Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Volatile organic compound
Organic chemicals having a high vapor pressure at room temperature

Volatile organic compounds (VOCs) are organic chemicals with high vapor pressure at room temperature, found in many common items like house mold, upholstered furniture, and cleaning supplies. They contribute to the odors of perfumes and serve ecological roles such as attracting pollinators and facilitating plant interactions. While some VOCs are harmless, others pose risks to human health and the environment, exemplified by the familiar new car smell. Many anthropogenic VOCs are regulated indoors due to higher concentrations. Although generally not acutely toxic, chronic exposure may cause health effects. Their high vapor pressure leads to low boiling points and increased volatility, influencing their presence in the air.

Related Image Collections Add Image
We don't have any YouTube videos related to Volatile organic compound yet.
We don't have any PDF documents related to Volatile organic compound yet.
We don't have any Books related to Volatile organic compound yet.
We don't have any archived web articles related to Volatile organic compound yet.

Definitions

Diverse definitions of the term VOC are in use. Some examples are presented below.

Canada

Health Canada classifies VOCs as organic compounds that have boiling points roughly in the range of 50 to 250 °C (122 to 482 °F). The emphasis is placed on commonly encountered VOCs that would have an effect on air quality.8

European Union

The European Union defines a VOC as "any organic compound as well as the fraction of creosote, having at 293.15 K a vapour pressure of 0.01 kPa or more, or having a corresponding volatility under the particular conditions of use;".9 The VOC Solvents Emissions Directive was the main policy instrument for the reduction of industrial emissions of volatile organic compounds (VOCs) in the European Union. It covers a wide range of solvent-using activities, e.g. printing, surface cleaning, vehicle coating, dry cleaning and manufacture of footwear and pharmaceutical products. The VOC Solvents Emissions Directive requires installations in which such activities are applied to comply either with the emission limit values set out in the Directive or with the requirements of the so-called reduction scheme. Article 13 of The Paints Directive, approved in 2004, amended the original VOC Solvents Emissions Directive and limits the use of organic solvents in decorative paints and varnishes and in vehicle finishing products. The Paints Directive sets out maximum VOC content limit values for paints and varnishes in certain applications.1011 The Solvents Emissions Directive was replaced by the Industrial Emissions Directive from 2013.

China

The People's Republic of China defines a VOC as those compounds that have "originated from automobiles, industrial production and civilian use, burning of all types of fuels, storage and transportation of oils, fitment finish, coating for furniture and machines, cooking oil fume and fine particles (PM 2.5)", and similar sources.12 The Three-Year Action Plan for Winning the Blue Sky Defence War released by the State Council in July 2018 creates an action plan to reduce 2015 VOC emissions 10% by 2020.13

India

The Central Pollution Control Board of India released the Air (Prevention and Control of Pollution) Act in 1981, amended in 1987, to address concerns about air pollution in India.14 While the document does not differentiate between VOCs and other air pollutants, the CPCB monitors "oxides of nitrogen (NOx), sulphur dioxide (SO2), fine particulate matter (PM10) and suspended particulate matter (SPM)".15

United States

The definitions of VOCs used for control of precursors of photochemical smog used by the U.S. Environmental Protection Agency (EPA) and state agencies in the US with independent outdoor air pollution regulations include exemptions for VOCs that are determined to be non-reactive, or of low-reactivity in the smog formation process. Prominent is the VOC regulation issued by the South Coast Air Quality Management District in California and by the California Air Resources Board (CARB).16 However, this specific use of the term VOCs can be misleading, especially when applied to indoor air quality because many chemicals that are not regulated as outdoor air pollution can still be important for indoor air pollution.

Following a public hearing in September 1995, California's ARB uses the term "reactive organic gases" (ROG) to measure organic gases. The CARB revised the definition of "Volatile Organic Compounds" used in their consumer products regulations, based on the committee's findings.17

In addition to drinking water, VOCs are regulated in pollutant discharges to surface waters (both directly and via sewage treatment plants)18 as hazardous waste,19 but not in non-industrial indoor air.20 The Occupational Safety and Health Administration (OSHA) regulates VOC exposure in the workplace. Volatile organic compounds that are classified as hazardous materials are regulated by the Pipeline and Hazardous Materials Safety Administration while being transported.

Biologically generated VOCs

Most VOCs in Earth's atmosphere are biogenic, largely emitted by plants.21

Major biogenic VOCs22
compoundrelative contributionamount emitted (Tg/y)
isoprene62.2%594±34
terpenes10.9%95±3
pinene isomers5.6%48.7±0.8
sesquiterpenes2.4%20±1
methanol6.4%130±4

Biogenic volatile organic compounds (BVOCs) encompass VOCs emitted by plants, animals, or microorganisms, and while extremely diverse, are most commonly terpenoids, alcohols, and carbonyls (methane and carbon monoxide are generally not considered).23 Not counting methane, biological sources emit an estimated 760 teragrams of carbon per year in the form of VOCs.24 The majority of VOCs are produced by plants, the main compound being isoprene. Small amounts of VOCs are produced by animals and microbes.25 Many VOCs are considered secondary metabolites, which often help organisms in defense, such as plant defense against herbivory. The strong odor emitted by many plants consists of green leaf volatiles, a subset of VOCs. Although intended for nearby organisms to detect and respond to, these volatiles can be detected and communicated through wireless electronic transmission, by embedding nanosensors and infrared transmitters into the plant materials themselves.26

Emissions are affected by a variety of factors, such as temperature, which determines rates of volatilization and growth, and sunlight, which determines rates of biosynthesis. Emission occurs almost exclusively from the leaves, the stomata in particular. VOCs emitted by terrestrial forests are often oxidized by hydroxyl radicals in the atmosphere; in the absence of NOx pollutants, VOC photochemistry recycles hydroxyl radicals to create a sustainable biosphere–atmosphere balance.27 Due to recent climate change developments, such as warming and greater UV radiation, BVOC emissions from plants are generally predicted to increase, thus upsetting the biosphere–atmosphere interaction and damaging major ecosystems.28 A major class of VOCs is the terpene class of compounds, such as myrcene.29

Providing a sense of scale, a forest 62,000 square kilometres (24,000 sq mi) in area, the size of the U.S. state of Pennsylvania, is estimated to emit 3.4 million kg (7.5 million lb) of terpenes on a typical August day during the growing season.30 Maize produces the VOC (Z)-3-hexen-1-ol and other plant hormones.31

Anthropogenic sources

Anthropogenic sources emit about 142 teragrams (1.42 × 1011 kg, or 142 billion kg) of carbon per year in the form of VOCs.32

The major source of man-made VOCs are:33

  • Fossil fuel use and production, e.g. incompletely combusted fossil fuels or unintended evaporation of fuels. The most prevalent VOC is ethane, a relatively inert compound.
  • Solvents used in coatings, paints, and inks. Approximately 12 billion litres of paint are produced annually. Typical solvents include aliphatic hydrocarbons, ethyl acetate, glycol ethers and acetone. Motivated by cost, environmental concerns, and regulation, the paint and coating industries are increasingly shifting toward aqueous solvents.34
  • Compressed aerosol products, mainly butane and propane, estimated to contribute 1.3 million tonnes of VOC emissions per year globally.35
  • Biofuel use, e.g., cooking oils in Asia and bioethanol in Brazil.
  • Biomass combustion, especially from rain forests. Although combustion principally releases carbon dioxide and water, incomplete combustion affords a variety of VOCs.

Indoor VOCs

See also: Indoor air quality

Due to their numerous sources indoors, concentrations of VOCs indoors are consistently higher in indoor air (up to ten times higher) than outdoors due to the many sources.36 VOCs are emitted by thousands of indoor products. Examples include: paints, varnishes, waxes and lacquers, paint strippers, cleaning and personal care products, pesticides, building materials and furnishings, office equipment such as copiers and printers, correction fluids and carbonless copy paper, graphics and craft materials including glues and adhesives, permanent markers, and photographic solutions.37 Human activities such as cooking and cleaning can also emit VOCs.3839 Cooking can release long-chain aldehydes and alkanes when oil is heated and terpenes can be released when spices are prepared and/or cooked.40 Cleaning products contain a range of VOCs, including monoterpenes, sesquiterpenes, alcohols and esters. Once released into the air, VOCs can undergo reactions with ozone and hydroxyl radicals to produce other VOCs, such as formaldehyde.41

Some VOCs are emitted directly indoors, and some are formed through the subsequent chemical reactions.4243 The total concentration of all VOCs (TVOC) indoors can be up to five times higher than that of outdoor levels.44

New buildings experience particularly high levels of VOC off-gassing indoors because of the abundant new materials (building materials, fittings, surface coverings and treatments such as glues, paints and sealants) exposed to the indoor air, emitting multiple VOC gases.45 This off-gassing has a multi-exponential decay trend that is discernible over at least two years, with the most volatile compounds decaying with a time-constant of a few days, and the least volatile compounds decaying with a time-constant of a few years.46

