Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
300 (number)
Natural number

300 (three hundred) is the natural number following 299 and preceding 301.

We don't have any images related to 300 (number) yet.
We don't have any YouTube videos related to 300 (number) yet.
We don't have any PDF documents related to 300 (number) yet.
We don't have any Books related to 300 (number) yet.
We don't have any archived web articles related to 300 (number) yet.

In Mathematics

300 is a composite number and the 24th triangular number.1 It is also a second hexagonal number.2

Integers from 301 to 399

300s

301

Main article: 301 (number)

302

Main article: 302 (number)

303

Main article: 303 (number)

304

Main article: 304 (number)

305

Main article: 305 (number)

306

Main article: 306 (number)

307

Main article: 307 (number)

308

Main article: 308 (number)

309

Main article: 309 (number)

310s

310

Main article: 310 (number)

311

Main article: 311 (number)

312

Main article: 312 (number)

313

Main article: 313 (number)

314

Main article: 314 (number)

315

315 = 32 × 5 × 7 = D 7 , 3 {\displaystyle D_{7,3}\!} , rencontres number, highly composite odd number, having 12 divisors.3

It is a Harshad number, as it is divisible by the sum of its digits.4

It is a Zuckerman number, as it is divisible by the product of its digits.5

316

316 = 22 × 79, a centered triangular number6 and a centered heptagonal number.7

317

317 is a prime number, Eisenstein prime with no imaginary part, Chen prime,8 one of the rare primes to be both right and left-truncatable,9 and a strictly non-palindromic number.

317 is the exponent (and number of ones) in the fourth base-10 repunit prime.10

318

Main article: 318 (number)

319

319 = 11 × 29. 319 is the sum of three consecutive primes (103 + 107 + 109), Smith number,11 cannot be represented as the sum of fewer than 19 fourth powers, happy number in base 1012

320s

320

320 = 26 × 5 = (25) × (2 × 5). 320 is a Leyland number,13 and maximum determinant of a 10 by 10 matrix of zeros and ones.

321

321 = 3 × 107, a Delannoy number14

322

322 = 2 × 7 × 23. 322 is a sphenic,15 nontotient, untouchable,16 and a Lucas number.17 It is also the first unprimeable number to end in 2.

323

Main article: 323 (number)

324

324 = 22 × 34 = 182. 324 is the sum of four consecutive primes (73 + 79 + 83 + 89), totient sum of the first 32 integers, a square number,18 and an untouchable number.19

325

Main article: 325 (number)

326

326 = 2 × 163. 326 is a nontotient, noncototient,20 and an untouchable number.21 326 is the sum of the 14 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), lazy caterer number22

327

327 = 3 × 109. 327 is a perfect totient number,23 number of compositions of 10 whose run-lengths are either weakly increasing or weakly decreasing24

328

328 = 23 × 41. 328 is a refactorable number,25 and it is the sum of the first fifteen primes (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47).

329

329 = 7 × 47. 329 is the sum of three consecutive primes (107 + 109 + 113), and a highly cototient number.26

330s

330

330 = 2 × 3 × 5 × 11. 330 is sum of six consecutive primes (43 + 47 + 53 + 59 + 61 + 67), pentatope number (and hence a binomial coefficient ( 11 4 ) {\displaystyle {\tbinom {11}{4}}} ), a pentagonal number,27 divisible by the number of primes below it, and a sparsely totient number.28

331

331 is a prime number, super-prime, cuban prime,29 a lucky prime,30 sum of five consecutive primes (59 + 61 + 67 + 71 + 73), centered pentagonal number,31 centered hexagonal number,32 and Mertens function returns 0.33

332

332 = 22 × 83, Mertens function returns 0.34

333

333 = 32 × 37, Mertens function returns 0;35 repdigit; 2333 is the smallest power of two greater than a googol.

334

334 = 2 × 167, nontotient.36

335

335 = 5 × 67. 335 is divisible by the number of primes below it, number of Lyndon words of length 12.

