Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Quot scheme
Scheme parametrizing locally free sheaves on a projective scheme

In algebraic geometry, the Quot scheme is a scheme parametrizing sheaves on a projective scheme. More specifically, if X is a projective scheme over a Noetherian scheme S and if F is a coherent sheaf on X, then there is a scheme Quot F ⁡ ( X ) {\displaystyle \operatorname {Quot} _{F}(X)} whose set of T-points Quot F ⁡ ( X ) ( T ) = Mor S ⁡ ( T , Quot F ⁡ ( X ) ) {\displaystyle \operatorname {Quot} _{F}(X)(T)=\operatorname {Mor} _{S}(T,\operatorname {Quot} _{F}(X))} is the set of isomorphism classes of the quotients of F × S T {\displaystyle F\times _{S}T} that are flat over T. The notion was introduced by Alexander Grothendieck.

It is typically used to construct another scheme parametrizing geometric objects that are of interest such as a Hilbert scheme. (In fact, taking F to be the structure sheaf O X {\displaystyle {\mathcal {O}}_{X}} gives a Hilbert scheme.)

We don't have any images related to Quot scheme yet.
We don't have any YouTube videos related to Quot scheme yet.
We don't have any PDF documents related to Quot scheme yet.
We don't have any Books related to Quot scheme yet.
We don't have any archived web articles related to Quot scheme yet.

Definition

For a scheme of finite type X → S {\displaystyle X\to S} over a Noetherian base scheme S {\displaystyle S} , and a coherent sheaf E ∈ Coh ( X ) {\displaystyle {\mathcal {E}}\in {\text{Coh}}(X)} , there is a functor23

Q u o t E / X / S : ( S c h / S ) o p → Sets {\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}:(Sch/S)^{op}\to {\text{Sets}}}

sending T → S {\displaystyle T\to S} to

Q u o t E / X / S ( T ) = { ( F , q ) : F ∈ QCoh ( X T ) F   finitely presented over   X T Supp ( F )  is proper over  T F  is flat over  T q : E T → F  surjective } / ∼ {\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}(T)=\left\{({\mathcal {F}},q):{\begin{matrix}{\mathcal {F}}\in {\text{QCoh}}(X_{T})\\{\mathcal {F}}\ {\text{finitely presented over}}\ X_{T}\\{\text{Supp}}({\mathcal {F}}){\text{ is proper over }}T\\{\mathcal {F}}{\text{ is flat over }}T\\q:{\mathcal {E}}_{T}\to {\mathcal {F}}{\text{ surjective}}\end{matrix}}\right\}/\sim }

where X T = X × S T {\displaystyle X_{T}=X\times _{S}T} and E T = p r X ∗ E {\displaystyle {\mathcal {E}}_{T}=pr_{X}^{*}{\mathcal {E}}} under the projection p r X : X T → X {\displaystyle pr_{X}:X_{T}\to X} . There is an equivalence relation given by ( F , q ) ∼ ( F ′ , q ′ ) {\displaystyle ({\mathcal {F}},q)\sim ({\mathcal {F}}',q')} if there is an isomorphism F → F ′ {\displaystyle {\mathcal {F}}\to {\mathcal {F}}'} commuting with the two projections q , q ′ {\displaystyle q,q'} ; that is,

E T → <605 width="+0.611em" citerefrathads2007="0.278em" ref_2=".15em"> q F ↓ ↓ E T → <605 width="+0.611em" citerefrathads2007="0.278em" ref_2=".15em"> q ′ F ′ {\displaystyle {\begin{matrix}{\mathcal {E}}_{T}&{\xrightarrow {q}}&{\mathcal {F}}\\\downarrow {}&&\downarrow \\{\mathcal {E}}_{T}&{\xrightarrow {q'}}&{\mathcal {F}}'\end{matrix}}}

is a commutative diagram for E T → <605 width="+0.611em" citerefrathads2007="0.278em" ref_2=".15em"> i d E T {\displaystyle {\mathcal {E}}_{T}{\xrightarrow {id}}{\mathcal {E}}_{T}} . Alternatively, there is an equivalent condition of holding ker ( q ) = ker ( q ′ ) {\displaystyle {\text{ker}}(q)={\text{ker}}(q')} . This is called the quot functor which has a natural stratification into a disjoint union of subfunctors, each of which is represented by a projective S {\displaystyle S} -scheme called the quot scheme associated to a Hilbert polynomial Φ {\displaystyle \Phi } .

