Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Promethium
Chemical element with atomic number 61 (Pm)

Promethium is a chemical element with symbol Pm and atomic number 61, known for having only radioactive isotopes. It is a rare lanthanide found naturally in minute amounts due to alpha decay of europium-151 and spontaneous fission of uranium. Promethium-147 is the most practical isotope, used in luminous paint and atomic batteries. First suggested by Bohuslav Brauner and confirmed by Henry Moseley, promethium was isolated in 1945 at the Oak Ridge National Laboratory. Its name derives from Prometheus, symbolizing humankind’s daring intellect.

Related Image Collections Add Image
We don't have any YouTube videos related to Promethium yet.
We don't have any PDF documents related to Promethium yet.
We don't have any Books related to Promethium yet.
We don't have any archived web articles related to Promethium yet.

Properties

Physical properties

A promethium atom has 61 electrons, arranged in the configuration [Xe] 4f5 6s2. The seven 4f and 6s electrons are valence electrons.1 In forming compounds, the atom loses its two outermost electrons and one 4f-electron, which belongs to an open subshell. The element's atomic radius is the second largest among all the lanthanides but is only slightly greater than those of the neighboring elements.2 It is the most notable exception to the general trend of the contraction of lanthanide atoms with the increase of their atomic numbers (lanthanide contraction3). Many properties of promethium rely on its position among lanthanides and are intermediate between those of neodymium and samarium. For example, the melting point, the first three ionization energies, and the hydration energy are greater than those of neodymium and lower than those of samarium;4 similarly, the estimate for the boiling point, ionic (Pm3+) radius, and standard heat of formation of monatomic gas are greater than those of samarium and less than those of neodymium.5

Promethium has a double hexagonal close packed (dhcp) structure and a hardness of 63 kg/mm2.6 This low-temperature alpha form converts into a beta, body-centered cubic (bcc) phase upon heating to 890 °C.7

Chemical properties and compounds

Promethium belongs to the cerium group of lanthanides and is chemically very similar to the neighboring elements.8 Because of its instability, chemical studies of promethium are incomplete. Even though a few compounds have been synthesized, they are not fully studied; in general, they tend to be pink or red in color.910 In May 2024, a promethium coordination complex with neutral PyDGA ligands was characterized in aqueous solution.11 Treatment of acidic solutions containing Pm3+ ions with ammonia results in a gelatinous light-brown sediment of hydroxide, Pm(OH)3, which is insoluble in water.12 When dissolved in hydrochloric acid, a water-soluble yellow salt, PmCl3, is produced;13 similarly, when dissolved in nitric acid, a nitrate results, Pm(NO3)3. The latter is also well-soluble; when dried, it forms pink crystals, similar to Nd(NO3)3.14 The electron configuration for Pm3+ is [Xe] 4f4, and the color of the ion is pink. The ground state term symbol is 5I4.15 The sulfate is slightly soluble, like the other cerium group sulfates. Cell parameters have been calculated for its octahydrate; they lead to conclusion that the density of Pm2(SO4)3·8H2O is 2.86 g/cm3.16 The oxalate, Pm2(C2O4)3·10H2O, has the lowest solubility of all lanthanide oxalates.17

Unlike the nitrate, the oxide is similar to the corresponding samarium salt and not the neodymium salt. As-synthesized, e.g. by heating the oxalate, it is a white or lavender-colored powder with disordered structure.18 This powder crystallizes in a cubic lattice upon heating to 600 °C. Further annealing at 800 °C and then at 1750 °C irreversibly transforms it to monoclinic and hexagonal phases, respectively, and the last two phases can be interconverted by adjusting the annealing time and temperature.19

Formulasymmetryspace groupNoPearson symbola (pm)b (pm)c (pm)Zdensity, g/cm3
α-Pmdhcp2021P63/mmc194hP4365365116547.26
β-Pmbcc22Fm3m225cF441041041046.99
Pm2O3cubic23Ia3206cI80109910991099166.77
Pm2O3monoclinic24C2/m12mS30142236589167.40
Pm2O3hexagonal25P3m1164hP5380.2380.2595.417.53

Promethium forms only one stable oxidation state, +3, in the form of ions; this is in line with other lanthanides. Promethium can also form the +2 oxidation state.26 Thermodynamic properties of Pm2+ suggests that the dihalides are stable, similar to NdCl2 and SmCl2.27

Promethium halides28
Formulacolorcoordinationnumbersymmetryspace groupNoPearson symbolm.p. (°C)
PmF3Purple-pink11hexagonalP3c1165hP241338
PmCl3Lavender9hexagonalP63/mc176hP8655
PmBr3Red8orthorhombicCmcm63oS16624
α-PmI3Red8orthorhombicCmcm63oS16α→β
β-PmI3Red6rhombohedralR3148hR24695

