia/FrankiaTaxonomy.htm

  3. Frankia and Actinorhizal Plants https://frankia.mcb.uconn.edu

  4. Frankia and Actinorhizal Plants https://frankia.mcb.uconn.edu

  5. Abdel‐lateif, Khalid Salah El dein; Mansour, Samira R.; El‐Badawy, Mohamed F.; Shohayeb, Mohamed M. (2018). "Isolation and molecular characterization of Frankia strains resistant to some heavy metals". Journal of Basic Microbiology. 58 (9): 720–729. doi:10.1002/jobm.201800122. ISSN 1521-4028. PMID 29962068. S2CID 49639716. /wiki/Doi_(identifier)

  6. El dein Abdel-lateif, Khalid Salah; Mansour, Samira R.; El-Badawy, Mohamed F.; Shohayeb, Mohamed M. (September 2018). "Isolation and molecular characterization of Frankia strains resistant to some heavy metals". Journal of Basic Microbiology. 58 (9): 720–729. doi:10.1002/jobm.201800122. PMID 29962068. S2CID 49639716. /wiki/Doi_(identifier)

  7. Nouioui, Imen; Ghodhbane-Gtari, Faten; del Carmen Montero-Calasanz, Maria; Rohde, Manfred; Tisa, Louis S.; Gtari, Maher; Klenk, Hans-Peter (2017-03-01). "Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants". Antonie van Leeuwenhoek. 110 (3): 313–320. doi:10.1007/s10482-016-0801-7. ISSN 1572-9699. PMID 27830471. S2CID 39458226. /wiki/Doi_(identifier)

  8. Srivastava, Amrita; Singh, Anumeha; Singh, Satya S.; Mishra, Arun K. (2017-04-16). "Salt stress–induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains". Journal of Environmental Science and Health, Part A. 52 (5): 420–428. doi:10.1080/10934529.2016.1270672. ISSN 1093-4529. PMID 28085556. S2CID 38519293. /wiki/Doi_(identifier)

  9. Schwintzer, C. R.; Tjepkema, J. (1990). The Biology of Frankia and Actinorhizal Plants. San Diego: Academic Press. ISBN 978-0126332100. 978-0126332100

  10. Santi, Carole; Bogusz, Didier; Franche, Claudine (2013-03-10). "Biological nitrogen fixation in non-legume plants". Annals of Botany. 111 (5): 743–767. doi:10.1093/aob/mct048. ISSN 1095-8290. PMC 3631332. https://dx.doi.org/10.1093/aob/mct048

  11. Santi, Carole; Bogusz, Didier; Franche, Claudine (2013-03-10). "Biological nitrogen fixation in non-legume plants". Annals of Botany. 111 (5): 743–767. doi:10.1093/aob/mct048. ISSN 1095-8290. PMC 3631332. https://dx.doi.org/10.1093/aob/mct048

  12. Santi, Carole; Bogusz, Didier; Franche, Claudine (2013-03-10). "Biological nitrogen fixation in non-legume plants". Annals of Botany. 111 (5): 743–767. doi:10.1093/aob/mct048. ISSN 1095-8290. PMC 3631332. https://dx.doi.org/10.1093/aob/mct048

  13. A.C. Parte; et al. "Frankia". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2025-02-28. https://lpsn.dsmz.de/genus/frankia

  14. C.L. Schoch; et al. "Frankia". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2025-02-28. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=1854&lvl=3&lin=f&keep=1&srchmode=1&unlock

  15. "The LTP". Retrieved 10 December 2024. https://imedea.uib-csic.es/mmg/ltp/#LTP

  16. "LTP_all tree in newick format". Retrieved 10 December 2024. https://imedea.uib-csic.es/mmg/ltp/wp-content/uploads/ltp/LTP_all_10_2024.ntree

  17. "LTP_10_2024 Release Notes" (PDF). Retrieved 10 December 2024. https://imedea.uib-csic.es/mmg/ltp/wp-content/uploads/ltp/LTP_10_2024_release_notes.pdf

  18. "GTDB release 09-RS220". Genome Taxonomy Database. Retrieved 10 May 2024. https://gtdb.ecogenomic.org/about#4%7C

  19. "bac120_r220.sp_labels". Genome Taxonomy Database. Retrieved 10 May 2024. https://data.gtdb.ecogenomic.org/releases/release220/220.0/auxillary_files/bac120_r220.sp_labels.tree

  20. "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2024. https://gtdb.ecogenomic.org/taxon_history/

  21. Normand, P; Nouioui, I; Pujic, P; Fournier, P; Dubost, A; Schwob, G; Klenk, HP; Nguyen, A; Abrouk, D; Herrera-Belaroussi, A; Pothier, J.F.; Pflüger, V; Fernandez, M.P. (2018). "Frankia canadensis sp. nov., isolated from root nodules of Alnus incana subspecies rugosa". Int J Syst Evol Microbiol. 68 (9): 3001–3011. doi:10.1099/ijsem.0.002939. PMID 30059001. https://doi.org/10.1099%2Fijsem.0.002939

  22. Normand P; Nguyen, T.V.; Battenberg, K; Berry, A.M.; Heuvel, B.V.; Fernandez, M.P.; Pawlowski, K. (2017). "Proposal of "Candidatus Frankia californiensis", the uncultured symbiont in nitrogen-fixing root nodules of a phylogenetically broad group of hosts endemic to western North America". Int J Syst Evol Microbiol. 67 (10): 3706–3715. doi:10.1099/ijsem.0.002147. PMID 28884663. S2CID 41316476. https://doi.org/10.1099%2Fijsem.0.002147