Hilbert polynomial

For a relatively very ample line bundle L ∈ Pic ( X ) {\displaystyle {\mathcal {L}}\in {\text{Pic}}(X)} 4 and any closed point s ∈ S {\displaystyle s\in S} there is a function Φ F : N → N {\displaystyle \Phi _{\mathcal {F}}:\mathbb {N} \to \mathbb {N} } sending

m ↦ χ ( F s ( m ) ) = ∑ i = 0 n ( − 1 ) i dim κ ( s ) H i ( X , F s ⊗ L s ⊗ m ) {\displaystyle m\mapsto \chi ({\mathcal {F}}_{s}(m))=\sum _{i=0}^{n}(-1)^{i}{\text{dim}}_{\kappa (s)}H^{i}(X,{\mathcal {F}}_{s}\otimes {\mathcal {L}}_{s}^{\otimes m})}

which is a polynomial for m >> 0 {\displaystyle m>>0} . This is called the Hilbert polynomial which gives a natural stratification of the quot functor. Again, for L {\displaystyle {\mathcal {L}}} fixed there is a disjoint union of subfunctors

Q u o t E / X / S = ∐ Φ ∈ Q [ t ] Q u o t E / X / S Φ , L {\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}=\coprod _{\Phi \in \mathbb {Q} [t]}{\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{\Phi ,{\mathcal {L}}}}

where

Q u o t E / X / S Φ , L ( T ) = { ( F , q ) ∈ Q u o t E / X / S ( T ) : Φ F = Φ } {\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{\Phi ,{\mathcal {L}}}(T)=\left\{({\mathcal {F}},q)\in {\mathcal {Quot}}_{{\mathcal {E}}/X/S}(T):\Phi _{\mathcal {F}}=\Phi \right\}}

The Hilbert polynomial Φ F {\displaystyle \Phi _{\mathcal {F}}} is the Hilbert polynomial of F t {\displaystyle {\mathcal {F}}_{t}} for closed points t ∈ T {\displaystyle t\in T} . Note the Hilbert polynomial is independent of the choice of very ample line bundle L {\displaystyle {\mathcal {L}}} .

Grothendieck's existence theorem

It is a theorem of Grothendieck's that the functors Q u o t E / X / S Φ , L {\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{\Phi ,{\mathcal {L}}}} are all representable by projective schemes Quot E / X / S Φ {\displaystyle {\text{Quot}}_{{\mathcal {E}}/X/S}^{\Phi }} over S {\displaystyle S} .

Examples

Grassmannian

The Grassmannian G ( n , k ) {\displaystyle G(n,k)} of k {\displaystyle k} -planes in an n {\displaystyle n} -dimensional vector space has a universal quotient

O G ( n , k ) ⊕ k → U {\displaystyle {\mathcal {O}}_{G(n,k)}^{\oplus k}\to {\mathcal {U}}}

where U x {\displaystyle {\mathcal {U}}_{x}} is the k {\displaystyle k} -plane represented by x ∈ G ( n , k ) {\displaystyle x\in G(n,k)} . Since U {\displaystyle {\mathcal {U}}} is locally free and at every point it represents a k {\displaystyle k} -plane, it has the constant Hilbert polynomial Φ ( λ ) = k {\displaystyle \Phi (\lambda )=k} . This shows G ( n , k ) {\displaystyle G(n,k)} represents the quot functor