New buildings may require intensive ventilation for the first few months, or a bake-out treatment. Existing buildings may be replenished with new VOC sources, such as new furniture, consumer products, and redecoration of indoor surfaces, all of which lead to a continuous background emission of TVOCs, and requiring improved ventilation.47

There are strong seasonal variations in indoors VOC emissions, with emission rates increasing in summer. This is largely due to the rate of diffusion of VOC species through materials to the surface, increasing with temperature. This leads to generally higher concentrations of TVOCs indoors in summer.48

Indoor air-quality measurements

Measurement of VOCs from the indoor air is done with sorption tubes e. g. Tenax (for VOCs and SVOCs) or DNPH-cartridges (for carbonyl-compounds) or air detector. The VOCs adsorb on these materials and are afterwards desorbed either thermally (Tenax) or by elution (DNPH) and then analyzed by GC–MS/FID or HPLC. Reference gas mixtures are required for quality control of these VOC measurements.49 Furthermore, VOC emitting products used indoors, e.g. building products and furniture, are investigated in emission test chambers under controlled climatic conditions.50 For quality control of these measurements round robin tests are carried out, therefore reproducibly emitting reference materials are ideally required.51 Other methods have used proprietary Silcosteel-coated canisters with constant flow inlets to collect samples over several days.52 These methods are not limited by the adsorbing properties of materials like Tenax.

Regulation of indoor VOC emissions

In most countries, a separate definition of VOCs is used with regard to indoor air quality that comprises each organic chemical compound that can be measured as follows: adsorption from air on Tenax TA, thermal desorption, gas chromatographic separation over a 100% nonpolar column (dimethylpolysiloxane). VOC (volatile organic compounds) are all compounds that appear in the gas chromatogram between and including n-hexane and n-hexadecane. Compounds appearing earlier are called VVOC (very volatile organic compounds); compounds appearing later are called SVOC (semi-volatile organic compounds).

France, Germany (AgBB/DIBt), Belgium, Norway (TEK regulation) and Italy (CAM Edilizia) have enacted regulations to limit VOC emissions from commercial products. European industry has developed numerous voluntary ecolabels and rating systems, such as EMICODE,53 M1,54 Blue Angel,55 GuT (textile floor coverings),56 Nordic Swan Ecolabel,57 EU Ecolabel,58 and Indoor Air Comfort.59 In the United States, several standards exist; California Standard CDPH Section 0135060 is the most common one. These regulations and standards changed the marketplace, leading to an increasing number of low-emitting products.

Health risks

See also: Chronic solvent-induced encephalopathy and Substance-induced psychosis

Respiratory, allergic, or immune effects in infants or children are associated with man-made VOCs and other indoor or outdoor air pollutants.61

Some VOCs, such as styrene and limonene, can react with nitrogen oxides or with ozone to produce new oxidation products and secondary aerosols, which can cause sensory irritation symptoms.62 VOCs contribute to the formation of tropospheric ozone and smog.6364

Health effects include eye, nose, and throat irritation; headaches, loss of coordination, nausea, hearing disorders65 and damage to the liver, kidney, and central nervous system.66 Some VOCs are suspected or known to cause cancer in humans. Key signs or symptoms associated with exposure to VOCs include conjunctival irritation, nose and throat discomfort, headache, allergic skin reaction, dyspnea, declines in serum cholinesterase levels, nausea, vomiting, nose bleeding, fatigue, dizziness.67

The ability of organic chemicals to cause health effects varies greatly from those that are highly toxic to those with no known health effects. As with other pollutants, the extent and nature of the health effect will depend on many factors including level of exposure and length of time exposed. Eye and respiratory tract irritation, headaches, dizziness, visual disorders, and memory impairment are among the immediate symptoms that some people have experienced soon after exposure to some organics. At present, not much is known about what health effects occur from the levels of organics usually found in homes.68

Ingestion

While null in comparison to the concentrations found in indoor air, benzene, toluene, and methyl tert-butyl ether (MTBE) were found in samples of human milk and increase the concentrations of VOCs that we are exposed to throughout the day.69 A study notes the difference between VOCs in alveolar breath and inspired air suggesting that VOCs are ingested, metabolized, and excreted via the extra-pulmonary pathway.70 VOCs are also ingested by drinking water in varying concentrations. Some VOC concentrations were over the EPA's National Primary Drinking Water Regulations and China's National Drinking Water Standards set by the Ministry of Ecology and Environment.71

Dermal absorption

The presence of VOCs in the air and in groundwater has prompted more studies. Several studies have been performed to measure the effects of dermal absorption of specific VOCs. Dermal exposure to VOCs like formaldehyde and toluene downregulate antimicrobial peptides on the skin like cathelicidin LL-37, human β-defensin 2 and 3.72 Xylene and formaldehyde worsen allergic inflammation in animal models.73 Toluene also increases the dysregulation of filaggrin: a key protein in dermal regulation.74 this was confirmed by immunofluorescence to confirm protein loss and western blotting to confirm mRNA loss. These experiments were done on human skin samples. Toluene exposure also decreased the water in the trans-epidermal layer allowing for vulnerability in the skin's layers.7576

Limit values for VOC emissions

Limit values for VOC emissions into indoor air are published by AgBB,77 AFSSET, California Department of Public Health, and others. These regulations have prompted several companies in the paint and adhesive industries to adapt with VOC level reductions their products. VOC labels and certification programs may not properly assess all of the VOCs emitted from the product, including some chemical compounds that may be relevant for indoor air quality.78 Each ounce of colorant added to tint paint may contain between 5 and 20 grams of VOCs. A dark color, however, could require 5–15 ounces of colorant, adding up to 300 or more grams of VOCs per gallon of paint.79

VOCs in healthcare settings

VOCs are also found in hospital and health care environments. In these settings, these chemicals are widely used for cleaning, disinfection, and hygiene of the different areas.80 Thus, health professionals such as nurses, doctors, sanitation staff, etc., may present with adverse health effects such as asthma; however, further evaluation is required to determine the exact levels and determinants that influence the exposure to these compounds.818283

Concentration levels of individual VOCs such as halogenated and aromatic hydrocarbons vary substantially between areas of the same hospital. Generally, ethanol, isopropanol, ether, and acetone are the main compounds in the interior of the site.8485 Following the same line, in a study conducted in the United States, it was established that nursing assistants are the most exposed to compounds such as ethanol, while medical equipment preparers are most exposed to 2-propanol.8687

In relation to exposure to VOCs by cleaning and hygiene personnel, a study conducted in 4 hospitals in the United States established that sterilization and disinfection workers are linked to exposures to d-limonene and 2-propanol, while those responsible for cleaning with chlorine-containing products are more likely to have higher levels of exposure to α-pinene and chloroform.88 Those who perform floor and other surface cleaning tasks (e.g., floor waxing) and who use quaternary ammonium, alcohol, and chlorine-based products are associated with a higher VOC exposure than the two previous groups, that is, they are particularly linked to exposure to acetone, chloroform, α-pinene, 2-propanol or d-limonene.89

Other healthcare environments such as nursing and age care homes have been rarely a subject of study, even though the elderly and vulnerable populations may spend considerable time in these indoor settings where they might be exposed to VOCs, derived from the common use of cleaning agents, sprays and fresheners.9091 In one study, more than 200 chemicals were identified, of which 41 have adverse health effects, 37 of them being VOCs. The health effects include skin sensitization, reproductive and organ-specific toxicity, carcinogenicity, mutagenicity, and endocrine-disrupting properties.92 Furthermore, in another study carried out in the same European country, it was found that there is a significant association between breathlessness in the elderly population and elevated exposure to VOCs such as toluene and o-xylene, unlike the remainder of the population.93

VOCs in hospitality and retail

Workers in hospitality are also exposed to VOCs from a variety of sources including cleaning products (air fresheners, floor cleaners, disinfectants, etc.), building materials and furnishings, as well as fragrances.94 One of the most common VOC found in hospitality settings are alkanes, which are a major ingredient in cleaning products (35%).95 Other products present in hospitality that contain alkanes are laundry detergents, paints, and lubricants.96 Housekeepers in particular may also be exposed to formaldehyde,97 which is present in some fabrics used to make towels and bedding, however exposure decreases after several washes.98 Some hotels still use bleach to clean, and this bleach can form chloroform and carbon tetrachloride.99 Fragrances are often used in hotels and are composed of many different chemicals.100