Isotopes

Main article: Isotopes of promethium

Promethium is the only lanthanide and one of only two elements among the first 82 with no stable or long-lived (primordial) isotopes. This is a result of a rarely occurring effect of the liquid drop model and stabilities of neighbor element isotopes; it is also the least stable element of the first 84.29 The primary decay products are neodymium and samarium isotopes (promethium-146 decays to both, the lighter isotopes generally to neodymium via positron decay and electron capture, and the heavier isotopes to samarium via beta decay). Promethium nuclear isomers may decay to other promethium isotopes and one isotope (145Pm) has a very rare alpha decay mode to stable praseodymium-141.30

The most stable isotope of the element is promethium-145, which has a specific activity of 139 Ci/g (5.1 TBq/g) and a half-life of 17.7 years via electron capture.3132 Because it has 84 neutrons (two more than 82, which is a magic number corresponding to a stable neutron configuration), it may emit an alpha particle (which has 2 neutrons) to form praseodymium-141 with 82 neutrons. Thus it is the only promethium isotope with an experimentally observed alpha decay.33 Its partial half-life for alpha decay is about 6.3×109 years, and the relative probability for a 145Pm nucleus to decay in this way is 2.8×10−7 %. Several other promethium isotopes such as 144Pm, 146Pm, and 147Pm also have a positive energy release for alpha decay; their alpha decays are predicted to occur but have not been observed. In total, 41 isotopes of promethium are known, ranging from 126Pm to 166Pm.3435

The element also has 18 nuclear isomers, with mass numbers of 133 to 142, 144, 148, 149, 152, and 154 (some mass numbers have more than one isomer). The most stable of them is promethium-148m, with a half-life of 43.1 days; this is longer than the half-lives of the ground states of all promethium isotopes, except for promethium-143 to 147. In fact, promethium-148m has a longer half-life than its ground state, promethium-148.36

Occurrence

In 1934, Willard Libby reported that he had found weak beta activity in pure neodymium, which was attributed to a half-life over 1012 years.37 Almost 20 years later, it was claimed that the element occurs in natural neodymium in equilibrium in quantities below 10−20 grams of promethium per one gram of neodymium.38 However, these observations were disproved by newer investigations, because for all seven naturally occurring neodymium isotopes, any single beta decays (which can produce promethium isotopes) are forbidden by energy conservation.39 In particular, careful measurements of atomic masses show that the mass difference between 150Nd and 150Pm is negative (−87 keV), which absolutely prevents the single beta decay of 150Nd to 150Pm.40

In 1965, Olavi Erämetsä separated out traces of 147Pm from a rare earth concentrate purified from apatite, resulting in an upper limit of 10−21 for the abundance of promethium in nature; this may have been produced by the natural nuclear fission of uranium, or by cosmic ray spallation of 146Nd.41

Both isotopes of natural europium have larger mass excesses than sums of those of their potential alpha daughters plus that of an alpha particle; therefore, they (stable in practice) may alpha decay to promethium.42 Research at Laboratori Nazionali del Gran Sasso showed that europium-151 decays to promethium-147 with the half-life of 5×1018 years;43 later measurements gave the half-life as (4.62 ± 0.95(stat.) ± 0.68(syst.)) × 1018 years.44 It has been shown that europium is "responsible" for about 12 grams of promethium in the Earth's crust.45 Alpha decays for europium-153 have not been found yet, and its theoretically calculated half-life is so high (due to low energy of decay) that this process will probably not be observed in the near future.46

Promethium can also be formed in nature as a product of spontaneous fission of uranium-238.47 Only trace amounts can be found in naturally occurring ores: a sample of pitchblende has been found to contain promethium at a concentration of four parts per quintillion (4×10−18) by mass.48 Uranium is thus "responsible" for 560 g of promethium in Earth's crust.49

Promethium has also been identified in the spectrum of the star HR 465 in Andromeda; it also has been found in HD 101065 (Przybylski's star) and HD 965.50 Because of the short half-life of promethium isotopes, they should be formed near the surface of those stars.51

History

Searches for element 61

In 1902, Czech chemist Bohuslav Brauner found out that the differences in properties between neodymium and samarium were the largest between any two consecutive lanthanides in the sequence then known; as a conclusion, he suggested there was an element with intermediate properties between them.52 This prediction was supported in 1914 by Henry Moseley who, having discovered that atomic number was an experimentally measurable property of elements, found that a few atomic numbers had no known corresponding elements: the gaps were 43, 61, 72, 75, 85, and 87.53 With the knowledge of a gap in the periodic table several groups started to search for the predicted element among other rare earths in the natural environment.545556