336

336 = 24 × 3 × 7, untouchable number,37 number of partitions of 41 into prime parts,38 largely composite number.39

337

337, prime number, emirp, permutable prime with 373 and 733, Chen prime,40 star number

338

338 = 2 × 132, nontotient, number of square (0,1)-matrices without zero rows and with exactly 4 entries equal to 1.41

339

339 = 3 × 113, Ulam number42

340s

340

340 = 22 × 5 × 17, sum of eight consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), sum of ten consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), sum of the first four powers of 4 (41 + 42 + 43 + 44), divisible by the number of primes below it, nontotient, noncototient.43 Number of regions formed by drawing the line segments connecting any two of the 12 perimeter points of a 3 times 3 grid of squares (sequence A331452 in the OEIS) and (sequence A255011 in the OEIS).

341

Main article: 341 (number)

342

342 = 2 × 32 × 19, pronic number,44 Untouchable number.45

343

343 = 73, the first nice Friedman number that is composite since 343 = (3 + 4)3. It is the only known example of x2+x+1 = y3, in this case, x=18, y=7. It is z3 in a triplet (x,y,z) such that x5 + y2 = z3.

344

344 = 23 × 43, octahedral number,46 noncototient,47 totient sum of the first 33 integers, refactorable number.48

345

345 = 3 × 5 × 23, sphenic number,49 idoneal number

346

346 = 2 × 173, Smith number,50 noncototient.51

347

347 is a prime number, emirp, safe prime,52 Eisenstein prime with no imaginary part, Chen prime,53 Friedman prime since 347 = 73 + 4, twin prime with 349, and a strictly non-palindromic number.

348

348 = 22 × 3 × 29, sum of four consecutive primes (79 + 83 + 89 + 97), refactorable number.54

349

349, prime number, twin prime, lucky prime, sum of three consecutive primes (109 + 113 + 127), 5349 - 4349 is a prime number.55

350s

350

350 = 2 × 52 × 7 = { 7 4 } {\displaystyle \left\{{7 \atop 4}\right\}} , primitive semiperfect number,56 divisible by the number of primes below it, nontotient, a truncated icosahedron of frequency 6 has 350 hexagonal faces and 12 pentagonal faces.

351

351 = 33 × 13, 26th triangular number,57 sum of five consecutive primes (61 + 67 + 71 + 73 + 79), member of Padovan sequence58 and number of compositions of 15 into distinct parts.59

352

352 = 25 × 11, the number of n-Queens Problem solutions for n = 9. It is the sum of two consecutive primes (173 + 179), lazy caterer number60

353

Main article: 353 (number)

354

354 = 2 × 3 × 59 = 14 + 24 + 34 + 44,6162 sphenic number,63 nontotient, also SMTP code meaning start of mail input. It is also sum of absolute value of the coefficients of Conway's polynomial.

  • The international calling code for Iceland

355

355 = 5 × 71, Smith number,64 Mertens function returns 0,65 divisible by the number of primes below it.66 The cototient of 355 is 75,67 where 75 is the product of its digits (3 x 5 x 5 = 75).

The numerator of the best simplified rational approximation of pi having a denominator of four digits or fewer. This fraction (355/113) is known as Milü and provides an extremely accurate approximation for pi, being accurate to seven digits.

356

356 = 22 × 89, Mertens function returns 0.68

357

357 = 3 × 7 × 17, sphenic number.69

358

358 = 2 × 179, sum of six consecutive primes (47 + 53 + 59 + 61 + 67 + 71), Mertens function returns 0,70 number of ways to partition {1,2,3,4,5} and then partition each cell (block) into subcells.71

359

Main article: 359 (number)

360s

360

Main article: 360 (number)

361

361 = 192. 361 is a centered triangular number,72 centered octagonal number, centered decagonal number,73 member of the Mian–Chowla sequence;74 also the number of positions on a standard 19 x 19 Go board.

362

362 = 2 × 181 = σ2(19): sum of squares of divisors of 19,75 Mertens function returns 0,76 nontotient, noncototient.77

363

Main article: 363 (number)

364

364 = 22 × 7 × 13, tetrahedral number,78 sum of twelve consecutive primes (11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), Mertens function returns 0,79 nontotient. It is a repdigit in base 3 (111111), base 9 (444), base 25 (EE), base 27 (DD), base 51 (77) and base 90 (44), the sum of six consecutive powers of 3 (1 + 3 + 9 + 27 + 81 + 243), and because it is the twelfth non-zero tetrahedral number.80

365

Main article: 365 (number)

366

366 = 2 × 3 × 61, sphenic number,81 Mertens function returns 0,82 noncototient,83 number of complete partitions of 20,84 26-gonal and 123-gonal. Also the number of days in a leap year.