There are many negative health outcomes associated with VOC exposure in hospitality. VOCs present in cleaning supplies can cause skin, eye, nose, and throat irritation, which can develop into dermatitis.101 VOCs in cleaning supplies can also cause more serious conditions, such as respiratory diseases and cancer.102 One study found that n-nonane and formaldehyde were the main drivers of eye and upper respiratory tract irritation while cancer risks were driven by chloroform and formaldehyde.103 Some solvent-based products have also been shown to cause damage to the kidneys and reproductive organs.104 One study showed that the star rating of the hotel may influence VOC exposure, as hotels with lower star ratings tend to have lower quality materials for the furnishings.105 Additionally, due to a movement among higher-end hotels to be more environmentally friendly, there has been a shift to using less harsh cleaning agents.106

Another similar environment that exposes workers to VOCs are retail spaces. Studies have shown that retail spaces have the highest VOC concentrations compared to all other indoor spaces such as residences, offices, and vehicles.107108 The concentration of VOCs present as well as the types depend on the type of store, but common sources of VOCs in retail spaces include motor vehicle exhaust, building materials, cleaning products, products, and fragrances.109 One study found that VOC concentrations were higher in retail storage spaces compared to the sales areas, particularly formaldehyde.110 In retail spaces, formaldehyde concentrations ranged from 8.0 to 19.4 μg/m3 compared to 14.2 to 45.0 μg/m3 in storage spaces.111 Occupational exposure to VOCs also depends on the task. One study found that workers were exposed to peak total VOC concentrations when they were removing the plastic film off of new products.112 This peak was 7 times higher than total VOC concentration peaks of all other tasks, contributing greatly to retail workers' exposure to VOCs despite being a relatively short task.113

One way that VOC concentrations can be kept minimal within retail and hospitality is by ensuring there is proper air ventilation.114 Employers can ensure proper ventilation by placing furniture in a way that enhances air circulation, as well as checking that the HVAC (heating, ventilation, and air conditioning) system is working properly to remove pollutants from the air.115 Workers can make sure that air vents are not blocked.116

Analytical methods

Sampling

Obtaining samples for analysis is challenging. VOCs, even when at dangerous levels, are dilute, so preconcentration is typically required. Many components of the atmosphere are mutually incompatible, e.g. ozone and organic compounds, peroxyacyl nitrates and many organic compounds. Furthermore, collection of VOCs by condensation in cold traps also accumulates a large amount of water, which generally must be removed selectively, depending on the analytical techniques to be employed.117 Solid-phase microextraction (SPME) techniques are used to collect VOCs at low concentrations for analysis.118 As applied to breath analysis, the following modalities are employed for sampling: gas sampling bags, syringes, evacuated steel and glass containers.119

Principle and measurement methods

In the U.S., standard methods have been established by the National Institute for Occupational Safety and Health (NIOSH) and another by U.S. OSHA. Each method uses a single component solvent; butanol and hexane cannot be sampled, however, on the same sample matrix using the NIOSH or OSHA method.120

VOCs are quantified and identified by two broad techniques. The major technique is gas chromatography (GC). GC instruments allow the separation of gaseous components. When coupled to a flame ionization detector (FID) GCs can detect hydrocarbons at the parts per trillion levels. Using electron capture detectors, GCs are also effective for organohalide such as chlorocarbons.

The second major technique associated with VOC analysis is mass spectrometry, which is usually coupled with GC, giving the hyphenated technique of GC-MS.121

Direct injection mass spectrometry techniques are frequently utilized for the rapid detection and accurate quantification of VOCs.122 PTR-MS is among the methods that have been used most extensively for the on-line analysis of biogenic and anthropogenic VOCs.123 PTR-MS instruments based on time-of-flight mass spectrometry have been reported to reach detection limits of 20 pptv after 100 ms and 750 ppqv after 1 min. measurement (signal integration) time. The mass resolution of these devices is between 7000 and 10,500 m/Δm, thus it is possible to separate most common isobaric VOCs and quantify them independently.124

Chemical fingerprinting and breath analysis

The exhaled human breath contains a few thousand volatile organic compounds and is used in breath biopsy to serve as a VOC biomarker to test for diseases,125 such as lung cancer.126 One study has shown that "volatile organic compounds ... are mainly blood borne and therefore enable monitoring of different processes in the body."127 And it appears that VOC compounds in the body "may be either produced by metabolic processes or inhaled/absorbed from exogenous sources" such as environmental tobacco smoke.128129 Chemical fingerprinting and breath analysis of volatile organic compounds has also been demonstrated with chemical sensor arrays, which utilize pattern recognition for detection of component volatile organics in complex mixtures such as breath gas.

Metrology for VOC measurements

To achieve comparability of VOC measurements, reference standards traceable to SI units are required. For a number of VOCs gaseous reference standards are available from specialty gas suppliers or national metrology institutes, either in the form of cylinders or dynamic generation methods. However, for many VOCs, such as oxygenated VOCs, monoterpenes, or formaldehyde, no standards are available at the appropriate amount of fraction due to the chemical reactivity or adsorption of these molecules. Currently, several national metrology institutes are working on the lacking standard gas mixtures at trace level concentration, minimising adsorption processes, and improving the zero gas.130 The final scopes are for the traceability and the long-term stability of the standard gases to be in accordance with the data quality objectives (DQO, maximum uncertainty of 20% in this case) required by the WMO/GAW program.131

See also

References

  1. Carroll, Gregory T. and Kirschman, David L. (2022-12-20). "A Peripherally Located Air Recirculation Device Containing an Activated Carbon Filter Reduces VOC Levels in a Simulated Operating Room". ACS Omega. 7 (50): 46640–46645. doi:10.1021/acsomega.2c05570. ISSN 2470-1343. PMC 9774396. PMID 36570243. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774396

  2. Association, American Lung. "Volatile Organic Compounds in the Home: The Surprising Places You Might Find Them". www.lung.org. Retrieved 2024-10-20. https://www.lung.org/blog/volatile-organic-compounds-at-home

  3. Pichersky, Eran; Gershenzon, Jonathan (2002). "The formation and function of plant volatiles: Perfumes for pollinator attraction and defense". Current Opinion in Plant Biology. 5 (3): 237–243. Bibcode:2002COPB....5..237P. doi:10.1016/S1369-5266(02)00251-0. PMID 11960742. /wiki/Bibcode_(identifier)

  4. Kessler, André; Baldwin, Ian T. (2001). "Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature". Science. 291 (5511): 2141–2144. Bibcode:2001Sci...291.2141K. doi:10.1126/science.291.5511.2141. PMID 11251117. /wiki/Bibcode_(identifier)

  5. Baldwin, I. T.; Halitschke, R.; Paschold, A.; von Dahl, C. C.; Preston, C. A. (2006). "Volatile Signaling in Plant-Plant Interactions: "Talking Trees" in the Genomics Era". Science. 311 (5762): 812–815. Bibcode:2006Sci...311..812B. doi:10.1126/science.1118446. PMID 16469918. S2CID 9260593. /wiki/Bibcode_(identifier)

  6. Nexus, PNAS. "New car smell reaches toxic levels on hot days, researchers find". phys.org. Retrieved 2024-10-20. https://phys.org/news/2024-07-car-toxic-hot-days.html

  7. Koppmann, Ralf, ed. (2007). Volatile Organic Compounds in the Atmosphere. doi:10.1002/9780470988657. ISBN 9780470988657. 9780470988657

  8. Health Canada Archived February 7, 2009, at the Wayback Machine http://www.hc-sc.gc.ca/ewh-semt/pubs/air/office_building-immeubles_bureaux/organic-organiques-eng.php

  9. Industrial Emissions Directive, article 3(45). /wiki/Industrial_Emissions_Directive

  10. The VOC solvent emission directive EUR-Lex, European Union Publications Office. Retrieved on 2010-09-28. http://ec.europa.eu/environment/archives/air/stationary/solvents/legislation.htm

  11. The Paints Directive EUR-Lex, European Union Publications Office. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32004L0042

  12. eBeijing.gov.cn

  13. "国务院关于印发打赢蓝天保卫战三年行动计划的通知(国发〔2018〕22号)_政府信息公开专栏". gov.cn. Archived from the original on 2019-03-09. http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm

  14. "THE AIR (PREVENTION AND CONTROL OF POLLUTION) ACT, 1981". http://cpcb.nic.in/displaypdf.php?id=aG9tZS9haXItcG9sbHV0aW9uL05vLTE0LTE5ODEucGRm

  15. "Air Pollution in IndiaClean Air India Movement". Clean Air India Movement. http://cleanairindiamovement.com/

  16. "CARB regulations on VOC in consumer products". Consumer Product Testing. Eurofins Scientific. 2016-08-19. http://www.eurofins.com/carb-consumer-products-voc.aspx

  17. "Definitions of VOC and ROG" (PDF). Sacramento, CA: California Air Resources Board. November 2004. http://www.arb.ca.gov/ei/speciate/voc_rog_dfn_11_04.pdf