The first claim of a discovery was published by Luigi Rolla and Lorenzo Fernandes of Florence, Italy. After separating a mixture of a few rare earth elements nitrate concentrate from the Brazilian mineral monazite by fractionated crystallization, they yielded a solution containing mostly samarium. This solution gave x-ray spectra attributed to samarium and element 61. In honor of their city, they named element 61 "florentium". The results were published in 1926, but the scientists claimed that the experiments were done in 1924.575859606162 Also in 1926, a group of scientists from the University of Illinois at Urbana–Champaign, Smith Hopkins and Len Yntema published the discovery of element 61. They named it "illinium", after the university.636465 Both of these reported discoveries were shown to be erroneous because the spectrum line that "corresponded" to element 61 was identical to that of didymium; the lines thought to belong to element 61 turned out to belong to a few impurities (barium, chromium, and platinum).66

In 1934, Josef Mattauch finally formulated the isobar rule. One of the indirect consequences of this rule was that element 61 was unable to form stable isotopes.6768 From 1938, a nuclear experiment was conducted by H. B. Law et al. at the Ohio State University. Nuclides were produced in 1941 which were not radioisotopes of neodymium or samarium, and the name "cyclonium" was proposed, but there was a lack of chemical proof that element 61 was produced and the discovery was not largely recognized.6970

Discovery and synthesis of promethium metal

Promethium was first produced and characterized at Oak Ridge National Laboratory (Clinton Laboratories at that time) in 1945 by Jacob A. Marinsky, Lawrence E. Glendenin and Charles D. Coryell by separation and analysis of the fission products of uranium fuel irradiated in the graphite reactor; however, being too busy with military-related research during World War II, they did not announce their discovery until 1947.7172 The original proposed name was "clintonium", after the laboratory where the work was conducted; however, the name "prometheum" was suggested by Grace Mary Coryell, the wife of one of the discoverers.73 It is derived from Prometheus, the Titan in Greek mythology who stole fire from Mount Olympus and brought it down to humans74 and symbolizes "both the daring and the possible misuse of the mankind intellect".75 The spelling was then changed to "promethium", as this was in accordance with most other metals.76

In 1963, promethium(III) fluoride was used to make promethium metal. Provisionally purified from impurities of samarium, neodymium, and americium, it was put into a tantalum crucible which was located in another tantalum crucible; the outer crucible contained lithium metal (10 times excess compared to promethium).7778 After creating a vacuum, the chemicals were mixed to produce promethium metal:

PmF3 + 3 Li → Pm + 3 LiF

The promethium sample produced was used to measure a few of the metal's properties, such as its melting point.79

In 1963, ion-exchange methods were used at ORNL to prepare about ten grams of promethium from nuclear reactor fuel processing wastes.808182

Promethium can be either recovered from the byproducts of uranium fission or produced by bombarding 146Nd with neutrons, turning it into 147Nd, which decays into 147Pm through beta decay with a half-life of 11 days.83

Production

The production methods for different isotopes vary, and only those for promethium-147 are given because it is the only isotope with industrial applications. Promethium-147 is produced in large quantities (compared to other isotopes) by bombarding uranium-235 with thermal neutrons. The output is relatively high, at 2.6% of the total product.84 Another way to produce promethium-147 is via neodymium-147, which decays to promethium-147 with a short half-life. Neodymium-147 can be obtained either by bombarding enriched neodymium-146 with thermal neutrons85 or by bombarding a uranium carbide target with energetic protons in a particle accelerator.86 Another method is to bombard uranium-238 with fast neutrons to cause fast fission, which, among multiple reaction products, creates promethium-147.87

As early as the 1960s, Oak Ridge National Laboratory could produce 650 grams of promethium per year88 and was the world's only large-volume synthesis facility.89 Gram-scale production of promethium was discontinued in the U.S. in the early 1980s, but will possibly be resumed after 2010 at the High Flux Isotope Reactor. [needs update] In 2010, Russia was the only country producing promethium-147 on a relatively large scale.90

Applications

Only promethium-147 has uses outside laboratories.91 It is obtained as the oxide or chloride,92 in milligram quantities.93 This isotope has a relatively long half-life, does not emit gamma rays, and its radiation has a relatively small penetration depth in matter.94

Some signal lights use a luminous paint containing a phosphor that absorbs the beta radiation emitted by promethium-147 and emits light.9596 This isotope does not cause aging of the phosphor, as alpha emitters do,97 and therefore the light emission is stable for a few years.98 Originally, radium-226 was used for the purpose, but it was later replaced by promethium-147 and tritium (hydrogen-3).99 Promethium may be favored over tritium for nuclear safety.100

In atomic batteries, the beta particles emitted by promethium-147 are converted into electric current by sandwiching a small promethium source between two semiconductor plates. These batteries have a useful lifetime of about five years.101102103 The first promethium-based battery was assembled in 1964 and generated "a few milliwatts of power from a volume of about 2 cubic inches, including shielding".104