Q u o t O G ( n , k ) ⊕ ( n ) / Spec ( Z ) / Spec ( Z ) k , O G ( n , k ) {\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}_{G(n,k)}^{\oplus (n)}/{\text{Spec}}(\mathbb {Z} )/{\text{Spec}}(\mathbb {Z} )}^{k,{\mathcal {O}}_{G(n,k)}}}

Projective space

As a special case, we can construct the project space P ( E ) {\displaystyle \mathbb {P} ({\mathcal {E}})} as the quot scheme

Q u o t E / X / S 1 , O X {\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{1,{\mathcal {O}}_{X}}}

for a sheaf E {\displaystyle {\mathcal {E}}} on an S {\displaystyle S} -scheme X {\displaystyle X} .

Hilbert scheme

The Hilbert scheme is a special example of the quot scheme. Notice a subscheme Z ⊂ X {\displaystyle Z\subset X} can be given as a projection

O X → O Z {\displaystyle {\mathcal {O}}_{X}\to {\mathcal {O}}_{Z}}

and a flat family of such projections parametrized by a scheme T ∈ S c h / S {\displaystyle T\in Sch/S} can be given by

O X T → F {\displaystyle {\mathcal {O}}_{X_{T}}\to {\mathcal {F}}}

Since there is a hilbert polynomial associated to Z {\displaystyle Z} , denoted Φ Z {\displaystyle \Phi _{Z}} , there is an isomorphism of schemes

Quot O X / X / S Φ Z ≅ Hilb X / S Φ Z {\displaystyle {\text{Quot}}_{{\mathcal {O}}_{X}/X/S}^{\Phi _{Z}}\cong {\text{Hilb}}_{X/S}^{\Phi _{Z}}}

Example of a parameterization

If X = P k n {\displaystyle X=\mathbb {P} _{k}^{n}} and S = Spec ( k ) {\displaystyle S={\text{Spec}}(k)} for an algebraically closed field, then a non-zero section s ∈ Γ ( O ( d ) ) {\displaystyle s\in \Gamma ({\mathcal {O}}(d))} has vanishing locus Z = Z ( s ) {\displaystyle Z=Z(s)} with Hilbert polynomial

Φ Z ( λ ) = ( n + λ n ) − ( n − d + λ n ) {\displaystyle \Phi _{Z}(\lambda )={\binom {n+\lambda }{n}}-{\binom {n-d+\lambda }{n}}}

Then, there is a surjection

O → O Z {\displaystyle {\mathcal {O}}\to {\mathcal {O}}_{Z}}

with kernel O ( − d ) {\displaystyle {\mathcal {O}}(-d)} . Since s {\displaystyle s} was an arbitrary non-zero section, and the vanishing locus of a ⋅ s {\displaystyle a\cdot s} for a ∈ k ∗ {\displaystyle a\in k^{*}} gives the same vanishing locus, the scheme Q = P ( Γ ( O ( d ) ) ) {\displaystyle Q=\mathbb {P} (\Gamma ({\mathcal {O}}(d)))} gives a natural parameterization of all such sections. There is a sheaf E {\displaystyle {\mathcal {E}}} on X × Q {\displaystyle X\times Q} such that for any [ s ] ∈ Q {\displaystyle [s]\in Q} , there is an associated subscheme Z ⊂ X {\displaystyle Z\subset X} and surjection O → O Z {\displaystyle {\mathcal {O}}\to {\mathcal {O}}_{Z}} . This construction represents the quot functor

Q u o t O / P n / Spec ( k ) Φ Z {\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}/\mathbb {P} ^{n}/{\text{Spec}}(k)}^{\Phi _{Z}}}

Quadrics in the projective plane

If X = P 2 {\displaystyle X=\mathbb {P} ^{2}} and s ∈ Γ ( O ( 2 ) ) {\displaystyle s\in \Gamma ({\mathcal {O}}(2))} , the Hilbert polynomial is