  18. For example, discharges from chemical and plastics manufacturing plants: "Organic Chemicals, Plastics and Synthetic Fibers Effluent Guidelines". EPA. 2016-02-01. https://www.epa.gov/eg/organic-chemicals-plastics-and-synthetic-fibers-effluent-guidelines

  19. Under the CERCLA ("Superfund") law and the Resource Conservation and Recovery Act. /wiki/CERCLA

  20. "Volatile Organic Compounds' Impact on Indoor Air Quality". EPA. 2016-09-07. https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality

  21. Koppmann, Ralf, ed. (2007). Volatile Organic Compounds in the Atmosphere. doi:10.1002/9780470988657. ISBN 9780470988657. 9780470988657

  22. Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.-F.; Kuhn, U.; Stefani, P.; Knorr, W. (2014). "Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years". Atmospheric Chemistry and Physics. 14 (17): 9317–9341. Bibcode:2014ACP....14.9317S. doi:10.5194/acp-14-9317-2014. hdl:11858/00-001M-0000-0023-F4FB-B. https://doi.org/10.5194%2Facp-14-9317-2014

  23. J. Kesselmeier; M. Staudt (1999). "Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology". Journal of Atmospheric Chemistry. 33 (1): 23–88. Bibcode:1999JAtC...33...23K. doi:10.1023/A:1006127516791. S2CID 94021819. /wiki/Bibcode_(identifier)

  24. Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.-F.; Kuhn, U.; Stefani, P.; Knorr, W. (2014). "Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years". Atmospheric Chemistry and Physics. 14 (17): 9317–9341. Bibcode:2014ACP....14.9317S. doi:10.5194/acp-14-9317-2014. hdl:11858/00-001M-0000-0023-F4FB-B. https://doi.org/10.5194%2Facp-14-9317-2014

  25. Terra, W. C.; Campos, V. P.; Martins, S. J. (2018). "Volatile organic molecules from Fusarium oxysporum strain 21 with nematicidal activity against Meloidogyne incognita". Crop Protection. 106: 125–131. Bibcode:2018CrPro.106..125T. doi:10.1016/j.cropro.2017.12.022. /wiki/Bibcode_(identifier)

  26. Kwak, Seon-Yeong; Wong, Min Hao; Lew, Tedrick Thomas Salim; Bisker, Gili; Lee, Michael A.; Kaplan, Amir; Dong, Juyao; Liu, Albert Tianxiang; Koman, Volodymyr B.; Sinclair, Rosalie; Hamann, Catherine; and Strano, Michael S. (2017-06-12). "Nanosensor Technology Applied to Living Plant Systems". Annual Review of Analytical Chemistry. 10 (1). Annual Reviews: 113–140. doi:10.1146/annurev-anchem-061516-045310. ISSN 1936-1327. PMID 28605605. /wiki/Annual_Review_of_Analytical_Chemistry

  27. J. Lelieveld; T. M. Butler; J. N. Crowley; T. J. Dillon; H. Fischer; L. Ganzeveld; H. Harder; M. G. Lawrence; M. Martinez; D. Taraborrelli; J. Williams (2008). "Atmospheric oxidation capacity sustained by a tropical forest". Nature. 452 (7188): 737–740. Bibcode:2008Natur.452..737L. doi:10.1038/nature06870. PMID 18401407. S2CID 4341546. /wiki/Bibcode_(identifier)

  28. Josep Peñuelas; Michael Staudt (2010). "BVOCs and global change". Trends in Plant Science. 15 (3): 133–144. Bibcode:2010TPS....15..133P. doi:10.1016/j.tplants.2009.12.005. PMID 20097116. /wiki/Bibcode_(identifier)

  29. Niinemets, Ülo; Loreto, Francesco; Reichstein, Markus (2004). "Physiological and physicochemical controls on foliar volatile organic compound emissions". Trends in Plant Science. 9 (4): 180–6. Bibcode:2004TPS.....9..180N. doi:10.1016/j.tplants.2004.02.006. PMID 15063868. /wiki/Bibcode_(identifier)

  30. Behr, Arno; Johnen, Leif (2009). "Myrcene as a Natural Base Chemical in Sustainable Chemistry: A Critical Review". ChemSusChem. 2 (12): 1072–95. Bibcode:2009ChSCh...2.1072B. doi:10.1002/cssc.200900186. PMID 20013989. /wiki/Bibcode_(identifier)

  31. Farag, Mohamed A.; Fokar, Mohamed; Abd, Haggag; Zhang, Huiming; Allen, Randy D.; Paré, Paul W. (2004). "(Z)-3-Hexenol induces defense genes and downstream metabolites in maize". Planta. 220 (6): 900–9. doi:10.1007/s00425-004-1404-5. PMID 15599762. S2CID 21739942. /wiki/Doi_(identifier)

  32. Goldstein, Allen H.; Galbally, Ian E. (2007). "Known and Unexplored Organic Constituents in the Earth's Atmosphere". Environmental Science & Technology. 41 (5): 1514–21. Bibcode:2007EnST...41.1514G. doi:10.1021/es072476p. PMID 17396635. https://doi.org/10.1021%2Fes072476p

  33. Reimann, Stefan; Lewis, Alastair C. (2007). "Anthropogenic VOCs". In Koppmann, Ralf (ed.). Volatile Organic Compounds in the Atmosphere. doi:10.1002/9780470988657. ISBN 9780470988657. 9780470988657

  34. Stoye, D.; Funke, W.; Hoppe, L.; et al. (2006). "Paints and Coatings". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a18_359.pub2. ISBN 3527306730. 3527306730

  35. Yeoman, Amber M.; Lewis, Alastair C. (2021-04-22). "Global emissions of VOCs from compressed aerosol products". Elementa: Science of the Anthropocene. 9 (1): 00177. Bibcode:2021EleSA...9..177Y. doi:10.1525/elementa.2020.20.00177. ISSN 2325-1026. https://online.ucpress.edu/elementa/article/9/1/00177/116770/Global-emissions-of-VOCs-from-compressed-aerosol

  36. You, Bo; Zhou, Wei; Li, Junyao; Li, Zhijie; Sun, Yele (November 4, 2022). "A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements". Environment International. 170: 107611. Bibcode:2022EnInt.17007611Y. doi:10.1016/j.envint.2022.107611. PMID 36335895. https://doi.org/10.1016%2Fj.envint.2022.107611

  37. "U.S. EPA IAQ – Organic chemicals". Epa.gov. August 5, 2010. Archived from the original on September 9, 2015. Retrieved March 2, 2012. http://www.epa.gov/iaq/voc.html

  38. Davies, Helen L.; O'Leary, Catherine; Dillon, Terry; Shaw, David R.; Shaw, Marvin; Mehra, Archit; Phillips, Gavin; Carslaw, Nicola (August 14, 2023). "A measurement and modelling investigation of the indoor air chemistry following cooking activities". Environmental Science: Processes & Impacts. 25 (9): 1532–1548. doi:10.1039/D3EM00167A. ISSN 2050-7887. PMID 37609942. http://xlink.rsc.org/?DOI=D3EM00167A

  39. Harding-Smith, Ellen; Shaw, David R.; Shaw, Marvin; Dillon, Terry J.; Carslaw, Nicola (January 23, 2024). "Does green mean clean? Volatile organic emissions from regular versus green cleaning products". Environmental Science: Processes & Impacts. 26 (2): 436–450. doi:10.1039/D3EM00439B. ISSN 2050-7887. PMID 38258874. http://xlink.rsc.org/?DOI=D3EM00439B

  40. Davies, Helen L.; O'Leary, Catherine; Dillon, Terry; Shaw, David R.; Shaw, Marvin; Mehra, Archit; Phillips, Gavin; Carslaw, Nicola (August 14, 2023). "A measurement and modelling investigation of the indoor air chemistry following cooking activities". Environmental Science: Processes & Impacts. 25 (9): 1532–1548. doi:10.1039/D3EM00167A. ISSN 2050-7887. PMID 37609942. http://xlink.rsc.org/?DOI=D3EM00167A

  41. Harding-Smith, Ellen; Shaw, David R.; Shaw, Marvin; Dillon, Terry J.; Carslaw, Nicola (January 23, 2024). "Does green mean clean? Volatile organic emissions from regular versus green cleaning products". Environmental Science: Processes & Impacts. 26 (2): 436–450. doi:10.1039/D3EM00439B. ISSN 2050-7887. PMID 38258874. http://xlink.rsc.org/?DOI=D3EM00439B

  42. Weschler, Charles J.; Carslaw, Nicola (March 6, 2018). "Indoor Chemistry". Environmental Science & Technology. 52 (5): 2419–2428. Bibcode:2018EnST...52.2419W. doi:10.1021/acs.est.7b06387. ISSN 0013-936X. PMID 29402076. Archived from the original on November 15, 2023. Retrieved April 11, 2024. https://pubs.acs.org/doi/10.1021/acs.est.7b06387

  43. Carter, Toby J.; Poppendieck, Dustin G.; Shaw, David; Carslaw, Nicola (January 16, 2023). "A Modelling Study of Indoor Air Chemistry: The Surface Interactions of Ozone and Hydrogen Peroxide". Atmospheric Environment. 297: 119598. Bibcode:2023AtmEn.29719598C. doi:10.1016/j.atmosenv.2023.119598. https://doi.org/10.1016%2Fj.atmosenv.2023.119598

  44. Jones, A.P. (1999). "Indoor air quality and health". Atmospheric Environment. 33 (28): 4535–64. Bibcode:1999AtmEn..33.4535J. doi:10.1016/S1352-2310(99)00272-1. /wiki/Bibcode_(identifier)

  45. Wang, S.; Ang, H. M.; Tade, M. O. (2007). "Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art". Environment International. 33 (5): 694–705. Bibcode:2007EnInt..33..694W. doi:10.1016/j.envint.2007.02.011. PMID 17376530. https://doaj.org/article/c006d47ee7bd43b586bcfc86931ffd0f

  46. Holøs, S. B.; et al. (2019). "VOC emission rates in newly built and renovated buildings, and the influence of ventilation – a review and meta-analysis". Int. J. Of Ventilation. 18 (3): 153–166. doi:10.1080/14733315.2018.1435026. hdl:10642/6247. S2CID 56370102. /wiki/Doi_(identifier)

  47. Wang, S.; Ang, H. M.; Tade, M. O. (2007). "Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art". Environment International. 33 (5): 694–705. Bibcode:2007EnInt..33..694W. doi:10.1016/j.envint.2007.02.011. PMID 17376530. https://doaj.org/article/c006d47ee7bd43b586bcfc86931ffd0f

  48. Holøs, S. B.; et al. (2019). "VOC emission rates in newly built and renovated buildings, and the influence of ventilation – a review and meta-analysis". Int. J. Of Ventilation. 18 (3): 153–166. doi:10.1080/14733315.2018.1435026. hdl:10642/6247. S2CID 56370102. /wiki/Doi_(identifier)

  49. "KEY-VOCs". KEY-VOCs. Retrieved 23 April 2018. http://www.key-vocs.eu/

  50. "ISO 16000-9:2006 Indoor air – Part 9: Determination of the emission of volatile organic compounds from building products and furnishing – Emission test chamber method". Iso.org. Retrieved 24 April 2018. http://www.iso.org/iso/rss.xml?csnumber=38203&rss=detail

  51. "KEY-VOCs". KEY-VOCs. Retrieved 23 April 2018. http://www.key-vocs.eu/

  52. Heeley-Hill, Aiden C.; Grange, Stuart K.; Ward, Martyn W.; Lewis, Alastair C.; Owen, Neil; Jordan, Caroline; Hodgson, Gemma; Adamson, Greg (2021). "Frequency of use of household products containing VOCs and indoor atmospheric concentrations in homes". Environmental Science: Processes & Impacts. 23 (5): 699–713. doi:10.1039/D0EM00504E. ISSN 2050-7887. PMID 34037627. http://xlink.rsc.org/?DOI=D0EM00504E

  53. "emicode – Eurofins Scientific". Eurofins.com. http://www.eurofins.com/emicode.aspx

  54. "m1 – Eurofins Scientific". Eurofins.com. http://www.eurofins.com/m1.aspx

  55. "blue-angel – Eurofins Scientific". Eurofins.com. http://www.eurofins.com/blue-angel.aspx

  56. "GuT-label". gut-prodis.eu. https://gut-prodis.eu/en/

  57. "Nordic Swan Ecolabel". nordic-ecolabel.org. https://www.nordic-ecolabel.org/

  58. "EU Ecolable homepage". ec.europa.eu. https://ec.europa.eu/environment/ecolabel/

  59. "indoor-air-comfort.com – Eurofins Scientific". Indoor-air-comfort.com. http://www.indoor-air-comfort.com/

  60. "cdph – Eurofins Scientific". Eurofins.com. http://www.eurofins.com/section-1350.aspx

  61. Mendell, M. J. (2007). "Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: A review". Indoor Air. 17 (4): 259–77. Bibcode:2007InAir..17..259M. doi:10.1111/j.1600-0668.2007.00478.x. PMID 17661923. https://doi.org/10.1111%2Fj.1600-0668.2007.00478.x

  62. Wolkoff, P.; Wilkins, C. K.; Clausen, P. A.; Nielsen, G. D. (2006). "Organic compounds in office environments – sensory irritation, odor, measurements and the role of reactive chemistry". Indoor Air. 16 (1): 7–19. Bibcode:2006InAir..16....7W. doi:10.1111/j.1600-0668.2005.00393.x. PMID 16420493. https://doi.org/10.1111%2Fj.1600-0668.2005.00393.x

  63. "What is Smog?", Canadian Council of Ministers of the Environment, CCME.ca Archived September 28, 2011, at the Wayback Machine http://www.ccme.ca/assets/pdf/pn_1257_e.pdf

  64. EPA,OAR, US (29 May 2015). "Basic Information about Ozone | US EPA". US EPA. Retrieved 2018-01-23. https://www.epa.gov/ozone-pollution/basic-information-about-ozone#what%20where%20how

  65. Roggia, Simone Mariotti; de França, Aline Gomes; Morata, Thais C.; Krieg, Edward; Earl, Brian R. (2019). "Auditory system dysfunction in Brazilian gasoline station workers". International Journal of Audiology. 58 (8): 484–496. doi:10.1080/14992027.2019.1597286. ISSN 1708-8186. PMC 8480536. PMID 31017499. https://pubmed.ncbi.nlm.nih.gov/31017499

  66. "Volatile Organic Compounds' Impact on Indoor Air Quality". United States Environmental Protection Agency. 2014-08-18. Retrieved 2024-05-23. https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality

  67. US EPA, OAR (2014-08-18). "Volatile Organic Compounds' Impact on Indoor Air Quality". US EPA. Retrieved 2019-04-04. https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality

  68. "Volatile Organic Compounds' Impact on Indoor Air Quality". EPA. 2017-04-19. http://www.epa.gov/iaq/voc.html

  69. Kim, Sung R.; Halden, Rolf U.; Buckley, Timothy J. (2007-03-01). "Volatile Organic Compounds in Human Milk: Methods and Measurements". Environmental Science & Technology. 41 (5): 1662–1667. Bibcode:2007EnST...41.1662K. doi:10.1021/es062362y. ISSN 0013-936X. PMID 17396657. https://pubs.acs.org/doi/10.1021/es062362y

  70. Phillips, M; Greenberg, J; Awad, J (1994-11-01). "Metabolic and environmental origins of volatile organic compounds in breath". Journal of Clinical Pathology. 47 (11): 1052–1053. doi:10.1136/jcp.47.11.1052. ISSN 0021-9746. PMC 503075. PMID 7829686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC503075

  71. Cao, Fengmei; Qin, Pan; Lu, Shaoyong; He, Qi; Wu, Fengchang; Sun, Hongwen; Wang, Lei; Li, Linlin (December 2018). "Measurement of volatile organic compounds and associated risk assessments through ingestion and dermal routes in Dongjiang Lake, China". Ecotoxicology and Environmental Safety. 165: 645–653. Bibcode:2018EcoES.165..645C. doi:10.1016/j.ecoenv.2018.08.108. PMID 30243211. S2CID 52821729. https://linkinghub.elsevier.com/retrieve/pii/S0147651318308479

  72. Ahn, Kangmo; Kim, Jihyun; Kim, Ji-Yun (February 2019). "Volatile Organic Compounds Dysregulate the Expression of Antimicrobial Peptides in Human Epidermal Keratinocytes". Journal of Allergy and Clinical Immunology. 143 (2): AB132. doi:10.1016/j.jaci.2018.12.402. S2CID 86509634. https://doi.org/10.1016%2Fj.jaci.2018.12.402

  73. Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C.; Lehmann, Irina; Polte, Tobias (2012-07-03). Idzko, Marco (ed.). "Volatile Organic Compounds Enhance Allergic Airway Inflammation in an Experimental Mouse Model". PLOS ONE. 7 (7): e39817. Bibcode:2012PLoSO...739817B. doi:10.1371/journal.pone.0039817. ISSN 1932-6203. PMC 3389035. PMID 22802943. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389035

  74. Lee, Hana; Shin, Jung Jin; Bae, Hyun Cheol; Ryu, Woo-In; Son, Sang Wook (January 2017). "Toluene downregulates filaggrin expression via the extracellular signal-regulated kinase and signal transducer and activator of transcription-dependent pathways". Journal of Allergy and Clinical Immunology. 139 (1): 355–358.e5. doi:10.1016/j.jaci.2016.06.036. PMID 27498358. https://doi.org/10.1016%2Fj.jaci.2016.06.036

  75. Ahn, Kangmo; Kim, Jihyun; Kim, Ji-Yun (February 2019). "Volatile Organic Compounds Dysregulate the Expression of Antimicrobial Peptides in Human Epidermal Keratinocytes". Journal of Allergy and Clinical Immunology. 143 (2): AB132. doi:10.1016/j.jaci.2018.12.402. S2CID 86509634. https://doi.org/10.1016%2Fj.jaci.2018.12.402

  76. Huss-Marp, J.; Eberlein-Konig, B.; Breuer, K.; Mair, S.; Ansel, A.; Darsow, U.; Kramer, U.; Mayer, E.; Ring, J.; Behrendt, H. (March 2006). "Influence of short-term exposure to airborne Der p 1 and volatile organic compounds on skin barrier function and dermal blood flow in patients with atopic eczema and healthy individuals". Clinical & Experimental Allergy. 36 (3): 338–345. doi:10.1111/j.1365-2222.2006.02448.x. ISSN 0954-7894. PMID 16499645. S2CID 23522130. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2222.2006.02448.x

  77. "Ausschuss zur gesundheitlichen Bewertung von Bauprodukten". Umweltbundesamt (in German). 2013-04-08. Retrieved 2019-05-24. https://www.umweltbundesamt.de/themen/gesundheit/kommissionen-arbeitsgruppen/ausschuss-zur-gesundheitlichen-bewertung-von

  78. EPA,OAR,ORIA,IED, US (18 August 2014). "Technical Overview of Volatile Organic Compounds | US EPA". US EPA. Retrieved 2018-04-23.{{cite web}}: CS1 maint: multiple names: authors list (link) https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds

  79. "Before You Buy Paint". Consumer Information. 2012-10-09. Retrieved 2018-04-30. https://www.consumer.ftc.gov/articles/0253-you-buy-paint

  80. Virji, M Abbas; Liang, Xiaoming; Su, Feng-Chiao; Lebouf, Ryan F; Stefaniak, Aleksandr B; Stanton, Marcia L; Henneberger, Paul K; Houseman, E Andres (2019-10-28). "Corrigendum to: Peaks, Means, and Determinants of Real-Time TVOC Exposures Associated with Cleaning and Disinfecting Tasks in Healthcare Settings". Annals of Work Exposures and Health. 64 (9): 1041. doi:10.1093/annweh/wxz059. ISSN 2398-7308. PMID 31665213. https://doi.org/10.1093%2Fannweh%2Fwxz059

  81. Virji, M Abbas; Liang, Xiaoming; Su, Feng-Chiao; Lebouf, Ryan F; Stefaniak, Aleksandr B; Stanton, Marcia L; Henneberger, Paul K; Houseman, E Andres (2019-10-28). "Corrigendum to: Peaks, Means, and Determinants of Real-Time TVOC Exposures Associated with Cleaning and Disinfecting Tasks in Healthcare Settings". Annals of Work Exposures and Health. 64 (9): 1041. doi:10.1093/annweh/wxz059. ISSN 2398-7308. PMID 31665213. https://doi.org/10.1093%2Fannweh%2Fwxz059

  82. Charlier, Bruno; Coglianese, Albino; De Rosa, Federica; De Caro, Francesco; Piazza, Ornella; Motta, Oriana; Borrelli, Anna; Capunzo, Mario; Filippelli, Amelia; Izzo, Viviana (2021-03-24). "Chemical risk in hospital settings: Overview on monitoring strategies and international regulatory aspects". Journal of Public Health Research. 10 (1): jphr.2021.1993. doi:10.4081/jphr.2021.1993. ISSN 2279-9036. PMC 8018262. PMID 33849259. https://jphres.org/index.php/jphres/article/view/1993

  83. Su, Feng-Chiao; Friesen, Melissa C; Stefaniak, Aleksandr B; Henneberger, Paul K; LeBouf, Ryan F; Stanton, Marcia L; Liang, Xiaoming; Humann, Michael; Virji, M Abbas (2018-08-13). "Exposures to Volatile Organic Compounds among Healthcare Workers: Modeling the Effects of Cleaning Tasks and Product Use". Annals of Work Exposures and Health. 62 (7): 852–870. doi:10.1093/annweh/wxy055. ISSN 2398-7308. PMC 6248410. PMID 29931140. https://academic.oup.com/annweh/article/62/7/852/5042050

  84. Bessonneau, Vincent; Mosqueron, Luc; Berrubé, Adèle; Mukensturm, Gaël; Buffet-Bataillon, Sylvie; Gangneux, Jean-Pierre; and Thomas, Olivier (2013-02-05). Levin, Jan-Olof (ed.). "VOC Contamination in Hospital, from Stationary Sampling of a Large Panel of Compounds, in View of Healthcare Workers and Patients Exposure Assessment". PLOS ONE. 8 (2): e55535. Bibcode:2013PLoSO...855535B. doi:10.1371/journal.pone.0055535. ISSN 1932-6203. PMC 3564763. PMID 23393590. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564763

  85. LeBouf, Ryan F; Virji, M Abbas; Saito, Rena; Henneberger, Paul K; Simcox, Nancy; and Stefaniak, Aleksandr B (September 2014). "Exposure to volatile organic compounds in healthcare settings". Occupational and Environmental Medicine. 71 (9): 642–650. doi:10.1136/oemed-2014-102080. ISSN 1351-0711. PMC 4591534. PMID 25011549. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591534

  86. Bessonneau, Vincent; Mosqueron, Luc; Berrubé, Adèle; Mukensturm, Gaël; Buffet-Bataillon, Sylvie; Gangneux, Jean-Pierre; and Thomas, Olivier (2013-02-05). Levin, Jan-Olof (ed.). "VOC Contamination in Hospital, from Stationary Sampling of a Large Panel of Compounds, in View of Healthcare Workers and Patients Exposure Assessment". PLOS ONE. 8 (2): e55535. Bibcode:2013PLoSO...855535B. doi:10.1371/journal.pone.0055535. ISSN 1932-6203. PMC 3564763. PMID 23393590. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564763

  87. LeBouf, Ryan F; Virji, M Abbas; Saito, Rena; Henneberger, Paul K; Simcox, Nancy; and Stefaniak, Aleksandr B (September 2014). "Exposure to volatile organic compounds in healthcare settings". Occupational and Environmental Medicine. 71 (9): 642–650. doi:10.1136/oemed-2014-102080. ISSN 1351-0711. PMC 4591534. PMID 25011549. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591534

  88. Su, Feng-Chiao; Friesen, Melissa C; Stefaniak, Aleksandr B; Henneberger, Paul K; LeBouf, Ryan F; Stanton, Marcia L; Liang, Xiaoming; Humann, Michael; Virji, M Abbas (2018-08-13). "Exposures to Volatile Organic Compounds among Healthcare Workers: Modeling the Effects of Cleaning Tasks and Product Use". Annals of Work Exposures and Health. 62 (7): 852–870. doi:10.1093/annweh/wxy055. ISSN 2398-7308. PMC 6248410. PMID 29931140. https://academic.oup.com/annweh/article/62/7/852/5042050

  89. Su, Feng-Chiao; Friesen, Melissa C; Stefaniak, Aleksandr B; Henneberger, Paul K; LeBouf, Ryan F; Stanton, Marcia L; Liang, Xiaoming; Humann, Michael; Virji, M Abbas (2018-08-13). "Exposures to Volatile Organic Compounds among Healthcare Workers: Modeling the Effects of Cleaning Tasks and Product Use". Annals of Work Exposures and Health. 62 (7): 852–870. doi:10.1093/annweh/wxy055. ISSN 2398-7308. PMC 6248410. PMID 29931140. https://academic.oup.com/annweh/article/62/7/852/5042050

  90. Reddy, Manasa; Heidarinejad, Mohammad; Stephens, Brent; Rubinstein, Israel (April 2021). "Adequate indoor air quality in nursing homes: An unmet medical need". Science of the Total Environment. 765: 144273. Bibcode:2021ScTEn.76544273R. doi:10.1016/j.scitotenv.2020.144273. PMID 33401060. S2CID 230782257. https://linkinghub.elsevier.com/retrieve/pii/S0048969720378049

  91. Belo, Joana; Carreiro-Martins, Pedro; Papoila, Ana L.; Palmeiro, Teresa; Caires, Iolanda; Alves, Marta; Nogueira, Susana; Aguiar, Fátima; Mendes, Ana; Cano, Manuela; Botelho, Maria A. (2019-10-15). "The impact of indoor air quality on respiratory health of older people living in nursing homes: spirometric and exhaled breath condensate assessments". Journal of Environmental Science and Health, Part A. 54 (12): 1153–1158. Bibcode:2019JESHA..54.1153B. doi:10.1080/10934529.2019.1637206. ISSN 1093-4529. PMID 31274053. S2CID 195807320. https://www.tandfonline.com/doi/full/10.1080/10934529.2019.1637206