Promethium is also used to measure the thickness of materials by measuring the amount of radiation from a promethium source that passes through the sample.105106107 It has possible future uses in portable X-ray sources, and as auxiliary heat or power sources for space probes and satellites108 (although the alpha emitter plutonium-238 has become standard for most space-exploration-related uses).109

Promethium-147 is also used, albeit in very small quantities (less than 330nCi), in some Philips CFL (Compact Fluorescent Lamp) glow switches in the PLC 22W/28W 15mm CFL range.110

Precautions

Promethium has no biological role. Promethium-147 can emit gamma rays, which are dangerous for all lifeforms, during its beta decay.111 Interactions with tiny quantities of promethium-147 are not hazardous if certain precautions are observed.112 In general, gloves, footwear covers, safety glasses, and an outer layer of easily removed protective clothing should be used.113

It is not known what human organs are affected by interaction with promethium; a possible candidate is the bone tissues.114 Sealed promethium-147 is not dangerous. However, if the packaging is damaged, then promethium becomes dangerous to the environment and humans. If radioactive contamination is found, the contaminated area should be washed with water and soap, but, even though promethium mainly affects the skin, the skin should not be abraded. If a promethium leak is found, the area should be identified as hazardous and evacuated, and emergency services must be contacted. No dangers from promethium aside from the radioactivity are known.115

Notes

Bibliography

  • Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7.
  • Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.
  • 2013, E.R. Scerri,A tale of seven elements, Oxford University Press, Oxford, ISBN 9780195391312
Wikimedia Commons has media related to Promethium. Look up promethium in Wiktionary, the free dictionary.

References

  1. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1233. ISBN 978-0-08-037941-8. 978-0-08-037941-8

  2. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1233. ISBN 978-0-08-037941-8. 978-0-08-037941-8

  3. Cotton, F. Albert; Wilkinson, Geoffrey (1988), Advanced Inorganic Chemistry (5th ed.), New York: Wiley-Interscience, pp. 776, 955, ISBN 0-471-84997-9 0-471-84997-9

  4. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1233. ISBN 978-0-08-037941-8. 978-0-08-037941-8

  5. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1233. ISBN 978-0-08-037941-8. 978-0-08-037941-8

  6. Pallmer, P. G.; Chikalla, T. D. (1971). "The crystal structure of promethium". Journal of the Less Common Metals. 24 (3): 233. doi:10.1016/0022-5088(71)90101-9. ISSN 0022-5088. /wiki/Doi_(identifier)

  7. Gschneidner Jr., K.A. (2005). "Physical Properties of the rare earth metals" (PDF). In Lide, D. R. (ed.). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-8493-0486-6. Archived from the original (PDF) on 2012-09-18. Retrieved 2012-06-20. 978-0-8493-0486-6

  8. Lavrukhina & Pozdnyakov 1966, p. 120. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  9. Emsley 2011, p. 429. - Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7. https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428

  10. promethium. Encyclopædia Britannica Online http://www.britannica.com/EBchecked/topic/478714/promethium

  11. Driscoll, Darren M.; White, Frankie D.; Pramanik, Subhamay; Einkauf, Jeffrey D.; Ravel, Bruce; Bykov, Dmytro; Roy, Santanu; Mayes, Richard T.; Delmau, Lætitia H.; Cary, Samantha K.; Dyke, Thomas; Miller, April; Silveira, Matt; VanCleve, Shelley M.; Davern, Sandra M. (May 2024). "Observation of a promethium complex in solution". Nature. 629 (8013): 819–823. Bibcode:2024Natur.629..819D. doi:10.1038/s41586-024-07267-6. ISSN 1476-4687. PMC 11111410. PMID 38778232. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111410

  12. Lavrukhina & Pozdnyakov 1966, p. 121. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  13. Lavrukhina & Pozdnyakov 1966, p. 121. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  14. Lavrukhina & Pozdnyakov 1966, p. 121. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  15. Aspinall, H. C. (2001). Chemistry of the f-block elements. Gordon & Breach. p. 34, Table 2.1. ISBN 978-9056993337. 978-9056993337

  16. Lavrukhina & Pozdnyakov 1966, p. 122. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  17. Lavrukhina & Pozdnyakov 1966, p. 123. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  18. Lavrukhina & Pozdnyakov 1966, p. 121. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  19. Chikalla, T. D.; McNeilly, C. E.; Roberts, F. P. (1972). "Polymorphic Modifications of Pm2O3". Journal of the American Ceramic Society. 55 (8): 428. doi:10.1111/j.1151-2916.1972.tb11329.x. /wiki/Doi_(identifier)

  20. Pallmer, P. G.; Chikalla, T. D. (1971). "The crystal structure of promethium". Journal of the Less Common Metals. 24 (3): 233. doi:10.1016/0022-5088(71)90101-9. ISSN 0022-5088. /wiki/Doi_(identifier)