Φ Z ( λ ) = ( 2 + λ 2 ) − ( 2 − 2 + λ 2 ) = ( λ + 2 ) ( λ + 1 ) 2 − λ ( λ − 1 ) 2 = λ 2 + 3 λ + 2 2 − λ 2 − λ 2 = 2 λ + 2 2 = λ + 1 {\displaystyle {\begin{aligned}\Phi _{Z}(\lambda )&={\binom {2+\lambda }{2}}-{\binom {2-2+\lambda }{2}}\\&={\frac {(\lambda +2)(\lambda +1)}{2}}-{\frac {\lambda (\lambda -1)}{2}}\\&={\frac {\lambda ^{2}+3\lambda +2}{2}}-{\frac {\lambda ^{2}-\lambda }{2}}\\&={\frac {2\lambda +2}{2}}\\&=\lambda +1\end{aligned}}}

and

Quot O / P 2 / Spec ( k ) λ + 1 ≅ P ( Γ ( O ( 2 ) ) ) ≅ P 5 {\displaystyle {\text{Quot}}_{{\mathcal {O}}/\mathbb {P} ^{2}/{\text{Spec}}(k)}^{\lambda +1}\cong \mathbb {P} (\Gamma ({\mathcal {O}}(2)))\cong \mathbb {P} ^{5}}

The universal quotient over P 5 × P 2 {\displaystyle \mathbb {P} ^{5}\times \mathbb {P} ^{2}} is given by

O → U {\displaystyle {\mathcal {O}}\to {\mathcal {U}}}

where the fiber over a point [ Z ] ∈ Quot O / P 2 / Spec ( k ) λ + 1 {\displaystyle [Z]\in {\text{Quot}}_{{\mathcal {O}}/\mathbb {P} ^{2}/{\text{Spec}}(k)}^{\lambda +1}} gives the projective morphism

O → O Z {\displaystyle {\mathcal {O}}\to {\mathcal {O}}_{Z}}

For example, if [ Z ] = [ a 0 : a 1 : a 2 : a 3 : a 4 : a 5 ] {\displaystyle [Z]=[a_{0}:a_{1}:a_{2}:a_{3}:a_{4}:a_{5}]} represents the coefficients of

f = a 0 x 2 + a 1 x y + a 2 x z + a 3 y 2 + a 4 y z + a 5 z 2 {\displaystyle f=a_{0}x^{2}+a_{1}xy+a_{2}xz+a_{3}y^{2}+a_{4}yz+a_{5}z^{2}}

then the universal quotient over [ Z ] {\displaystyle [Z]} gives the short exact sequence

0 → O ( − 2 ) → <605 width="+0.611em" citerefrathads2007="0.278em" ref_2=".15em"> f O → O Z → 0 {\displaystyle 0\to {\mathcal {O}}(-2){\xrightarrow {f}}{\mathcal {O}}\to {\mathcal {O}}_{Z}\to 0}

Semistable vector bundles on a curve

Semistable vector bundles on a curve C {\displaystyle C} of genus g {\displaystyle g} can equivalently be described as locally free sheaves of finite rank. Such locally free sheaves F {\displaystyle {\mathcal {F}}} of rank n {\displaystyle n} and degree d {\displaystyle d} have the properties5

  1. H 1 ( C , F ) = 0 {\displaystyle H^{1}(C,{\mathcal {F}})=0}
  2. F {\displaystyle {\mathcal {F}}} is generated by global sections

for d > n ( 2 g − 1 ) {\displaystyle d>n(2g-1)} . This implies there is a surjection

H 0 ( C , F ) ⊗ O C ≅ O C ⊕ N → F {\displaystyle H^{0}(C,{\mathcal {F}})\otimes {\mathcal {O}}_{C}\cong {\mathcal {O}}_{C}^{\oplus N}\to {\mathcal {F}}}

