Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Orthorhombic crystal system
Lattice point group

In crystallography, the orthorhombic crystal system is one of the 7 crystal systems. Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base (a by b) and height (c), such that a, b, and c are distinct. All three bases intersect at 90° angles, so the three lattice vectors remain mutually orthogonal.

We don't have any images related to Orthorhombic crystal system yet.
We don't have any YouTube videos related to Orthorhombic crystal system yet.
We don't have any PDF documents related to Orthorhombic crystal system yet.
We don't have any Books related to Orthorhombic crystal system yet.
We don't have any archived web articles related to Orthorhombic crystal system yet.

Bravais lattices

Further information: Bravais lattice

There are four orthorhombic Bravais lattices: primitive orthorhombic, base-centered orthorhombic, body-centered orthorhombic, and face-centered orthorhombic.

Bravais latticePrimitiveorthorhombicBase-centeredorthorhombicBody-centeredorthorhombicFace-centeredorthorhombic
Pearson symboloPoSoIoF
Unit cell

For the base-centered orthorhombic lattice, the primitive cell has the shape of a right rhombic prism;1 it can be constructed because the two-dimensional centered rectangular base layer can also be described with primitive rhombic axes. Note that the length a {\displaystyle a} of the primitive cell below equals 1 2 a 2 + b 2 {\displaystyle {\frac {1}{2}}{\sqrt {a^{2}+b^{2}}}} of the conventional cell above.

Right rhombic prism primitive cellPrimitive cell of the base-centered orthorhombic latticeRelationship between base layers of primitive and conventional cells

Crystal classes

Further information: Crystallographic point group

The orthorhombic crystal system class names, examples, Schönflies notation, Hermann-Mauguin notation, point groups, International Tables for Crystallography space group number,2 orbifold notation, type, and space groups are listed in the table below.

Point groupTypeExampleSpace groups
Name3Schön.IntlOrb.Cox. PrimitiveBase-centeredFace-centeredBody-centered
16–24Rhombic disphenoidalD2 (V)222222[2,2]+EnantiomorphicEpsomite

Boron(gamma form)

P222, P2221, P21212, P212121C2221, C222F222I222, I212121
25–46Rhombic pyramidalC2vmm2*22[2]PolarHemimorphite, bertranditePmm2, Pmc21, Pcc2, Pma2, Pca21, Pnc2, Pmn21, Pba2, Pna21, Pnn2Cmm2, Cmc21, Ccc2Amm2, Aem2, Ama2, Aea2Fmm2, Fdd2Imm2, Iba2, Ima2
47–74Rhombic dipyramidalD2h (Vh)mmm*222[2,2]CentrosymmetricOlivine, aragonite, marcasitePmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, PnmaCmcm, Cmce, Cmmm, Cccm, Cmme, CcceFmmm, FdddImmm, Ibam, Ibca, Imma

In two dimensions

Main article: Rectangular lattice

In two dimensions there are two orthorhombic Bravais lattices: primitive rectangular and centered rectangular.

Bravais latticeRectangularCentered rectangular
Pearson symbolopoc
Unit cell

See also

Further reading

References

  1. See Hahn (2002), p. 746, row oC, column Primitive, where the cell parameters are given as a1 = a2, α = β = 90° - Hahn, Theo, ed. (2002). International Tables for Crystallography, Volume A: Space Group Symmetry. International Tables for Crystallography. Vol. A (5th ed.). Berlin, New York: Springer-Verlag. doi:10.1107/97809553602060000100. ISBN 978-0-7923-6590-7. http://it.iucr.org/A/

  2. Prince, E., ed. (2006). International Tables for Crystallography. International Union of Crystallography. doi:10.1107/97809553602060000001. ISBN 978-1-4020-4969-9. S2CID 146060934. 978-1-4020-4969-9

  3. "The 32 crystal classes". Retrieved 2018-06-19. https://www.tulane.edu/~sanelson/eens211/32crystalclass.htm