Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Wright omega function
Mathematical function

In mathematics, the Wright omega function or Wright function, denoted ω, is defined in terms of the Lambert W function as:

ω ( z ) = W ⌈ I m ( z ) − π 2 π ⌉ ( e z ) . {\displaystyle \omega (z)=W_{{\big \lceil }{\frac {\mathrm {Im} (z)-\pi }{2\pi }}{\big \rceil }}(e^{z}).}
Related Image Collections Add Image
We don't have any YouTube videos related to Wright omega function yet.
We don't have any PDF documents related to Wright omega function yet.
We don't have any Books related to Wright omega function yet.
We don't have any archived web articles related to Wright omega function yet.

Uses

One of the main applications of this function is in the resolution of the equation z = ln(z), as the only solution is given by z = e−ω(π i).

y = ω(z) is the unique solution, when z ≠ x ± i π {\displaystyle z\neq x\pm i\pi } for x ≤ −1, of the equation y + ln(y) = z. Except for those two values, the Wright omega function is continuous, even analytic.

Properties

The Wright omega function satisfies the relation W k ( z ) = ω ( ln ⁡ ( z ) + 2 π i k ) {\displaystyle W_{k}(z)=\omega (\ln(z)+2\pi ik)} .

It also satisfies the differential equation

d ω d z = ω 1 + ω {\displaystyle {\frac {d\omega }{dz}}={\frac {\omega }{1+\omega }}}

wherever ω is analytic (as can be seen by performing separation of variables and recovering the equation ln ⁡ ( ω ) + ω = z {\displaystyle \ln(\omega )+\omega =z} ), and as a consequence its integral can be expressed as:

∫ ω n d z = { ω n + 1 − 1 n + 1 + ω n n if  n ≠ − 1 , ln ⁡ ( ω ) − 1 ω if  n = − 1. {\displaystyle \int \omega ^{n}\,dz={\begin{cases}{\frac {\omega ^{n+1}-1}{n+1}}+{\frac {\omega ^{n}}{n}}&{\mbox{if }}n\neq -1,\\\ln(\omega )-{\frac {1}{\omega }}&{\mbox{if }}n=-1.\end{cases}}}

Its Taylor series around the point a = ω a + ln ⁡ ( ω a ) {\displaystyle a=\omega _{a}+\ln(\omega _{a})} takes the form :

ω ( z ) = ∑ n = 0 + ∞ q n ( ω a ) ( 1 + ω a ) 2 n − 1 ( z − a ) n n ! {\displaystyle \omega (z)=\sum _{n=0}^{+\infty }{\frac {q_{n}(\omega _{a})}{(1+\omega _{a})^{2n-1}}}{\frac {(z-a)^{n}}{n!}}}

where

q n ( w ) = ∑ k = 0 n − 1 ⟨ ⟨ n + 1 k ⟩ ⟩ ( − 1 ) k w k + 1 {\displaystyle q_{n}(w)=\sum _{k=0}^{n-1}{\bigg \langle }\!\!{\bigg \langle }{\begin{matrix}n+1\\k\end{matrix}}{\bigg \rangle }\!\!{\bigg \rangle }(-1)^{k}w^{k+1}}

in which

⟨ ⟨ n k ⟩ ⟩ {\displaystyle {\bigg \langle }\!\!{\bigg \langle }{\begin{matrix}n\\k\end{matrix}}{\bigg \rangle }\!\!{\bigg \rangle }}

is a second-order Eulerian number.

Values

ω ( 0 ) = W 0 ( 1 ) ≈ 0.56714 ω ( 1 ) = 1 ω ( − 1 ± i π ) = − 1 ω ( − 1 3 + ln ⁡ ( 1 3 ) + i π ) = − 1 3 ω ( − 1 3 + ln ⁡ ( 1 3 ) − i π ) = W − 1 ( − 1 3 e − 1 3 ) ≈ − 2.237147028 {\displaystyle {\begin{array}{lll}\omega (0)&=W_{0}(1)&\approx 0.56714\\\omega (1)&=1&\\\omega (-1\pm i\pi )&=-1&\\\omega (-{\frac {1}{3}}+\ln \left({\frac {1}{3}}\right)+i\pi )&=-{\frac {1}{3}}&\\\omega (-{\frac {1}{3}}+\ln \left({\frac {1}{3}}\right)-i\pi )&=W_{-1}\left(-{\frac {1}{3}}e^{-{\frac {1}{3}}}\right)&\approx -2.237147028\\\end{array}}}

Plots

Notes

References

  1. Not to be confused with the Fox–Wright function, also known as Wright function. /wiki/Fox%E2%80%93Wright_function