Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Prime-counting function
Function representing the number of primes less than or equal to a given number

In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x) (unrelated to the number π).

A symmetric variant seen sometimes is π0(x), which is equal to π(x) − 1⁄2 if x is exactly a prime number, and equal to π(x) otherwise. That is, the number of prime numbers less than x, plus half if x equals a prime.

Related Image Collections Add Image
We don't have any YouTube videos related to Prime-counting function yet.
We don't have any PDF documents related to Prime-counting function yet.
We don't have any Books related to Prime-counting function yet.
We don't have any archived web articles related to Prime-counting function yet.

Growth rate

Main article: Prime number theorem

Of great interest in number theory is the growth rate of the prime-counting function.34 It was conjectured in the end of the 18th century by Gauss and by Legendre to be approximately x log ⁡ x {\displaystyle {\frac {x}{\log x}}} where log is the natural logarithm, in the sense that lim x → ∞ π ( x ) x / log ⁡ x = 1. {\displaystyle \lim _{x\rightarrow \infty }{\frac {\pi (x)}{x/\log x}}=1.} This statement is the prime number theorem. An equivalent statement is lim x → ∞ π ( x ) li ⁡ ( x ) = 1 {\displaystyle \lim _{x\rightarrow \infty }{\frac {\pi (x)}{\operatorname {li} (x)}}=1} where li is the logarithmic integral function. The prime number theorem was first proved in 1896 by Jacques Hadamard and by Charles de la Vallée Poussin independently, using properties of the Riemann zeta function introduced by Riemann in 1859. Proofs of the prime number theorem not using the zeta function or complex analysis were found around 1948 by Atle Selberg and by Paul Erdős (for the most part independently).5

More precise estimates

In 1899, de la Vallée Poussin proved that 6 π ( x ) = li ⁡ ( x ) + O ( x e − a log ⁡ x ) as  x → ∞ {\displaystyle \pi (x)=\operatorname {li} (x)+O\left(xe^{-a{\sqrt {\log x}}}\right)\quad {\text{as }}x\to \infty } for some positive constant a. Here, O(...) is the big O notation.

More precise estimates of π(x) are now known. For example, in 2002, Kevin Ford proved that7 π ( x ) = li ⁡ ( x ) + O ( x exp ⁡ ( − 0.2098 ( log ⁡ x ) 3 / 5 ( log ⁡ log ⁡ x ) − 1 / 5 ) ) . {\displaystyle \pi (x)=\operatorname {li} (x)+O\left(x\exp \left(-0.2098(\log x)^{3/5}(\log \log x)^{-1/5}\right)\right).}

Mossinghoff and Trudgian proved8 an explicit upper bound for the difference between π(x) and li(x): | π ( x ) − li ⁡ ( x ) | ≤ 0.2593 x ( log ⁡ x ) 3 / 4 exp ⁡ ( − log ⁡ x 6.315 ) for  x ≥ 229. {\displaystyle {\bigl |}\pi (x)-\operatorname {li} (x){\bigr |}\leq 0.2593{\frac {x}{(\log x)^{3/4}}}\exp \left(-{\sqrt {\frac {\log x}{6.315}}}\right)\quad {\text{for }}x\geq 229.}

For values of x that are not unreasonably large, li(x) is greater than π(x). However, π(x) − li(x) is known to change sign infinitely many times. For a discussion of this, see Skewes' number.

Exact form

For x > 1 let π0(x) = π(x) − ⁠1/2⁠ when x is a prime number, and π0(x) = π(x) otherwise. Bernhard Riemann, in his work On the Number of Primes Less Than a Given Magnitude, proved that π0(x) is equal to9

π 0 ( x ) = R ⁡ ( x ) − ∑ ρ R ⁡ ( x ρ ) , {\displaystyle \pi _{0}(x)=\operatorname {R} (x)-\sum _{\rho }\operatorname {R} (x^{\rho }),} where R ⁡ ( x ) = ∑ n = 1 ∞ μ ( n ) n li ⁡ ( x 1 / n ) , {\displaystyle \operatorname {R} (x)=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n}}\operatorname {li} \left(x^{1/n}\right),} μ(n) is the Möbius function, li(x) is the logarithmic integral function, ρ indexes every zero of the Riemann zeta function, and li(xρ/n⁠) is not evaluated with a branch cut but instead considered as Ei(⁠ρ/n⁠ log x) where Ei(x) is the exponential integral. If the trivial zeros are collected and the sum is taken only over the non-trivial zeros ρ of the Riemann zeta function, then π0(x) may be approximated by10 π 0 ( x ) ≈ R ⁡ ( x ) − ∑ ρ R ⁡ ( x ρ ) − 1 log ⁡ x + 1 π arctan ⁡ π log ⁡ x . {\displaystyle \pi _{0}(x)\approx \operatorname {R} (x)-\sum _{\rho }\operatorname {R} \left(x^{\rho }\right)-{\frac {1}{\log x}}+{\frac {1}{\pi }}\arctan {\frac {\pi }{\log x}}.}

The Riemann hypothesis suggests that every such non-trivial zero lies along Re(s) = ⁠1/2⁠.