  21. Gschneidner Jr., K.A. (2005). "Physical Properties of the rare earth metals" (PDF). In Lide, D. R. (ed.). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-8493-0486-6. Archived from the original (PDF) on 2012-09-18. Retrieved 2012-06-20. 978-0-8493-0486-6

  22. Gschneidner Jr., K.A. (2005). "Physical Properties of the rare earth metals" (PDF). In Lide, D. R. (ed.). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-8493-0486-6. Archived from the original (PDF) on 2012-09-18. Retrieved 2012-06-20. 978-0-8493-0486-6

  23. Chikalla, T. D.; McNeilly, C. E.; Roberts, F. P. (1972). "Polymorphic Modifications of Pm2O3". Journal of the American Ceramic Society. 55 (8): 428. doi:10.1111/j.1151-2916.1972.tb11329.x. /wiki/Doi_(identifier)

  24. Chikalla, T. D.; McNeilly, C. E.; Roberts, F. P. (1972). "Polymorphic Modifications of Pm2O3". Journal of the American Ceramic Society. 55 (8): 428. doi:10.1111/j.1151-2916.1972.tb11329.x. /wiki/Doi_(identifier)

  25. Chikalla, T. D.; McNeilly, C. E.; Roberts, F. P. (1972). "Polymorphic Modifications of Pm2O3". Journal of the American Ceramic Society. 55 (8): 428. doi:10.1111/j.1151-2916.1972.tb11329.x. /wiki/Doi_(identifier)

  26. Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, p. 1704, ISBN 0-12-352651-5 0-12-352651-5

  27. Elkina, Veronika; Kurushkin, Mikhail (2020-07-10). "Promethium: To Strive, to Seek, to Find and Not to Yield". Frontiers in Chemistry. 8: 588. Bibcode:2020FrCh....8..588E. doi:10.3389/fchem.2020.00588. ISSN 2296-2646. PMC 7366832. PMID 32754576. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366832

  28. Cotton, Simon (2006). Lanthanide And Actinide Chemistry. John Wiley & Sons. p. 117. ISBN 978-0-470-01006-8. 978-0-470-01006-8

  29. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  30. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  31. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  32. Hammond, C. R. (2011). "Prometium in "The Elements"". In Haynes, William M. (ed.). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 4.28. ISBN 978-1439855119. 978-1439855119

  33. Lavrukhina & Pozdnyakov 1966, p. 114. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  34. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  35. Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253. S2CID 252108123. https://doi.org/10.3847%2F1538-4357%2Fac80fc

  36. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  37. Lavrukhina & Pozdnyakov 1966, p. 117. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  38. Lavrukhina & Pozdnyakov 1966, p. 117. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  39. G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729 (1): 3–128. Bibcode:2003NuPhA.729....3A. CiteSeerX 10.1.1.692.8504. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23. https://web.archive.org/web/20080923135135/http://www.nndc.bnl.gov/amdc/nubase/Nubase2003.pdf

  40. N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide (ed.). CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9. 978-0-8493-0485-9

  41. McGill, Ian. "Rare Earth Elements". Ullmann's Encyclopedia of Industrial Chemistry. Vol. 31. Weinheim: Wiley-VCH. p. 188. doi:10.1002/14356007.a22_607. ISBN 978-3-527-30673-2. 978-3-527-30673-2

  42. Belli, P.; Bernabei, R.; Cappella, F.; et al. (2007). "Search for α decay of natural Europium". Nuclear Physics A. 789 (1–4): 15–29. Bibcode:2007NuPhA.789...15B. doi:10.1016/j.nuclphysa.2007.03.001. /wiki/Bibcode_(identifier)

  43. Belli, P.; Bernabei, R.; Cappella, F.; et al. (2007). "Search for α decay of natural Europium". Nuclear Physics A. 789 (1–4): 15–29. Bibcode:2007NuPhA.789...15B. doi:10.1016/j.nuclphysa.2007.03.001. /wiki/Bibcode_(identifier)

  44. Casali, N.; Nagorny, S. S.; Orio, F.; Pattavina, L.; et al. (2014). "Discovery of the 151Eu α decay". Journal of Physics G: Nuclear and Particle Physics. 41 (7): 075101. arXiv:1311.2834. Bibcode:2014JPhG...41g5101C. doi:10.1088/0954-3899/41/7/075101. S2CID 116920467. /wiki/Journal_of_Physics_G:_Nuclear_and_Particle_Physics

  45. Belli, P.; Bernabei, R.; Cappella, F.; et al. (2007). "Search for α decay of natural Europium". Nuclear Physics A. 789 (1–4): 15–29. Bibcode:2007NuPhA.789...15B. doi:10.1016/j.nuclphysa.2007.03.001. /wiki/Bibcode_(identifier)

  46. Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN 1434-601X. S2CID 201664098. /wiki/ArXiv_(identifier)