367

367 is a prime number, a lucky prime,85 Perrin number,86 happy number, prime index prime and a strictly non-palindromic number.

368

368 = 24 × 23. It is also a Leyland number.87

369

Main article: 369 (number)

370s

370

370 = 2 × 5 × 37, sphenic number,88 sum of four consecutive primes (83 + 89 + 97 + 101), nontotient, with 369 part of a Ruth–Aaron pair with only distinct prime factors counted, Base 10 Armstrong number since 33 + 73 + 03 = 370.

371

371 = 7 × 53, sum of three consecutive primes (113 + 127 + 131), sum of seven consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67), sum of the primes from its least to its greatest prime factor,89 the next such composite number is 2935561623745, Armstrong number since 33 + 73 + 13 = 371.

372

372 = 22 × 3 × 31, sum of eight consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61), noncototient,90 untouchable number,91 --> refactorable number.92

373

373, prime number, balanced prime,93 one of the rare primes to be both right and left-truncatable (two-sided prime),94 sum of five consecutive primes (67 + 71 + 73 + 79 + 83), sexy prime with 367 and 379, permutable prime with 337 and 733, palindromic prime in 3 consecutive bases: 5658 = 4549 = 37310 and also in base 4: 113114.

374

374 = 2 × 11 × 17, sphenic number,95 nontotient, 3744 + 1 is prime.96

375

375 = 3 × 53, number of regions in regular 11-gon with all diagonals drawn.97

376

376 = 23 × 47, pentagonal number,98 1-automorphic number,99 nontotient, refactorable number.100

377

377 = 13 × 29, Fibonacci number, a centered octahedral number,101 a Lucas and Fibonacci pseudoprime, the sum of the squares of the first six primes.

378

378 = 2 × 33 × 7, 27th triangular number,102 cake number,103 hexagonal number,104 Smith number.105

379

379 is a prime number, Chen prime,106 lazy caterer number107 and a happy number in base 10. It is the sum of the first 15 odd primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53). 379! - 1 is prime.

380s

380

380 = 22 × 5 × 19, pronic number,108 number of regions into which a figure made up of a row of 6 adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.109

381

381 = 3 × 127, palindromic in base 2 and base 8.

381 is the sum of the first 16 prime numbers (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53).

382

382 = 2 × 191, sum of ten consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), Smith number.110

383

383, prime number, safe prime,111 Woodall prime,112 Thabit number, Eisenstein prime with no imaginary part, palindromic prime. It is also the first number where the sum of a prime and the reversal of the prime is also a prime.113 4383- 3383is prime.

384

Main article: 384 (number)

385

385 = 5 × 7 × 11, sphenic number,114 square pyramidal number,115 the number of integer partitions of 18.

385 = 102 + 92 + 82 + 72 + 62 + 52 + 42 + 32 + 22 + 12

386

386 = 2 × 193, nontotient, noncototient,116 centered heptagonal number,117 number of surface points on a cube with edge-length 9.118

387

387 = 32 × 43, number of graphical partitions of 22.119

388

388 = 22 × 97 = solution to postage stamp problem with 6 stamps and 6 denominations,120 number of uniform rooted trees with 10 nodes.121

389

389, prime number, emirp, Eisenstein prime with no imaginary part, Chen prime,122 highly cototient number,123 strictly non-palindromic number. Smallest conductor of a rank 2 Elliptic curve.

390s

390

390 = 2 × 3 × 5 × 13, sum of four consecutive primes (89 + 97 + 101 + 103), nontotient,

∑ n = 0 10 390 n {\displaystyle \sum _{n=0}^{10}{390}^{n}} is prime124

391

391 = 17 × 23, Smith number,125 centered pentagonal number.126

392

392 = 23 × 72, Achilles number.

393

393 = 3 × 131, Blum integer, Mertens function returns 0.127

394

394 = 2 × 197 = S5 a Schröder number,128 nontotient, noncototient.129

395

395 = 5 × 79, sum of three consecutive primes (127 + 131 + 137), sum of five consecutive primes (71 + 73 + 79 + 83 + 89), number of (unordered, unlabeled) rooted trimmed trees with 11 nodes.130

396

396 = 22 × 32 × 11, sum of twin primes (197 + 199), totient sum of the first 36 integers, refactorable number,131 Harshad number, digit-reassembly number.