Table of π(x), ⁠x/log x ⁠, and li(x)

The table shows how the three functions π(x), ⁠x/log x⁠, and li(x) compared at powers of 10. See also,1112 and13

xπ(x)π(x) − ⁠x/log xli(x) − π(x)x/π(x)⁠x/log x⁠ % error
104022.500−8.57%
10225354.000+13.14%
10316823105.952+13.83%
1041,229143178.137+11.66%
1059,5929063810.425+9.45%
10678,4986,11613012.739+7.79%
107664,57944,15833915.047+6.64%
1085,761,455332,77475417.357+5.78%
10950,847,5342,592,5921,70119.667+5.10%
1010455,052,51120,758,0293,10421.975+4.56%
10114,118,054,813169,923,15911,58824.283+4.13%
101237,607,912,0181,416,705,19338,26326.590+3.77%
1013346,065,536,83911,992,858,452108,97128.896+3.47%
10143,204,941,750,802102,838,308,636314,89031.202+3.21%
101529,844,570,422,669891,604,962,4521,052,61933.507+2.99%
1016279,238,341,033,9257,804,289,844,3933,214,63235.812+2.79%
10172,623,557,157,654,23368,883,734,693,9287,956,58938.116+2.63%
101824,739,954,287,740,860612,483,070,893,53621,949,55540.420+2.48%
1019234,057,667,276,344,6075,481,624,169,369,96199,877,77542.725+2.34%
10202,220,819,602,560,918,84049,347,193,044,659,702222,744,64445.028+2.22%
102121,127,269,486,018,731,928446,579,871,578,168,707597,394,25447.332+2.11%
1022201,467,286,689,315,906,2904,060,704,006,019,620,9941,932,355,20849.636+2.02%
10231,925,320,391,606,803,968,92337,083,513,766,578,631,3097,250,186,21651.939+1.93%
102418,435,599,767,349,200,867,866339,996,354,713,708,049,06917,146,907,27854.243+1.84%
1025176,846,309,399,143,769,411,6803,128,516,637,843,038,351,22855,160,980,93956.546+1.77%
10261,699,246,750,872,437,141,327,60328,883,358,936,853,188,823,261155,891,678,12158.850+1.70%
102716,352,460,426,841,680,446,427,399267,479,615,610,131,274,163,365508,666,658,00661.153+1.64%
1028157,589,269,275,973,410,412,739,5982,484,097,167,669,186,251,622,1271,427,745,660,37463.456+1.58%
10291,520,698,109,714,272,166,094,258,06323,130,930,737,541,725,917,951,4464,551,193,622,46465.759+1.52%

In the On-Line Encyclopedia of Integer Sequences, the π(x) column is sequence OEIS: A006880, π(x) − ⁠x/log x⁠ is sequence OEIS: A057835, and li(x) − π(x) is sequence OEIS: A057752.

The value for π(1024) was originally computed by J. Buethe, J. Franke, A. Jost, and T. Kleinjung assuming the Riemann hypothesis.14 It was later verified unconditionally in a computation by D. J. Platt.15 The value for π(1025) is by the same four authors.16 The value for π(1026) was computed by D. B. Staple.17 All other prior entries in this table were also verified as part of that work.

The values for 1027, 1028, and 1029 were announced by David Baugh and Kim Walisch in 2015,18 2020,19 and 2022,20 respectively.

Algorithms for evaluating π(x)

A simple way to find π(x), if x is not too large, is to use the sieve of Eratosthenes to produce the primes less than or equal to x and then to count them.

A more elaborate way of finding π(x) is due to Legendre (using the inclusion–exclusion principle): given x, if p1, p2,…, pn are distinct prime numbers, then the number of integers less than or equal to x which are divisible by no pi is

⌊ x ⌋ − ∑ i ⌊ x p i ⌋ + ∑ i < j ⌊ x p i p j ⌋ − ∑ i < j < k ⌊ x p i p j p k ⌋ + ⋯ {\displaystyle \lfloor x\rfloor -\sum _{i}\left\lfloor {\frac {x}{p_{i}}}\right\rfloor +\sum _{i<j}\left\lfloor {\frac {x}{p_{i}p_{j}}}\right\rfloor -\sum _{i<j<k}\left\lfloor {\frac {x}{p_{i}p_{j}p_{k}}}\right\rfloor +\cdots }

(where ⌊x⌋ denotes the floor function). This number is therefore equal to

π ( x ) − π ( x ) + 1 {\displaystyle \pi (x)-\pi \left({\sqrt {x}}\right)+1}

when the numbers p1, p2,…, pn are the prime numbers less than or equal to the square root of x.