  47. Lavrukhina & Pozdnyakov 1966, p. 117. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  48. Attrep, Moses Jr. & Kuroda, P. K. (May 1968). "Promethium in pitchblende". Journal of Inorganic and Nuclear Chemistry. 30 (3): 699–703. doi:10.1016/0022-1902(68)80427-0. /wiki/Doi_(identifier)

  49. Belli, P.; Bernabei, R.; Cappella, F.; et al. (2007). "Search for α decay of natural Europium". Nuclear Physics A. 789 (1–4): 15–29. Bibcode:2007NuPhA.789...15B. doi:10.1016/j.nuclphysa.2007.03.001. /wiki/Bibcode_(identifier)

  50. C. R. Cowley; W. P. Bidelman; S. Hubrig; G. Mathys & D. J. Bord (2004). "On the possible presence of promethium in the spectra of HD 101065 (Przybylski's star) and HD 965". Astronomy & Astrophysics. 419 (3): 1087–1093. Bibcode:2004A&A...419.1087C. doi:10.1051/0004-6361:20035726. https://doi.org/10.1051%2F0004-6361%3A20035726

  51. Hammond, C. R. (2011). "Prometium in "The Elements"". In Haynes, William M. (ed.). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 4.28. ISBN 978-1439855119. 978-1439855119

  52. Laing, Michael (2005). "A Revised Periodic Table: With the Lanthanides Repositioned". Foundations of Chemistry. 7 (3): 203–233. doi:10.1007/s10698-004-5959-9. S2CID 97792365. /wiki/Doi_(identifier)

  53. Littlefield, Thomas Albert; Thorley, Norman (1968). Atomic and Nuclear Physics: An Introduction in S.I. Units (2nd ed.). Van Nostrand. p. 109.

  54. Lavrukhina & Pozdnyakov 1966, p. 108. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  55. Weeks, Mary Elvira (1956). The discovery of the elements (6th ed.). Easton, PA: Journal of Chemical Education. https://archive.org/details/discoveryoftheel002045mbp

  56. Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2016). "Rediscovery of the elements: The Rare Earths–The Last Member" (PDF). The Hexagon: 4–9. Archived from the original (PDF) on 27 November 2021. Retrieved 30 December 2019. https://web.archive.org/web/20211127115101/https://chemistry.unt.edu/sites/default/files/users/owj0001/rare%20earths%20III_0.pdf

  57. Rolla, Luigi; Fernandes, Lorenzo (1926). "Über das Element der Atomnummer 61". Zeitschrift für Anorganische und Allgemeine Chemie (in German). 157 (1): 371–381. doi:10.1002/zaac.19261570129. /wiki/Doi_(identifier)

  58. Noyes, W. A. (1927). "Florentium or Illinium?". Nature. 120 (3009): 14. Bibcode:1927Natur.120...14N. doi:10.1038/120014c0. S2CID 4094131. https://doi.org/10.1038%2F120014c0

  59. Rolla, L.; Fernandes, L. (1927). "Florentium or Illinium?". Nature. 119 (3000): 637. Bibcode:1927Natur.119..637R. doi:10.1038/119637a0. S2CID 4127574. /wiki/Bibcode_(identifier)

  60. Rolla, Luigi; Fernandes, Lorenzo (1928). "Florentium. II". Zeitschrift für Anorganische und Allgemeine Chemie. 169 (1): 319–320. doi:10.1002/zaac.19281690128. /wiki/Doi_(identifier)

  61. Rolla, Luigi; Fernandes, Lorenzo (1927). "Florentium". Zeitschrift für Anorganische und Allgemeine Chemie. 163 (1): 40–42. doi:10.1002/zaac.19271630104. /wiki/Doi_(identifier)

  62. Rolla, Luigi; Fernandes, Lorenzo (1927). "Über Das Element der Atomnummer 61 (Florentium)". Zeitschrift für Anorganische und Allgemeine Chemie. 160 (1): 190–192. doi:10.1002/zaac.19271600119. /wiki/Doi_(identifier)

  63. Harris, J. A.; Yntema, L. F.; Hopkins, B. S. (1926). "The Element of Atomic Number 61; Illinium". Nature. 117 (2953): 792. Bibcode:1926Natur.117..792H. doi:10.1038/117792a0. https://doi.org/10.1038%2F117792a0

  64. Brauner, Bohuslav (1926). "The New Element of Atomic Number 61: Illinium". Nature. 118 (2959): 84–85. Bibcode:1926Natur.118...84B. doi:10.1038/118084b0. S2CID 4089909. /wiki/Bibcode_(identifier)

  65. Meyer, R. J.; Schumacher, G.; Kotowski, A. (1926). "Über das Element 61 (Illinium)". Naturwissenschaften. 14 (33): 771. Bibcode:1926NW.....14..771M. doi:10.1007/BF01490264. S2CID 46235121. /wiki/Bibcode_(identifier)