Then, the quot scheme Q u o t O C ⊕ N / C / Z {\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}_{C}^{\oplus N}/{\mathcal {C}}/\mathbb {Z} }} parametrizes all such surjections. Using the Grothendieck–Riemann–Roch theorem the dimension N {\displaystyle N} is equal to

χ ( F ) = d + n ( 1 − g ) {\displaystyle \chi ({\mathcal {F}})=d+n(1-g)}

For a fixed line bundle L {\displaystyle {\mathcal {L}}} of degree 1 {\displaystyle 1} there is a twisting F ( m ) = F ⊗ L ⊗ m {\displaystyle {\mathcal {F}}(m)={\mathcal {F}}\otimes {\mathcal {L}}^{\otimes m}} , shifting the degree by n m {\displaystyle nm} , so

χ ( F ( m ) ) = m n + d + n ( 1 − g ) {\displaystyle \chi ({\mathcal {F}}(m))=mn+d+n(1-g)} 6

giving the Hilbert polynomial

Φ F ( λ ) = n λ + d + n ( 1 − g ) {\displaystyle \Phi _{\mathcal {F}}(\lambda )=n\lambda +d+n(1-g)}

Then, the locus of semi-stable vector bundles is contained in

Q u o t O C ⊕ N / C / Z Φ F , L {\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}_{C}^{\oplus N}/{\mathcal {C}}/\mathbb {Z} }^{\Phi _{\mathcal {F}},{\mathcal {L}}}}

which can be used to construct the moduli space M C ( n , d ) {\displaystyle {\mathcal {M}}_{C}(n,d)} of semistable vector bundles using a GIT quotient.7

See also

Further reading

References

  1. Grothendieck, Alexander. Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert. Séminaire Bourbaki : années 1960/61, exposés 205-222, Séminaire Bourbaki, no. 6 (1961), Talk no. 221, p. 249-276 http://www.numdam.org/item/?id=SB_1960-1961__6__249_0

  2. Nitsure, Nitin (2005). "Construction of Hilbert and Quot Schemes". Fundamental algebraic geometry: Grothendieck’s FGA explained. Mathematical Surveys and Monographs. Vol. 123. American Mathematical Society. pp. 105–137. arXiv:math/0504590. ISBN 978-0-8218-4245-4. 978-0-8218-4245-4

  3. Altman, Allen B.; Kleiman, Steven L. (1980). "Compactifying the Picard scheme". Advances in Mathematics. 35 (1): 50–112. doi:10.1016/0001-8708(80)90043-2. ISSN 0001-8708. https://doi.org/10.1016%2F0001-8708%2880%2990043-2

  4. Meaning a basis s i {\displaystyle s_{i}} for the global sections Γ ( X , L ) {\displaystyle \Gamma (X,{\mathcal {L}})} defines an embedding s : X → P S N {\displaystyle \mathbb {s} :X\to \mathbb {P} _{S}^{N}} for N = dim ( Γ ( X , L ) ) {\displaystyle N={\text{dim}}(\Gamma (X,{\mathcal {L}}))}

  5. Hoskins, Victoria. "Moduli Problems and Geometric Invariant Theory" (PDF). pp. 68, 74–85. Archived (PDF) from the original on 1 March 2020. https://userpage.fu-berlin.de/hoskins/M15_Lecture_notes.pdf

  6. Hoskins, Victoria. "Moduli Problems and Geometric Invariant Theory" (PDF). pp. 68, 74–85. Archived (PDF) from the original on 1 March 2020. https://userpage.fu-berlin.de/hoskins/M15_Lecture_notes.pdf

  7. Hoskins, Victoria. "Moduli Problems and Geometric Invariant Theory" (PDF). pp. 68, 74–85. Archived (PDF) from the original on 1 March 2020. https://userpage.fu-berlin.de/hoskins/M15_Lecture_notes.pdf