The Meissel–Lehmer algorithm

Main article: Meissel–Lehmer algorithm

In a series of articles published between 1870 and 1885, Ernst Meissel described (and used) a practical combinatorial way of evaluating π(x): Let p1, p2,…, pn be the first n primes and denote by Φ(m,n) the number of natural numbers not greater than m which are divisible by none of the pi for any in. Then

Φ ( m , n ) = Φ ( m , n − 1 ) − Φ ( m p n , n − 1 ) . {\displaystyle \Phi (m,n)=\Phi (m,n-1)-\Phi \left({\frac {m}{p_{n}}},n-1\right).}

Given a natural number m, if n = π(3√m) and if μ = π(√m) − n, then

π ( m ) = Φ ( m , n ) + n ( μ + 1 ) + μ 2 − μ 2 − 1 − ∑ k = 1 μ π ( m p n + k ) . {\displaystyle \pi (m)=\Phi (m,n)+n(\mu +1)+{\frac {\mu ^{2}-\mu }{2}}-1-\sum _{k=1}^{\mu }\pi \left({\frac {m}{p_{n+k}}}\right).}

Using this approach, Meissel computed π(x), for x equal to 5×105, 106, 107, and 108.

In 1959, Derrick Henry Lehmer extended and simplified Meissel's method. Define, for real m and for natural numbers n and k, Pk(m,n) as the number of numbers not greater than m with exactly k prime factors, all greater than pn. Furthermore, set P0(m,n) = 1. Then

Φ ( m , n ) = ∑ k = 0 + ∞ P k ( m , n ) {\displaystyle \Phi (m,n)=\sum _{k=0}^{+\infty }P_{k}(m,n)}

where the sum actually has only finitely many nonzero terms. Let y denote an integer such that 3√my ≤ √m, and set n = π(y). Then P1(m,n) = π(m) − n and Pk(m,n) = 0 when k ≥ 3. Therefore,

π ( m ) = Φ ( m , n ) + n − 1 − P 2 ( m , n ) {\displaystyle \pi (m)=\Phi (m,n)+n-1-P_{2}(m,n)}

The computation of P2(m,n) can be obtained this way:

P 2 ( m , n ) = ∑ y < p ≤ m ( π ( m p ) − π ( p ) + 1 ) {\displaystyle P_{2}(m,n)=\sum _{y<p\leq {\sqrt {m}}}\left(\pi \left({\frac {m}{p}}\right)-\pi (p)+1\right)}

where the sum is over prime numbers.

On the other hand, the computation of Φ(m,n) can be done using the following rules:

  1. Φ ( m , 0 ) = ⌊ m ⌋ {\displaystyle \Phi (m,0)=\lfloor m\rfloor }
  2. Φ ( m , b ) = Φ ( m , b − 1 ) − Φ ( m p b , b − 1 ) {\displaystyle \Phi (m,b)=\Phi (m,b-1)-\Phi \left({\frac {m}{p_{b}}},b-1\right)}

Using his method and an IBM 701, Lehmer was able to compute the correct value of π(109) and missed the correct value of π(1010) by 1.21

Further improvements to this method were made by Lagarias, Miller, Odlyzko, Deléglise, and Rivat.22

Other prime-counting functions

Other prime-counting functions are also used because they are more convenient to work with.

Riemann's prime-power counting function

Riemann's prime-power counting function is usually denoted as Π0(x) or J0(x). It has jumps of ⁠1/n⁠ at prime powers pn and it takes a value halfway between the two sides at the discontinuities of π(x). That added detail is used because the function may then be defined by an inverse Mellin transform.

Formally, we may define Π0(x) by

Π 0 ( x ) = 1 2 ( ∑ p n < x 1 n + ∑ p n ≤ x 1 n )   {\displaystyle \Pi _{0}(x)={\frac {1}{2}}\left(\sum _{p^{n}<x}{\frac {1}{n}}+\sum _{p^{n}\leq x}{\frac {1}{n}}\right)\ }

where the variable p in each sum ranges over all primes within the specified limits.

We may also write

  Π 0 ( x ) = ∑ n = 2 x Λ ( n ) log ⁡ n − Λ ( x ) 2 log ⁡ x = ∑ n = 1 ∞ 1 n π 0 ( x 1 / n ) {\displaystyle \ \Pi _{0}(x)=\sum _{n=2}^{x}{\frac {\Lambda (n)}{\log n}}-{\frac {\Lambda (x)}{2\log x}}=\sum _{n=1}^{\infty }{\frac {1}{n}}\pi _{0}\left(x^{1/n}\right)}

where Λ is the von Mangoldt function and

π 0 ( x ) = lim ε → 0 π ( x − ε ) + π ( x + ε ) 2 . {\displaystyle \pi _{0}(x)=\lim _{\varepsilon \to 0}{\frac {\pi (x-\varepsilon )+\pi (x+\varepsilon )}{2}}.}

The Möbius inversion formula then gives

π 0 ( x ) = ∑ n = 1 ∞ μ ( n ) n   Π 0 ( x 1 / n ) , {\displaystyle \pi _{0}(x)=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n}}\ \Pi _{0}\left(x^{1/n}\right),}

where μ(n) is the Möbius function.

Knowing the relationship between the logarithm of the Riemann zeta function and the von Mangoldt function Λ, and using the Perron formula we have

log ⁡ ζ ( s ) = s ∫ 0 ∞ Π 0 ( x ) x − s − 1 d x {\displaystyle \log \zeta (s)=s\int _{0}^{\infty }\Pi _{0}(x)x^{-s-1}\,\mathrm {d} x}

Chebyshev's function

The Chebyshev function weights primes or prime powers pn by log p:

ϑ ( x ) = ∑ p ≤ x log ⁡ p ψ ( x ) = ∑ p n ≤ x log ⁡ p = ∑ n = 1 ∞ ϑ ( x 1 / n ) = ∑ n ≤ x Λ ( n ) . {\displaystyle {\begin{aligned}\vartheta (x)&=\sum _{p\leq x}\log p\\\psi (x)&=\sum _{p^{n}\leq x}\log p=\sum _{n=1}^{\infty }\vartheta \left(x^{1/n}\right)=\sum _{n\leq x}\Lambda (n).\end{aligned}}}

For x ≥ 2,23

ϑ ( x ) = π ( x ) log ⁡ x − ∫ 2 x π ( t ) t d t {\displaystyle \vartheta (x)=\pi (x)\log x-\int _{2}^{x}{\frac {\pi (t)}{t}}\,\mathrm {d} t}

and

π ( x ) = ϑ ( x ) log ⁡ x + ∫ 2 x ϑ ( t ) t log 2 ⁡ ( t ) d t . {\displaystyle \pi (x)={\frac {\vartheta (x)}{\log x}}+\int _{2}^{x}{\frac {\vartheta (t)}{t\log ^{2}(t)}}\mathrm {d} t.}

Formulas for prime-counting functions

Formulas for prime-counting functions come in two kinds: arithmetic formulas and analytic formulas. Analytic formulas for prime-counting were the first used to prove the prime number theorem. They stem from the work of Riemann and von Mangoldt, and are generally known as explicit formulae.24

We have the following expression for the second Chebyshev function ψ:

ψ 0 ( x ) = x − ∑ ρ x ρ ρ − log ⁡ 2 π − 1 2 log ⁡ ( 1 − x − 2 ) , {\displaystyle \psi _{0}(x)=x-\sum _{\rho }{\frac {x^{\rho }}{\rho }}-\log 2\pi -{\frac {1}{2}}\log \left(1-x^{-2}\right),}

where

ψ 0 ( x ) = lim ε → 0 ψ ( x − ε ) + ψ ( x + ε ) 2 . {\displaystyle \psi _{0}(x)=\lim _{\varepsilon \to 0}{\frac {\psi (x-\varepsilon )+\psi (x+\varepsilon )}{2}}.}

Here ρ are the zeros of the Riemann zeta function in the critical strip, where the real part of ρ is between zero and one. The formula is valid for values of x greater than one, which is the region of interest. The sum over the roots is conditionally convergent, and should be taken in order of increasing absolute value of the imaginary part. Note that the same sum over the trivial roots gives the last subtrahend in the formula.

For Π0(x) we have a more complicated formula

Π 0 ( x ) = li ⁡ ( x ) − ∑ ρ li ⁡ ( x ρ ) − log ⁡ 2 + ∫ x ∞ d t t ( t 2 − 1 ) log ⁡ t . {\displaystyle \Pi _{0}(x)=\operatorname {li} (x)-\sum _{\rho }\operatorname {li} \left(x^{\rho }\right)-\log 2+\int _{x}^{\infty }{\frac {\mathrm {d} t}{t\left(t^{2}-1\right)\log t}}.}

Again, the formula is valid for x > 1, while ρ are the nontrivial zeros of the zeta function ordered according to their absolute value. The first term li(x) is the usual logarithmic integral function; the expression li() in the second term should be considered as Ei(ρ log x), where Ei is the analytic continuation of the exponential integral function from negative reals to the complex plane with branch cut along the positive reals. The final integral is equal to the series over the trivial zeros:

∫ x ∞ d t t ( t 2 − 1 ) log ⁡ t = ∫ x ∞ 1 t log ⁡ t ( ∑ m t − 2 m ) d t = ∑ m ∫ x ∞ t − 2 m t log ⁡ t d t = ( u = t − 2 m ) − ∑ m li ⁡ ( x − 2 m ) {\displaystyle \int _{x}^{\infty }{\frac {\mathrm {d} t}{t\left(t^{2}-1\right)\log t}}=\int _{x}^{\infty }{\frac {1}{t\log t}}\left(\sum _{m}t^{-2m}\right)\,\mathrm {d} t=\sum _{m}\int _{x}^{\infty }{\frac {t^{-2m}}{t\log t}}\,\mathrm {d} t\,\,{\overset {\left(u=t^{-2m}\right)}{=}}-\sum _{m}\operatorname {li} \left(x^{-2m}\right)}

Thus, Möbius inversion formula gives us25

π 0 ( x ) = R ⁡ ( x ) − ∑ ρ R ⁡ ( x ρ ) − ∑ m R ⁡ ( x − 2 m ) {\displaystyle \pi _{0}(x)=\operatorname {R} (x)-\sum _{\rho }\operatorname {R} \left(x^{\rho }\right)-\sum _{m}\operatorname {R} \left(x^{-2m}\right)}

valid for x > 1, where

R ⁡ ( x ) = ∑ n = 1 ∞ μ ( n ) n li ⁡ ( x 1 / n ) = 1 + ∑ k = 1 ∞ ( log ⁡ x ) k k ! k ζ ( k + 1 ) {\displaystyle \operatorname {R} (x)=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n}}\operatorname {li} \left(x^{1/n}\right)=1+\sum _{k=1}^{\infty }{\frac {\left(\log x\right)^{k}}{k!k\zeta (k+1)}}}

is Riemann's R-function26 and μ(n) is the Möbius function. The latter series for it is known as Gram series.2728 Because log x < x for all x > 0, this series converges for all positive x by comparison with the series for ex. The logarithm in the Gram series of the sum over the non-trivial zero contribution should be evaluated as ρ log x and not log .

Folkmar Bornemann proved,29 when assuming the conjecture that all zeros of the Riemann zeta function are simple,30 that

R ⁡ ( e − 2 π t ) = 1 π ∑ k = 1 ∞ ( − 1 ) k − 1 t − 2 k − 1 ( 2 k + 1 ) ζ ( 2 k + 1 ) + 1 2 ∑ ρ t − ρ ρ cos ⁡ π ρ 2 ζ ′ ( ρ ) {\displaystyle \operatorname {R} \left(e^{-2\pi t}\right)={\frac {1}{\pi }}\sum _{k=1}^{\infty }{\frac {(-1)^{k-1}t^{-2k-1}}{(2k+1)\zeta (2k+1)}}+{\frac {1}{2}}\sum _{\rho }{\frac {t^{-\rho }}{\rho \cos {\frac {\pi \rho }{2}}\zeta '(\rho )}}}

where ρ runs over the non-trivial zeros of the Riemann zeta function and t > 0.

The sum over non-trivial zeta zeros in the formula for π0(x) describes the fluctuations of π0(x) while the remaining terms give the "smooth" part of prime-counting function,31 so one can use

R ⁡ ( x ) − ∑ m = 1 ∞ R ⁡ ( x − 2 m ) {\displaystyle \operatorname {R} (x)-\sum _{m=1}^{\infty }\operatorname {R} \left(x^{-2m}\right)}

as a good estimator of π(x) for x > 1. In fact, since the second term approaches 0 as x → ∞, while the amplitude of the "noisy" part is heuristically about ⁠√x/log x⁠, estimating π(x) by R(x) alone is just as good, and fluctuations of the distribution of primes may be clearly represented with the function

( π 0 ( x ) − R ⁡ ( x ) ) log ⁡ x x . {\displaystyle {\bigl (}\pi _{0}(x)-\operatorname {R} (x){\bigr )}{\frac {\log x}{\sqrt {x}}}.}

Inequalities

Ramanujan32 proved that the inequality

π ( x ) 2 < e x log ⁡ x π ( x e ) {\displaystyle \pi (x)^{2}<{\frac {ex}{\log x}}\pi \left({\frac {x}{e}}\right)}

holds for all sufficiently large values of x.

Here are some useful inequalities for π(x).

x log ⁡ x < π ( x ) < 1.25506 x log ⁡ x for  x ≥ 17. {\displaystyle {\frac {x}{\log x}}<\pi (x)<1.25506{\frac {x}{\log x}}\quad {\text{for }}x\geq 17.}

The left inequality holds for x ≥ 17 and the right inequality holds for x > 1. The constant 1.25506 is 30⁠log 113/113⁠ to 5 decimal places, as π(x) ⁠log x/x⁠ has its maximum value at x = p30 = 113.33

Pierre Dusart proved in 2010:34

x log ⁡ x − 1 < π ( x ) < x log ⁡ x − 1.1 for  x ≥ 5393  and  x ≥ 60184 ,  respectively. {\displaystyle {\frac {x}{\log x-1}}<\pi (x)<{\frac {x}{\log x-1.1}}\quad {\text{for }}x\geq 5393{\text{ and }}x\geq 60184,{\text{ respectively.}}}

More recently, Dusart has proved35 (Theorem 5.1) that

x log ⁡ x ( 1 + 1 log ⁡ x + 2 log 2 ⁡ x ) ≤ π ( x ) ≤ x log ⁡ x ( 1 + 1 log ⁡ x + 2 log 2 ⁡ x + 7.59 log 3 ⁡ x ) , {\displaystyle {\frac {x}{\log x}}\left(1+{\frac {1}{\log x}}+{\frac {2}{\log ^{2}x}}\right)\leq \pi (x)\leq {\frac {x}{\log x}}\left(1+{\frac {1}{\log x}}+{\frac {2}{\log ^{2}x}}+{\frac {7.59}{\log ^{3}x}}\right),}

for x ≥ 88789 and x > 1, respectively.

Going in the other direction, an approximation for the nth prime, pn, is

p n = n ( log ⁡ n + log ⁡ log ⁡ n − 1 + log ⁡ log ⁡ n − 2 log ⁡ n + O ( ( log ⁡ log ⁡ n ) 2 ( log ⁡ n ) 2 ) ) . {\displaystyle p_{n}=n\left(\log n+\log \log n-1+{\frac {\log \log n-2}{\log n}}+O\left({\frac {(\log \log n)^{2}}{(\log n)^{2}}}\right)\right).}

Here are some inequalities for the nth prime. The lower bound is due to Dusart (1999)36 and the upper bound to Rosser (1941).37

n ( log ⁡ n + log ⁡ log ⁡ n − 1 ) < p n < n ( log ⁡ n + log ⁡ log ⁡ n ) for  n ≥ 6. {\displaystyle n(\log n+\log \log n-1)<p_{n}<n(\log n+\log \log n)\quad {\text{for }}n\geq 6.}

The left inequality holds for n ≥ 2 and the right inequality holds for n ≥ 6. A variant form sometimes seen substitutes log ⁡ n + log ⁡ log ⁡ n = log ⁡ ( n log ⁡ n ) . {\displaystyle \log n+\log \log n=\log(n\log n).} An even simpler lower bound is38

n log ⁡ n < p n , {\displaystyle n\log n<p_{n},}

which holds for all n ≥ 1, but the lower bound above is tighter for n > ee ≈15.154.

In 2010 Dusart proved39 (Propositions 6.7 and 6.6) that

n ( log ⁡ n + log ⁡ log ⁡ n − 1 + log ⁡ log ⁡ n − 2.1 log ⁡ n ) ≤ p n ≤ n ( log ⁡ n + log ⁡ log ⁡ n − 1 + log ⁡ log ⁡ n − 2 log ⁡ n ) , {\displaystyle n\left(\log n+\log \log n-1+{\frac {\log \log n-2.1}{\log n}}\right)\leq p_{n}\leq n\left(\log n+\log \log n-1+{\frac {\log \log n-2}{\log n}}\right),}

for n ≥ 3 and n ≥ 688383, respectively.

In 2024, Axler40 further tightened this (equations 1.12 and 1.13) using bounds of the form

f ( n , g ( w ) ) = n ( log ⁡ n + log ⁡ log ⁡ n − 1 + log ⁡ log ⁡ n − 2 log ⁡ n − g ( log ⁡ log ⁡ n ) 2 log 2 ⁡ n ) {\displaystyle f(n,g(w))=n\left(\log n+\log \log n-1+{\frac {\log \log n-2}{\log n}}-{\frac {g(\log \log n)}{2\log ^{2}n}}\right)}

proving that

f ( n , w 2 − 6 w + 11.321 ) ≤ p n ≤ f ( n , w 2 − 6 w ) {\displaystyle f(n,w^{2}-6w+11.321)\leq p_{n}\leq f(n,w^{2}-6w)}

for n ≥ 2 and n ≥ 3468, respectively. The lower bound may also be simplified to f(n, w2) without altering its validity. The upper bound may be tightened to f(n, w2 − 6w + 10.667) if n ≥ 46254381.

There are additional bounds of varying complexity.414243

The Riemann hypothesis

The Riemann hypothesis implies a much tighter bound on the error in the estimate for π(x), and hence to a more regular distribution of prime numbers,

π ( x ) = li ⁡ ( x ) + O ( x log ⁡ x ) . {\displaystyle \pi (x)=\operatorname {li} (x)+O({\sqrt {x}}\log {x}).}

Specifically,44

| π ( x ) − li ⁡ ( x ) | < x 8 π log ⁡ x , for all  x ≥ 2657. {\displaystyle |\pi (x)-\operatorname {li} (x)|<{\frac {\sqrt {x}}{8\pi }}\,\log {x},\quad {\text{for all }}x\geq 2657.}

Dudek (2015) proved that the Riemann hypothesis implies that for all x ≥ 2 there is a prime p satisfying

x − 4 π x log ⁡ x < p ≤ x . {\displaystyle x-{\frac {4}{\pi }}{\sqrt {x}}\log x<p\leq x.}

See also

Notes

References

  1. Bach, Eric; Shallit, Jeffrey (1996). Algorithmic Number Theory. MIT Press. volume 1 page 234 section 8.8. ISBN 0-262-02405-5. 0-262-02405-5

  2. Weisstein, Eric W. "Prime Counting Function". MathWorld. /wiki/Eric_W._Weisstein

  3. "How many primes are there?". Chris K. Caldwell. Archived from the original on 2012-10-15. Retrieved 2008-12-02. https://web.archive.org/web/20121015002415/http://primes.utm.edu/howmany.shtml

  4. Dickson, Leonard Eugene (2005). History of the Theory of Numbers, Vol. I: Divisibility and Primality. Dover Publications. ISBN 0-486-44232-2. 0-486-44232-2

  5. Ireland, Kenneth; Rosen, Michael (1998). A Classical Introduction to Modern Number Theory (Second ed.). Springer. ISBN 0-387-97329-X. 0-387-97329-X

  6. See also Theorem 23 of A. E. Ingham (2000). The Distribution of Prime Numbers. Cambridge University Press. ISBN 0-521-39789-8. 0-521-39789-8

  7. Kevin Ford (November 2002). "Vinogradov's Integral and Bounds for the Riemann Zeta Function" (PDF). Proc. London Math. Soc. 85 (3): 565–633. arXiv:1910.08209. doi:10.1112/S0024611502013655. S2CID 121144007. https://faculty.math.illinois.edu/~ford/wwwpapers/zetabd.pdf

  8. Mossinghoff, Michael J.; Trudgian, Timothy S. (2015). "Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function". J. Number Theory. 157: 329–349. arXiv:1410.3926. doi:10.1016/J.JNT.2015.05.010. S2CID 117968965. /wiki/Timothy_Trudgian

  9. Hutama, Daniel (2017). "Implementation of Riemann's Explicit Formula for Rational and Gaussian Primes in Sage" (PDF). Institut des sciences mathématiques. http://ism.uqam.ca/~ism/pdf/Hutama-scientific%20report.pdf

  10. Riesel, Hans; Göhl, Gunnar (1970). "Some calculations related to Riemann's prime number formula" (PDF). Mathematics of Computation. 24 (112). American Mathematical Society: 969–983. doi:10.2307/2004630. ISSN 0025-5718. JSTOR 2004630. MR 0277489. /wiki/Hans_Riesel

  11. "How many primes are there?". Chris K. Caldwell. Archived from the original on 2012-10-15. Retrieved 2008-12-02. https://web.archive.org/web/20121015002415/http://primes.utm.edu/howmany.shtml

  12. "Tables of values of π(x) and of π2(x)". Tomás Oliveira e Silva. Retrieved 2024-03-31. https://sweet.ua.pt/tos/primes.html

  13. "A table of values of π(x)". Xavier Gourdon, Pascal Sebah, Patrick Demichel. Retrieved 2008-09-14. http://numbers.computation.free.fr/Constants/Primes/pixtable.html

  14. Franke, Jens (2010-07-29). "Conditional Calculation of π(1024)". Chris K. Caldwell. Retrieved 2024-03-30. /wiki/Jens_Franke

  15. Platt, David J. (May 2015) [March 2012]. "Computing π(x) Analytically". Mathematics of Computation. 84 (293): 1521–1535. arXiv:1203.5712. doi:10.1090/S0025-5718-2014-02884-6. https://doi.org/10.1090%2FS0025-5718-2014-02884-6

  16. "Analytic Computation of the prime-counting Function". J. Buethe. 27 May 2014. Retrieved 2015-09-01. Includes 600,000 value of π(x) for 1014 ≤ x ≤ 1.6×1018 http://www.math.uni-bonn.de/people/jbuethe/topics/AnalyticPiX.html

  17. Staple, Douglas (19 August 2015). The combinatorial algorithm for computing π(x) (Thesis). Dalhousie University. Retrieved 2015-09-01. http://dalspace.library.dal.ca/handle/10222/60524

  18. Walisch, Kim (September 6, 2015). "New confirmed π(1027) prime counting function record". Mersenne Forum. http://www.mersenneforum.org/showthread.php?t=20473

  19. Baugh, David (August 30, 2020). "New prime counting function record, pi(10^28)". Mersenne Forum. https://www.mersenneforum.org/showpost.php?p=555434&postcount=28

  20. Walisch, Kim (March 4, 2022). "New prime counting function record: PrimePi(10^29)". Mersenne Forum. https://www.mersenneforum.org/showpost.php?p=601061&postcount=38

  21. Lehmer, Derrick Henry (1 April 1958). "On the exact number of primes less than a given limit". Illinois J. Math. 3 (3): 381–388. Retrieved 1 February 2017. /wiki/D._H._Lehmer

  22. Deléglise, Marc; Rivat, Joel (January 1996). "Computing π(x): The Meissel, Lehmer, Lagarias, Miller, Odlyzko method" (PDF). Mathematics of Computation. 65 (213): 235–245. doi:10.1090/S0025-5718-96-00674-6. https://www.ams.org/mcom/1996-65-213/S0025-5718-96-00674-6/S0025-5718-96-00674-6.pdf