397

397, prime number, cuban prime,132 centered hexagonal number.133

398

398 = 2 × 199, nontotient.

∑ n = 0 10 398 n {\displaystyle \sum _{n=0}^{10}{398}^{n}} is prime134

399

399 = 3 × 7 × 19, sphenic number,135 smallest Lucas–Carmichael number, and a Leyland number of the second kind136 ( 4 5 − 5 4 {\displaystyle 4^{5}-5^{4}} ). 399! + 1 is prime.

References

  1. "A000217 - OEIS". oeis.org. Retrieved 2024-11-28. https://oeis.org/A000217

  2. Sloane, N. J. A. (ed.). "Sequence A014105 (second hexagonal number)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  3. Sloane, N. J. A. (ed.). "Sequence A053624 (Highly composite odd numbers (1): where d(n) increases to a record)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  4. Sloane, N. J. A. (ed.). "Sequence A005349 (Niven (or Harshad, or harshad) numbers: numbers that are divisible by the sum of their digits.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  5. Sloane, N. J. A. (ed.). "Sequence A007602 (Numbers that are divisible by the product of their digits.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  6. Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  7. Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  8. Sloane, N. J. A. (ed.). "Sequence A109611 (Chen primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  9. Sloane, N. J. A. (ed.). "Sequence A020994 (Primes that are both left-truncatable and right-truncatable)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  10. Guy, Richard; Unsolved Problems in Number Theory, p. 7 ISBN 1475717385 /wiki/ISBN_(identifier)

  11. Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  12. Sloane, N. J. A. (ed.). "Sequence A007770 (Happy numbers: numbers whose trajectory under iteration of sum of squares of digits map (see A003132) includes 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  13. Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  14. Sloane, N. J. A. (ed.). "Sequence A001850 (Central Delannoy numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  15. Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  16. Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  17. Sloane, N. J. A. (ed.). "Sequence A000032 (Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  18. Sloane, N. J. A. (ed.). "Sequence A000290 (The squares: a(n) = n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  19. Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  20. Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  21. Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  22. Sloane, N. J. A. (ed.). "Sequence A000124 (Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  23. Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  24. Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  25. Sloane, N. J. A. (ed.). "Sequence A033950 (Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  26. Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  27. Sloane, N. J. A. (ed.). "Sequence A000326 (Pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  28. Sloane, N. J. A. (ed.). "Sequence A036913 (Sparsely totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  29. Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes: primes which are the difference of two consecutive cubes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  30. Sloane, N. J. A. (ed.). "Sequence A031157 (Numbers that are both lucky and prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  31. Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  32. Sloane, N. J. A. (ed.). "Sequence A003215 (Hex numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  33. Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  34. Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  35. Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  36. Sloane, N. J. A. (ed.). "Sequence A003052 (Self numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  37. Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  38. Sloane, N. J. A. (ed.). "Sequence A000607 (Number of partitions of n into prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  39. Sloane, N. J. A. (ed.). "Sequence A067128 (Ramanujan's largely composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  40. Sloane, N. J. A. (ed.). "Sequence A109611 (Chen primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  41. Sloane, N. J. A. (ed.). "Sequence A122400 (Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  42. Sloane, N. J. A. (ed.). "Sequence A002858 (Ulam numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  43. Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  44. Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  45. Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  46. Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  47. Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  48. Sloane, N. J. A. (ed.). "Sequence A033950 (Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  49. Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  50. Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  51. Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  52. Sloane, N. J. A. (ed.). "Sequence A005385 (Safe primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  53. Sloane, N. J. A. (ed.). "Sequence A109611 (Chen primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  54. Sloane, N. J. A. (ed.). "Sequence A033950 (Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  55. Sloane, N. J. A. (ed.). "Sequence A059802 (Numbers k such that 5^k - 4^k is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  56. Sloane, N. J. A. (ed.). "Sequence A006036 (Primitive pseudoperfect numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  57. "A000217 - OEIS". oeis.org. Retrieved 2024-11-28. https://oeis.org/A000217