  92. Reddy, Manasa; Heidarinejad, Mohammad; Stephens, Brent; Rubinstein, Israel (April 2021). "Adequate indoor air quality in nursing homes: An unmet medical need". Science of the Total Environment. 765: 144273. Bibcode:2021ScTEn.76544273R. doi:10.1016/j.scitotenv.2020.144273. PMID 33401060. S2CID 230782257. https://linkinghub.elsevier.com/retrieve/pii/S0048969720378049

  93. Bentayeb, Malek; Billionnet, Cécile; Baiz, Nour; Derbez, Mickaël; Kirchner, Séverine; Annesi-Maesano, Isabella (October 2013). "Higher prevalence of breathlessness in elderly exposed to indoor aldehydes and VOCs in a representative sample of French dwellings". Respiratory Medicine. 107 (10): 1598–1607. doi:10.1016/j.rmed.2013.07.015. PMID 23920330. https://doi.org/10.1016%2Fj.rmed.2013.07.015

  94. Lin, Nan; Rosemberg, Marie-Anne; Li, Wei; Meza-Wilson, Emily; Godwin, Christopher; Batterman, Stuart (January 2021). "Occupational exposure and health risks of volatile organic compounds of hotel housekeepers: Field measurements of exposure and health risks". Indoor Air. 31 (1): 26–39. Bibcode:2021InAir..31...26L. doi:10.1111/ina.12709. ISSN 0905-6947. PMC 8020495. PMID 32609907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020495

  95. Lin, Nan; Rosemberg, Marie-Anne; Li, Wei; Meza-Wilson, Emily; Godwin, Christopher; Batterman, Stuart (January 2021). "Occupational exposure and health risks of volatile organic compounds of hotel housekeepers: Field measurements of exposure and health risks". Indoor Air. 31 (1): 26–39. Bibcode:2021InAir..31...26L. doi:10.1111/ina.12709. ISSN 0905-6947. PMC 8020495. PMID 32609907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020495

  96. Lin, Nan; Rosemberg, Marie-Anne; Li, Wei; Meza-Wilson, Emily; Godwin, Christopher; Batterman, Stuart (January 2021). "Occupational exposure and health risks of volatile organic compounds of hotel housekeepers: Field measurements of exposure and health risks". Indoor Air. 31 (1): 26–39. Bibcode:2021InAir..31...26L. doi:10.1111/ina.12709. ISSN 0905-6947. PMC 8020495. PMID 32609907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020495

  97. De Groot, Anton C.; Le Coz, Christophe J.; Lensen, Gerda J.; Flyvholm, Mari-Ann; Maibach, Howard I.; Coenraads, Pieter-Jan (May 2010). "Formaldehyde-releasers: relationship to formaldehyde contact allergy. Formaldehyde-releasers in clothes: durable press chemical finishes. Part 1". Contact Dermatitis. 62 (5): 259–271. doi:10.1111/j.1600-0536.2009.01675.x. ISSN 0105-1873. PMID 20384733. https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0536.2009.01675.x

  98. Novick, Rachel M.; Nelson, Mindy L.; McKinley, Meg A.; Anderson, Grace L.; Keenan, James J. (2013-07-18). "The Effect of Clothing Care Activities on Textile Formaldehyde Content". Journal of Toxicology and Environmental Health, Part A. 76 (14): 883–893. Bibcode:2013JTEHA..76..883N. doi:10.1080/15287394.2013.821439. ISSN 1528-7394. PMID 24053365. http://www.tandfonline.com/doi/abs/10.1080/15287394.2013.821439

  99. Odabasi, Mustafa; Elbir, Tolga; Dumanoglu, Yetkin; Sofuoglu, Sait C. (2014-08-01). "Halogenated volatile organic compounds in chlorine-bleach-containing household products and implications for their use". Atmospheric Environment. 92: 376–383. Bibcode:2014AtmEn..92..376O. doi:10.1016/j.atmosenv.2014.04.049. hdl:11147/4607. ISSN 1352-2310. https://linkinghub.elsevier.com/retrieve/pii/S1352231014003215

  100. Lin, Nan; Rosemberg, Marie-Anne; Li, Wei; Meza-Wilson, Emily; Godwin, Christopher; Batterman, Stuart (January 2021). "Occupational exposure and health risks of volatile organic compounds of hotel housekeepers: Field measurements of exposure and health risks". Indoor Air. 31 (1): 26–39. Bibcode:2021InAir..31...26L. doi:10.1111/ina.12709. ISSN 0905-6947. PMC 8020495. PMID 32609907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020495

  101. Hsieh, Yu-Chin (Jerrie); Apostolopoulos, Yorghos; Sönmez, Sevil (2013-05-01). "The world at work: hotel cleaners". Occupational and Environmental Medicine. 70 (5): 360–364. doi:10.1136/oemed-2012-100986. ISSN 1351-0711. PMID 23343861. https://oem.bmj.com/content/70/5/360

  102. Lin, Nan; Rosemberg, Marie-Anne; Li, Wei; Meza-Wilson, Emily; Godwin, Christopher; Batterman, Stuart (January 2021). "Occupational exposure and health risks of volatile organic compounds of hotel housekeepers: Field measurements of exposure and health risks". Indoor Air. 31 (1): 26–39. Bibcode:2021InAir..31...26L. doi:10.1111/ina.12709. ISSN 0905-6947. PMC 8020495. PMID 32609907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020495

  103. Lin, Nan; Rosemberg, Marie-Anne; Li, Wei; Meza-Wilson, Emily; Godwin, Christopher; Batterman, Stuart (January 2021). "Occupational exposure and health risks of volatile organic compounds of hotel housekeepers: Field measurements of exposure and health risks". Indoor Air. 31 (1): 26–39. Bibcode:2021InAir..31...26L. doi:10.1111/ina.12709. ISSN 0905-6947. PMC 8020495. PMID 32609907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020495

  104. Hsieh, Yu-Chin (Jerrie); Apostolopoulos, Yorghos; Sönmez, Sevil (2013-05-01). "The world at work: hotel cleaners". Occupational and Environmental Medicine. 70 (5): 360–364. doi:10.1136/oemed-2012-100986. ISSN 1351-0711. PMID 23343861. https://oem.bmj.com/content/70/5/360

  105. Nored, Adam; Fu, Xianqiang; Qi, Rui; Batbaatar, Namuun; Jia, Chunrong (November 2024). "Volatile Organic Compound (VOC) Contamination in Hotel Rooms: A Pilot Study to Understand Sources and Health Risks". International Journal of Environmental Research and Public Health. 21 (11): 1464. doi:10.3390/ijerph21111464. ISSN 1660-4601. PMC 11594154. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594154

  106. Nored, Adam; Fu, Xianqiang; Qi, Rui; Batbaatar, Namuun; Jia, Chunrong (November 2024). "Volatile Organic Compound (VOC) Contamination in Hotel Rooms: A Pilot Study to Understand Sources and Health Risks". International Journal of Environmental Research and Public Health. 21 (11): 1464. doi:10.3390/ijerph21111464. ISSN 1660-4601. PMC 11594154. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594154

  107. Loh, Miranda M.; Houseman, E. Andres; Gray, George M.; Levy, Jonathan I.; Spengler, John D.; Bennett, Deborah H. (2006-11-01). "Measured Concentrations of VOCs in Several Non-Residential Microenvironments in the United States". Environmental Science & Technology. 40 (22): 6903–6911. doi:10.1021/es060197g. ISSN 0013-936X. https://pubs.acs.org/doi/10.1021/es060197g

  108. Sexton, Ken; Mongin, Steven J.; Adgate, John L.; Pratt, Gregory C.; Ramachandran, Gurumurthy; Stock, Thomas H.; Morandi, Maria T. (2007-02-02). "Estimating Volatile Organic Compound Concentrations in Selected Microenvironments Using Time–Activity and Personal Exposure Data". Journal of Toxicology and Environmental Health, Part A. 70 (5): 465–476. doi:10.1080/15287390600870858. ISSN 1528-7394. PMID 17454570. http://www.tandfonline.com/doi/abs/10.1080/15287390600870858

  109. Nirlo, E. L.; Crain, N.; Corsi, R. L.; Siegel, J. A. (October 2014). "Volatile organic compounds in fourteen U.S. retail stores". Indoor Air. 24 (5): 484–494. doi:10.1111/ina.12101. PMID 24471978. https://onlinelibrary.wiley.com/doi/10.1111/ina.12101

  110. Robert, Laurence; Guichard, Romain; Klingler, Jennifer (2020-11-04). "Work Exposure to VOC in Storage Areas of Retail Stores". Annals of Work Exposures and Health. 65 (3): 319–331. doi:10.1093/annweh/wxaa103. ISSN 2398-7308. PMID 33147326. https://academic.oup.com/annweh/article/65/3/319/5956110

  111. Robert, Laurence; Guichard, Romain; Klingler, Jennifer (2020-11-04). "Work Exposure to VOC in Storage Areas of Retail Stores". Annals of Work Exposures and Health. 65 (3): 319–331. doi:10.1093/annweh/wxaa103. ISSN 2398-7308. PMID 33147326. https://academic.oup.com/annweh/article/65/3/319/5956110

  112. Robert, Laurence; Guichard, Romain; Klingler, Jennifer (2020-11-04). "Work Exposure to VOC in Storage Areas of Retail Stores". Annals of Work Exposures and Health. 65 (3): 319–331. doi:10.1093/annweh/wxaa103. ISSN 2398-7308. PMID 33147326. https://academic.oup.com/annweh/article/65/3/319/5956110

  113. Robert, Laurence; Guichard, Romain; Klingler, Jennifer (2020-11-04). "Work Exposure to VOC in Storage Areas of Retail Stores". Annals of Work Exposures and Health. 65 (3): 319–331. doi:10.1093/annweh/wxaa103. ISSN 2398-7308. PMID 33147326. https://academic.oup.com/annweh/article/65/3/319/5956110

  114. Occupational Safety and Health Administration. (2011). Indoor air quality in commercial and institutional buildings (OSHA Publication No. 3430-04). U.S. Department of Labor. https://www.osha.gov/sites/default/files/publications/3430indoor-air-quality-sm.pdf

  115. Occupational Safety and Health Administration. (2011). Indoor air quality in commercial and institutional buildings (OSHA Publication No. 3430-04). U.S. Department of Labor. https://www.osha.gov/sites/default/files/publications/3430indoor-air-quality-sm.pdf

  116. Occupational Safety and Health Administration. (2011). Indoor air quality in commercial and institutional buildings (OSHA Publication No. 3430-04). U.S. Department of Labor. https://www.osha.gov/sites/default/files/publications/3430indoor-air-quality-sm.pdf

  117. Reimann, Stefan; Lewis, Alastair C. (2007). "Anthropogenic VOCs". In Koppmann, Ralf (ed.). Volatile Organic Compounds in the Atmosphere. doi:10.1002/9780470988657. ISBN 9780470988657. 9780470988657

  118. Lattuati-Derieux, Agnès; Bonnassies-Termes, Sylvette; Lavédrine, Bertrand (2004). "Identification of volatile organic compounds emitted by a naturally aged book using solid-phase microextraction/gas chromatography/mass spectrometry". Journal of Chromatography A. 1026 (1–2): 9–18. doi:10.1016/j.chroma.2003.11.069. PMID 14870711. /wiki/Doi_(identifier)

  119. Ahmed, Waqar M.; Lawal, Oluwasola; Nijsen, Tamara M.; Goodacre, Royston; Fowler, Stephen J. (2017). "Exhaled Volatile Organic Compounds of Infection: A Systematic Review". ACS Infectious Diseases. 3 (10): 695–710. doi:10.1021/acsinfecdis.7b00088. PMID 28870074. https://www.research.manchester.ac.uk/portal/en/publications/exhaled-volatile-organic-compounds-of-infection-a-systematic-review(4128e0bd-4434-4aef-9e57-c7f2c388c156).html

  120. Who Says Alcohol and Benzene Don't Mix? Archived April 15, 2008, at the Wayback Machine http://galsonlabs.com/services/referenceinfo/technical_bulletins.php?tb_id=42

  121. Fang, Shuting; Liu, Shuqin; Song, Juyi; Huang, Qihong; Xiang, Zhangmin (2021-04-01). "Recognition of pathogens in food matrixes based on the untargeted in vivo microbial metabolite profiling via a novel SPME/GC × GC-QTOFMS approach". Food Research International. 142: 110213. doi:10.1016/j.foodres.2021.110213. ISSN 0963-9969. PMID 33773687. S2CID 232407164. https://www.sciencedirect.com/science/article/pii/S0963996921001125

  122. Biasioli, Franco; Yeretzian, Chahan; Märk, Tilmann D.; Dewulf, Jeroen; Van Langenhove, Herman (2011). "Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis". Trends in Analytical Chemistry. 30 (7): 1003–1017. doi:10.1016/j.trac.2011.04.005. /wiki/Doi_(identifier)

  123. Ellis, Andrew M.; Mayhew, Christopher A. (2014). Proton Transfer Reaction Mass Spectrometry – Principles and Applications. Chichester, West Sussex, UK: John Wiley & Sons Ltd. ISBN 978-1-405-17668-2. 978-1-405-17668-2

  124. Sulzer, Philipp; Hartungen, Eugen; Hanel, Gernot; Feil, Stefan; Winkler, Klaus; Mutschlechner, Paul; Haidacher, Stefan; Schottkowsky, Ralf; Gunsch, Daniel; Seehauser, Hans; Striednig, Marcus; Jürschik, Simone; Breiev, Kostiantyn; Lanza, Matteo; Herbig, Jens; Märk, Lukas; Märk, Tilmann D.; Jordan, Alfons (2014). "A Proton Transfer Reaction-Quadrupole interface Time-Of-Flight Mass Spectrometer (PTR-QiTOF): High speed due to extreme sensitivity". International Journal of Mass Spectrometry. 368: 1–5. Bibcode:2014IJMSp.368....1S. doi:10.1016/j.ijms.2014.05.004. /wiki/Bibcode_(identifier)

  125. Ahmed, Waqar M.; Lawal, Oluwasola; Nijsen, Tamara M.; Goodacre, Royston; Fowler, Stephen J. (2017). "Exhaled Volatile Organic Compounds of Infection: A Systematic Review". ACS Infectious Diseases. 3 (10): 695–710. doi:10.1021/acsinfecdis.7b00088. PMID 28870074. https://www.research.manchester.ac.uk/portal/en/publications/exhaled-volatile-organic-compounds-of-infection-a-systematic-review(4128e0bd-4434-4aef-9e57-c7f2c388c156).html

  126. Buszewski, B. A.; et al. (2007). "Human exhaled air analytics: Biomarkers of diseases". Biomedical Chromatography. 21 (6): 553–566. doi:10.1002/bmc.835. PMID 17431933. https://doi.org/10.1002%2Fbmc.835

  127. Miekisch, W.; Schubert, J. K.; Noeldge-Schomburg, G. F. E. (2004). "Diagnostic potential of breath analysis—focus on volatile organic compounds". Clinica Chimica Acta. 347 (1–2): 25–39. doi:10.1016/j.cccn.2004.04.023. PMID 15313139. /wiki/Doi_(identifier)

  128. Buszewski, B. A.; et al. (2007). "Human exhaled air analytics: Biomarkers of diseases". Biomedical Chromatography. 21 (6): 553–566. doi:10.1002/bmc.835. PMID 17431933. https://doi.org/10.1002%2Fbmc.835

  129. Mazzone, P. J. (2008). "Analysis of Volatile Organic Compounds in the Exhaled Breath for the Diagnosis of Lung Cancer". Journal of Thoracic Oncology. 3 (7): 774–780. doi:10.1097/JTO.0b013e31817c7439. PMID 18594325. https://doi.org/10.1097%2FJTO.0b013e31817c7439

  130. "KEY-VOCs". KEY-VOCs. Retrieved 23 April 2018. http://www.key-vocs.eu/

  131. Hoerger, C. C.; Claude, A., Plass-Duelmer, C., Reimann, S., Eckart, E., Steinbrecher, R., Aalto, J., Arduini, J., Bonnaire, N., Cape, J. N., Colomb, A., Connolly, R., Diskova, J., Dumitrean, P., Ehlers, C., Gros, V., Hakola, H., Hill, M., Hopkins, J. R., Jäger, J., Junek, R., Kajos, M. K., Klemp, D., Leuchner, M., Lewis, A. C., Locoge, N., Maione, M., Martin, D., Michl, K., Nemitz, E., O'Doherty, S., Pérez Ballesta, P., Ruuskanen, T. M., Sauvage, S., Schmidbauer, N., Spain, T. G., Straube, E., Vana, M., Vollmer, M. K., Wegener, R., and Wenger, A. (2015). "ACTRIS non-methane hydrocarbon intercomparison experiment in Europe to support WMO GAW and EMEP observation networks". Atmospheric Measurement Techniques. 8 (7): 2715–2736. Bibcode:2015AMT.....8.2715H. doi:10.5194/amt-8-2715-2015. hdl:1983/f9d95320-dcc6-48d1-a58a-bf310a536b9c.{{cite journal}}: CS1 maint: multiple names: authors list (link) https://doi.org/10.5194%2Famt-8-2715-2015