  66. Lavrukhina & Pozdnyakov 1966, p. 108. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  67. Lavrukhina & Pozdnyakov 1966, p. 108. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  68. Thyssen, Pieter; Binnemans, Koen (2011). "Accommodation of the Rare Earths in the Periodic Table: A Historical Analysis". In Gschneider, Karl A. Jr.; Bünzli, Jean-Claude; Pecharsky, Vitalij K. (eds.). Handbook on the Physics and Chemistry of Rare Earths. Amsterdam: Elsevier. p. 63. ISBN 978-0-444-53590-0. OCLC 690920513. Retrieved 2013-04-25. 978-0-444-53590-0

  69. Emsley 2011, p. 428. - Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7. https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428

  70. Fontani, Marco; Costa, Mariagrazia; Orna, Mary Virginia (2015) [2014]. The Lost Elements [The Periodic Table's Shadow Side]. New York: Oxford University Press. pp. 302–303. ISBN 978-0-19-938334-4. 978-0-19-938334-4

  71. Marinsky, J. A.; Glendenin, L. E.; Coryell, C. D. (1947). "The chemical identification of radioisotopes of neodymium and of element 61". Journal of the American Chemical Society. 69 (11): 2781–5. Bibcode:1947JAChS..69.2781M. doi:10.1021/ja01203a059. hdl:2027/mdp.39015086506477. PMID 20270831. /wiki/Bibcode_(identifier)

  72. "Discovery of Promethium". Oak Ridge National Laboratory Review. 36 (1). 2003. Archived from the original on 2015-07-06. Retrieved 2006-09-17."Discovery of Promethium" (PDF). Oak Ridge National Laboratory Review. 36 (1): 3. 2003. Retrieved 2018-06-17. https://web.archive.org/web/20150706071605/http://www.ornl.gov/info/ornlreview/v36_1_03/article_02.shtml

  73. Emsley 2011, p. 428. - Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7. https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428

  74. Emsley 2011, p. 428. - Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7. https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428

  75. Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic Chemistry. John Wiley and Sons. p. 1694. ISBN 978-0-12-352651-9. 978-0-12-352651-9

  76. Emsley 2011, p. 428. - Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7. https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428

  77. Emsley 2011, p. 429. - Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7. https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428

  78. Lavrukhina & Pozdnyakov 1966, p. 123. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  79. Lavrukhina & Pozdnyakov 1966, p. 123. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  80. Hammond, C. R. (2011). "Prometium in "The Elements"". In Haynes, William M. (ed.). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 4.28. ISBN 978-1439855119. 978-1439855119

  81. Lee, Chung-Sin; Wang, Yun-Ming; Cheng, Wu-Long; Ting, Gann (1989). "Chemical study on the separation and purification of promethium-147". Journal of Radioanalytical and Nuclear Chemistry. 130 (1): 21–37. Bibcode:1989JRNC..130...21L. doi:10.1007/BF02037697. S2CID 96599441. /wiki/Bibcode_(identifier)

  82. Orr, P. B. (1962). "Ion exchange purification of promethium-147 and its separation from americium-241, with diethylenetriaminepenta-acetic acid as the eluant" (PDF). Oak Ridge National Laboratory. Archived from the original (PDF) on 2011-06-29. Retrieved 2011-01-31.Orr, P. B. (1962). Ion exchange purification of promethium-147 and its separation from americium-241, with diethylenetriaminepenta-acetic acid as the eluant (Report). Oak Ridge National Laboratory. doi:10.2172/4819080. hdl:2027/mdp.39015077313933. OSTI 4819080. Retrieved 2018-06-17. https://web.archive.org/web/20110629124017/http://www.ornl.gov/info/reports/1962/3445605484259.pdf

  83. Gagnon, Steve. "The Element Promethium". Jefferson Lab. Science Education. Retrieved 26 February 2012. http://education.jlab.org/itselemental/ele061.html

  84. Lavrukhina & Pozdnyakov 1966, p. 115. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  85. Duggirala, Rajesh; Lal, Amit; Radhakrishnan, Shankar (2010). Radioisotope Thin-Film Powered Microsystems. Springer. p. 12. ISBN 978-1441967626. 978-1441967626

  86. Hänninen, Pekka; Härmä, Harri (2011). Applications of inorganic mass spectrometry. Springer. p. 144. ISBN 978-3-642-21022-8. 978-3-642-21022-8

  87. De Laeter; J. R. (2001). Applications of inorganic mass spectrometry. Wiley-IEEE. p. 205. ISBN 978-0471345398. 978-0471345398

  88. Lavrukhina & Pozdnyakov 1966, p. 116. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  89. Gerber, Michele Stenehjem; Findlay, John M. (2007). On the Home Front: The Cold War Legacy of the Hanford Nuclear Site (3rd ed.). University of Nebraska Press. p. 162. ISBN 978-0-8032-5995-9. 978-0-8032-5995-9

  90. Duggirala, Rajesh; Lal, Amit; Radhakrishnan, Shankar (2010). Radioisotope Thin-Film Powered Microsystems. Springer. p. 12. ISBN 978-1441967626. 978-1441967626

  91. Emsley 2011, p. 428. - Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7. https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428

  92. Lavrukhina & Pozdnyakov 1966, p. 118. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  93. Emsley 2011, p. 428. - Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7. https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428

  94. Lavrukhina & Pozdnyakov 1966, p. 118. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  95. Hammond, C. R. (2011). "Prometium in "The Elements"". In Haynes, William M. (ed.). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 4.28. ISBN 978-1439855119. 978-1439855119

  96. Emsley 2011, p. 428. - Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7. https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428

  97. Lavrukhina & Pozdnyakov 1966, p. 118. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  98. Lavrukhina & Pozdnyakov 1966, p. 118. - Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) (in Russian). Nauka.

  99. Tykva, Richard; Berg, Dieter (2004). Man-made and natural radioactivity in environmental pollution and radiochronology. Springer. p. 78. ISBN 978-1-4020-1860-2. 978-1-4020-1860-2

  100. Deeter, David P. (1993). Disease and the Environment. Government Printing Office. p. 187.

  101. promethium. Encyclopædia Britannica Online http://www.britannica.com/EBchecked/topic/478714/promethium

  102. Hammond, C. R. (2011). "Prometium in "The Elements"". In Haynes, William M. (ed.). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 4.28. ISBN 978-1439855119. 978-1439855119

  103. Emsley 2011, p. 428. - Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7. https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428

  104. Flicker, H.; Loferski, J. J.; Elleman, T. S. (1964). "Construction of a promethium-147 atomic battery". IEEE Transactions on Electron Devices. 11 (1): 2. Bibcode:1964ITED...11....2F. doi:10.1109/T-ED.1964.15271. /wiki/Bibcode_(identifier)

  105. Hammond, C. R. (2011). "Prometium in "The Elements"". In Haynes, William M. (ed.). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 4.28. ISBN 978-1439855119. 978-1439855119

  106. Emsley 2011, p. 429. - Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 428–430. ISBN 978-0-19-960563-7. https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428

  107. Jones, James William; Haygood, John R. (2011). The Terrorist Effect – Weapons of Mass Disruption: The Danger of Nuclear Terrorism. iUniverse. p. 180. ISBN 978-1-4620-3932-6. Retrieved January 13, 2012. 978-1-4620-3932-6

  108. Stwertka, Albert (2002). A guide to the elements. Oxford University Press. p. 154. ISBN 978-0-19-515026-1. 978-0-19-515026-1

  109. Radioisotope Power Systems Committee, National Research Council U.S. (2009). Radioisotope power systems: an imperative for maintaining U.S. leadership in space exploration. National Academies Press. p. 8. ISBN 978-0-309-13857-4. 978-0-309-13857-4

  110. https://www.msdsdigital.com/system/files/PHILIPS-CFL-15MM.pdf MSDS for the Philips CFL lamps containing Pm-147. https://www.msdsdigital.com/system/files/PHILIPS-CFL-15MM.pdf

  111. Simmons, Howard (1964). "Reed Business Information". New Scientist. 22 (389): 292.

  112. Operator, organizational, direct support, and general support maintenance manual: installation, operation, and checkout procedures for Joint-Services Interior Intrusion Detection System (J-SIIDS). Headquarters, Departments of the Army, Navy, and Air Force. 1991. p. 5. https://books.google.com/books?id=JfoXAAAAYAAJ&pg=PP5

  113. Stuart Hunt & Associates Lt. "Radioactive Material Safety Data Sheet" (PDF). Archived from the original (PDF) on 2021-09-15. Retrieved 2012-02-10. https://web.archive.org/web/20210915131347/https://www.stuarthunt.com/uploads/downloads/RMSDS%20Documents/Promethium-147-Sealed.pdf

  114. Stuart Hunt & Associates Lt. "Radioactive Material Safety Data Sheet" (PDF). Archived from the original (PDF) on 2021-09-15. Retrieved 2012-02-10. https://web.archive.org/web/20210915131347/https://www.stuarthunt.com/uploads/downloads/RMSDS%20Documents/Promethium-147-Sealed.pdf

  115. Stuart Hunt & Associates Lt. "Radioactive Material Safety Data Sheet" (PDF). Archived from the original (PDF) on 2021-09-15. Retrieved 2012-02-10. https://web.archive.org/web/20210915131347/https://www.stuarthunt.com/uploads/downloads/RMSDS%20Documents/Promethium-147-Sealed.pdf