  23. Apostol, Tom M. (2010). Introduction to Analytic Number Theory. Springer. ISBN 978-1441928054. 978-1441928054

  24. Titchmarsh, E.C. (1960). The Theory of Functions, 2nd ed. Oxford University Press.

  25. Riesel, Hans; Göhl, Gunnar (1970). "Some calculations related to Riemann's prime number formula" (PDF). Mathematics of Computation. 24 (112). American Mathematical Society: 969–983. doi:10.2307/2004630. ISSN 0025-5718. JSTOR 2004630. MR 0277489. /wiki/Hans_Riesel

  26. Weisstein, Eric W. "Riemann Prime Counting Function". MathWorld. /wiki/Eric_W._Weisstein

  27. Riesel, Hans (1994). Prime Numbers and Computer Methods for Factorization. Progress in Mathematics. Vol. 126 (2nd ed.). Birkhäuser. pp. 50–51. ISBN 0-8176-3743-5. 0-8176-3743-5

  28. Weisstein, Eric W. "Gram Series". MathWorld. /wiki/Eric_W._Weisstein

  29. Bornemann, Folkmar. "Solution of a Problem Posed by Jörg Waldvogel" (PDF). https://www-m3.ma.tum.de/bornemann/RiemannRZero.pdf

  30. Montgomery showed that (assuming the Riemann hypothesis) at least two thirds of all zeros are simple. /wiki/Hugh_Lowell_Montgomery

  31. "The encoding of the prime distribution by the zeta zeros". Matthew Watkins. Retrieved 2008-09-14. http://www.secamlocal.ex.ac.uk/people/staff/mrwatkin/zeta/encoding1.htm

  32. Berndt, Bruce C. (2012-12-06). Ramanujan's Notebooks, Part IV. Springer Science & Business Media. pp. 112–113. ISBN 9781461269328. 9781461269328

  33. Rosser, J. Barkley; Schoenfeld, Lowell (1962). "Approximate formulas for some functions of prime numbers". Illinois J. Math. 6: 64–94. doi:10.1215/ijm/1255631807. ISSN 0019-2082. Zbl 0122.05001. /wiki/J._Barkley_Rosser

  34. Dusart, Pierre (2 Feb 2010). "Estimates of Some Functions Over Primes without R.H.". arXiv:1002.0442v1 [math.NT]. /wiki/Pierre_Dusart

  35. Dusart, Pierre (January 2018). "Explicit estimates of some functions over primes". Ramanujan Journal. 45 (1): 225–234. doi:10.1007/s11139-016-9839-4. S2CID 125120533. /wiki/Pierre_Dusart

  36. Dusart, Pierre (January 1999). "The kth prime is greater than k(ln k + ln ln k − 1) for k ≥ 2" (PDF). Mathematics of Computation. 68 (225): 411–415. Bibcode:1999MaCom..68..411D. doi:10.1090/S0025-5718-99-01037-6. /wiki/Pierre_Dusart

  37. Rosser, Barkley (January 1941). "Explicit bounds for some functions of prime numbers". American Journal of Mathematics. 63 (1): 211–232. doi:10.2307/2371291. JSTOR 2371291. /wiki/J._Barkley_Rosser

  38. Rosser, J. Barkley; Schoenfeld, Lowell (March 1962). "Approximate formulas for some functions of prime numbers". Illinois Journal of Mathematics. 6 (1): 64–94. doi:10.1215/ijm/1255631807. /wiki/J._Barkley_Rosser

  39. Dusart, Pierre (2 Feb 2010). "Estimates of Some Functions Over Primes without R.H.". arXiv:1002.0442v1 [math.NT]. /wiki/Pierre_Dusart

  40. Axler, Christian (2019) [23 Mar 2017]. "New estimates for the nth prime number". Journal of Integer Sequences. 19 (4) 2. arXiv:1706.03651. https://cs.uwaterloo.ca/journals/JIS/VOL22/Axler/axler17.html

  41. "Bounds for n-th prime". Mathematics StackExchange. 31 December 2015. https://math.stackexchange.com/questions/1270814/bounds-for-n-th-prime

  42. Axler, Christian (2018) [23 Mar 2017]. "New Estimates for Some Functions Defined Over Primes" (PDF). Integers. 18 A52. arXiv:1703.08032. doi:10.5281/zenodo.10677755. https://math.colgate.edu/~integers/s52/s52.pdf

  43. Axler, Christian (2024) [11 Mar 2022]. "Effective Estimates for Some Functions Defined over Primes" (PDF). Integers. 24 A34. arXiv:2203.05917. doi:10.5281/zenodo.10677755. https://math.colgate.edu/~integers/y34/y34.pdf

  44. Schoenfeld, Lowell (1976). "Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II". Mathematics of Computation. 30 (134). American Mathematical Society: 337–360. doi:10.2307/2005976. ISSN 0025-5718. JSTOR 2005976. MR 0457374. /wiki/Lowell_Schoenfeld