  58. Sloane, N. J. A. (ed.). "Sequence A000931 (Padovan sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  59. Sloane, N. J. A. (ed.). "Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  60. Sloane, N. J. A. (ed.). "Sequence A000124 (Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  61. Sloane, N. J. A. (ed.). "Sequence A000538 (Sum of fourth powers: 0^4 + 1^4 + ... + n^4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  62. Sloane, N. J. A. (ed.). "Sequence A031971 (a(n) = Sum_{k=1..n} k^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  63. Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  64. Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  65. Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  66. "A057809 - OEIS". oeis.org. Retrieved 2024-11-19. https://oeis.org/A057809

  67. "A051953 - OEIS". oeis.org. Retrieved 2024-11-19. https://oeis.org/A051953

  68. Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  69. Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  70. Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  71. Sloane, N. J. A. (ed.). "Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  72. Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  73. Sloane, N. J. A. (ed.). "Sequence A062786 (Centered 10-gonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  74. Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  75. Sloane, N. J. A. (ed.). "Sequence A001157 (a(n) = sigma_2(n): sum of squares of divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  76. Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  77. Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  78. Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers (or triangular pyramidal))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  79. Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  80. Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers (or triangular pyramidal))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  81. Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  82. Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  83. Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  84. Sloane, N. J. A. (ed.). "Sequence A126796 (Number of complete partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  85. Sloane, N. J. A. (ed.). "Sequence A031157 (Numbers that are both lucky and prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  86. Sloane, N. J. A. (ed.). "Sequence A001608 (Perrin sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  87. Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  88. Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  89. Sloane, N. J. A. (ed.). "Sequence A055233 (Composite numbers equal to the sum of the primes from their smallest prime factor to their largest prime factor)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  90. Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  91. Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  92. Sloane, N. J. A. (ed.). "Sequence A033950 (Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  93. Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  94. Sloane, N. J. A. (ed.). "Sequence A020994 (Primes that are both left-truncatable and right-truncatable)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  95. Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  96. Sloane, N. J. A. (ed.). "Sequence A000068 (Numbers k such that k^4 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  97. Sloane, N. J. A. (ed.). "Sequence A007678 (Number of regions in regular n-gon with all diagonals drawn)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  98. Sloane, N. J. A. (ed.). "Sequence A000326 (Pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  99. Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  100. Sloane, N. J. A. (ed.). "Sequence A033950 (Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  101. Sloane, N. J. A. (ed.). "Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  102. "A000217 - OEIS". oeis.org. Retrieved 2024-11-28. https://oeis.org/A000217

  103. "A000217 - OEIS". oeis.org. Retrieved 2024-11-28. https://oeis.org/A000217

  104. Sloane, N. J. A. (ed.). "Sequence A000384 (Hexagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  105. Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  106. Sloane, N. J. A. (ed.). "Sequence A109611 (Chen primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  107. Sloane, N. J. A. (ed.). "Sequence A000124 (Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  108. Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  109. Sloane, N. J. A. (ed.). "Sequence A306302 (Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  110. Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  111. Sloane, N. J. A. (ed.). "Sequence A005385 (Safe primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  112. Sloane, N. J. A. (ed.). "Sequence A050918 (Woodall primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  113. Sloane, N. J. A. (ed.). "Sequence A072385 (Primes which can be represented as the sum of a prime and its reverse)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  114. Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  115. Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  116. Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  117. Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  118. Sloane, N. J. A. (ed.). "Sequence A005897 (a(n) = 6*n^2 + 2 for n > 0, a(0)=1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  119. Sloane, N. J. A. (ed.). "Sequence A000569 (Number of graphical partitions of 2n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  120. Sloane, N. J. A. (ed.). "Sequence A084192 (Array read by antidiagonals: T(n,k) = solution to postage stamp problem with n stamps and k denominations (n >= 1, k >= 1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  121. Sloane, N. J. A. (ed.). "Sequence A317712 (Number of uniform rooted trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  122. Sloane, N. J. A. (ed.). "Sequence A109611 (Chen primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  123. Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  124. Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  125. Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  126. Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  127. Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  128. Sloane, N. J. A. (ed.). "Sequence A006318 (Large Schröder numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  129. Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  130. Sloane, N. J. A. (ed.). "Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  131. Sloane, N. J. A. (ed.). "Sequence A033950 (Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  132. Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes: primes which are the difference of two consecutive cubes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  133. Sloane, N. J. A. (ed.). "Sequence A003215 (Hex numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  134. Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  135. Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane

  136. Sloane, N. J. A. (ed.). "Sequence A045575 (Leyland numbers of the second kind)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane