Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Meningitis
Inflammation of the membranes around the brain and spinal cord

Meningitis is an acute or chronic inflammation of the meninges, the membranes surrounding the brain and spinal cord, causing symptoms like fever, headache, and neck stiffness. It may be caused by infections from viruses, bacteria, or other organisms, or by non-infectious factors like cancer or medications. Meningitis is a medical emergency requiring prompt diagnosis via lumbar puncture and treatment with antibiotics or antiviral drugs. Vaccines such as the meningococcal vaccine can help prevent the disease. Without timely care, meningitis may cause serious complications including deafness and cognitive deficits.

Related Image Collections Add Image
We don't have any YouTube videos related to Meningitis yet.
We don't have any PDF documents related to Meningitis yet.
We don't have any Books related to Meningitis yet.
We don't have any archived web articles related to Meningitis yet.

Signs and symptoms

Clinical features

In adults, the most common symptom of meningitis is a severe headache, occurring in almost 90% of cases of bacterial meningitis, followed by neck stiffness (the inability to flex the neck forward passively due to increased neck muscle tone and stiffness).27 The classic triad of diagnostic signs consists of neck stiffness, sudden high fever, and altered mental status; however, all three features are present in only 44–46% of bacterial meningitis cases.2829 If none of the three signs are present, acute meningitis is extremely unlikely.30 Other signs commonly associated with meningitis include photophobia (intolerance to bright light) and phonophobia (intolerance to loud noises). Small children often do not exhibit the aforementioned symptoms, and may only be irritable and look unwell.31 The fontanelle (the soft spot on the top of a baby's head) can bulge in infants aged up to 6 months. Other features that distinguish meningitis from less severe illnesses in young children are leg pain, cold extremities, and an abnormal skin color.3233

Neck stiffness occurs in 70% of bacterial meningitis in adults.34 Other signs include the presence of positive Kernig's sign or Brudziński sign. Kernig's sign is assessed with the person lying supine, with the hip and knee flexed to 90 degrees. In a person with a positive Kernig's sign, pain limits passive extension of the knee. A positive Brudzinski's sign occurs when flexion of the neck causes involuntary flexion of the knee and hip. Although Kernig's sign and Brudzinski's sign are both commonly used to screen for meningitis, the sensitivity of these tests is limited.3536 They do, however, have very good specificity for meningitis: the signs rarely occur in other diseases.37 Another test, known as the "jolt accentuation maneuver" (aka the "jolt test") helps determine whether meningitis is present in those reporting fever and headache. A person is asked to rapidly rotate the head horizontally; if this does not make the headache worse, meningitis is unlikely.38

Other problems can produce symptoms similar to those above, but from non-meningitic causes. This is called meningism or pseudomeningitis.39

Meningitis caused by the bacterium Neisseria meningitidis (known as "meningococcal meningitis") can be differentiated from meningitis with other causes by a rapidly spreading petechial rash, which may precede other symptoms.40 The rash consists of numerous small, irregular purple or red spots ("petechiae") on the trunk, lower extremities, mucous membranes, conjunctiva, and (occasionally) the palms of the hands or soles of the feet. The rash is typically non-blanching; the redness does not disappear when pressed with a finger or a glass tumbler. Although this rash is not necessarily present in meningococcal meningitis, it is relatively specific for the disease; it does, however, occasionally occur in meningitis due to other bacteria.41 Other clues on the cause of meningitis may be the skin signs of hand, foot and mouth disease and genital herpes, both of which are associated with various forms of viral meningitis.42

Early complications

Additional problems may occur in the early stage of the illness. These may require specific treatment, and sometimes indicate severe illness or worse prognosis. The infection may trigger sepsis, a systemic inflammatory response syndrome of falling blood pressure, fast heart rate, high or abnormally low temperature, and rapid breathing. Very low blood pressure may occur at an early stage, especially but not exclusively in meningococcal meningitis; this may lead to insufficient blood supply to other organs.43 Disseminated intravascular coagulation, the excessive activation of blood clotting, may obstruct blood flow to organs and paradoxically increase the bleeding risk. Gangrene of limbs can occur in meningococcal disease.44 Severe meningococcal and pneumococcal infections may result in hemorrhaging of the adrenal glands, leading to Waterhouse-Friderichsen syndrome, which is often fatal.45

The brain tissue may swell, pressure inside the skull may increase and the swollen brain may herniate through the skull base. This may be noticed by a decreasing level of consciousness, loss of the pupillary light reflex, and abnormal posturing.46 The inflammation of the brain tissue may also obstruct the normal flow of CSF around the brain (hydrocephalus).47 Seizures may occur for various reasons; in children, seizures are common in the early stages of meningitis (in 30% of cases) and do not necessarily indicate an underlying cause.48 Seizures may result from increased pressure and from areas of inflammation in the brain tissue.49 Focal seizures (seizures that involve one limb or part of the body), persistent seizures, late-onset seizures and those that are difficult to control with medication indicate a poorer long-term outcome.50

Inflammation of the meninges may lead to abnormalities of the cranial nerves, a group of nerves arising from the brain stem that supply the head and neck area and which control, among other functions, eye movement, facial muscles, and hearing.5152 Visual symptoms and hearing loss may persist after an episode of meningitis.53 Inflammation of the brain (encephalitis) or its blood vessels (cerebral vasculitis), as well as the formation of blood clots in the veins (cerebral venous thrombosis), may all lead to weakness, loss of sensation, or abnormal movement or function of the part of the body supplied by the affected area of the brain.5455

Causes

Meningitis is typically caused by an infection. Most infections are due to viruses, and others due to bacteria, fungi, and parasites.56 Mostly the parasites are parasitic worms,57 but can also rarely include parasitic amoebae.58 Meningitis may also result from various non-infectious causes.59 The term aseptic meningitis refers to cases of meningitis in which no bacterial infection can be demonstrated. This type of meningitis is usually caused by viruses, but it may be due to bacterial infection that has already been partially treated, when bacteria disappear from the meninges, or when pathogens infect a space adjacent to the meninges (such as sinusitis). Endocarditis (an infection of the heart valves which spreads small clusters of bacteria through the bloodstream) may cause aseptic meningitis. Aseptic meningitis may also result from infection with spirochetes, a group of bacteria that includes Treponema pallidum (the cause of syphilis) and Borrelia burgdorferi (known for causing Lyme disease), and may also result from cerebral malaria (malaria infecting the brain).60

Bacterial

See also: Neonatal meningitis

The types of bacteria that cause bacterial meningitis vary according to the infected individual's age group.

A head injury potentially allows nasal cavity bacteria to enter the meningeal space. Similarly, devices in the brain and meninges, such as cerebral shunts, extraventricular drains or Ommaya reservoirs, carry an increased risk of meningitis. In these cases, people are more likely to be infected with Staphylococci, Pseudomonas, and other Gram-negative bacteria.69 These pathogens are also associated with meningitis in people with an impaired immune system.70 An infection in the head and neck area, such as otitis media or mastoiditis, can lead to meningitis in a small proportion of people.71 Recipients of cochlear implants for hearing loss are more at risk for pneumococcal meningitis.72 In rare cases, Enterococcus spp. can be responsible for meningitis, both community and hospital-acquired, usually as a secondary result of trauma or surgery, or due to intestinal diseases (e.g., strongyloidiasis).73

Tuberculous meningitis, which is meningitis caused by Mycobacterium tuberculosis, is more common in people from countries in which tuberculosis is endemic, but is also encountered in people with immune problems, such as AIDS.74

Recurrent bacterial meningitis may be caused by persisting anatomical defects, either congenital or acquired, or by disorders of the immune system.75 Anatomical defects allow continuity between the external environment and the nervous system. The most common cause of recurrent meningitis is a skull fracture,76 particularly fractures that affect the base of the skull or extend towards the sinuses and petrous pyramids.77 Approximately 59% of recurrent meningitis cases are due to such anatomical abnormalities, 36% are due to immune deficiencies (such as complement deficiency, which predisposes especially to recurrent meningococcal meningitis), and 5% are due to ongoing infections in areas adjacent to the meninges.78

Viral

Main article: Viral meningitis

Viruses that cause meningitis include enteroviruses, herpes simplex virus (generally type 2, which produces most genital sores; less commonly type 1), varicella zoster virus (known for causing chickenpox and shingles), mumps virus, HIV, LCMV,79 Arboviruses (acquired from a mosquito or other insect), and the influenza virus.80 Mollaret's meningitis is a chronic recurrent form of herpes meningitis; it is thought to be caused by herpes simplex virus type 2.81

Fungal

Main article: Fungal meningitis

There are a number of risk factors for fungal meningitis, including the use of immunosuppressants (such as after organ transplantation), HIV/AIDS,82 and the loss of immunity associated with aging.83 It is uncommon in those with a normal immune system84 but has occurred with medication contamination.85 Symptom onset is typically more gradual, with headaches and fever being present for at least a couple of weeks before diagnosis.86 The most common fungal meningitis is cryptococcal meningitis due to Cryptococcus neoformans.87 In Africa, cryptococcal meningitis is now the most common cause of meningitis in multiple studies,8889 and it accounts for 20–25% of AIDS-related deaths in Africa.90 Other less common pathogenic fungi which can cause meningitis include: Coccidioides immitis, Histoplasma capsulatum, Blastomyces dermatitidis, and Candida species.91

Parasitic

A parasitic worm is often assumed to be the cause of eosinophilic meningitis when there is a predominance of eosinophils (a type of white blood cell) found in the cerebrospinal fluid. The most common parasites implicated are Angiostrongylus cantonensis, Gnathostoma spinigerum, Schistosoma, as well as the conditions cysticercosis, toxocariasis, baylisascariasis, paragonimiasis, and a number of rarer infections and noninfective conditions.92

Rarely, free-living parasitic amoebae can cause naegleriasis, also called amebic meningitis,93 a type of meningoencephalitis where not only the meninges are affected but also the brain tissue.

Non-infectious

Meningitis may occur as the result of several non-infectious causes: spread of cancer to the meninges (malignant or neoplastic meningitis)94 and certain drugs (mainly non-steroidal anti-inflammatory drugs, antibiotics and intravenous immunoglobulins).95 It may also be caused by several inflammatory conditions, such as sarcoidosis (which is then called neurosarcoidosis), connective tissue disorders such as systemic lupus erythematosus, and certain forms of vasculitis (inflammatory conditions of the blood vessel wall), such as Behçet's disease.96 Epidermoid cysts and dermoid cysts may cause meningitis by releasing irritant matter into the subarachnoid space.9798 Rarely, migraine may cause meningitis, but this diagnosis is usually only made when other causes have been eliminated.99

Mechanism

The meninges comprise three membranes that, together with the cerebrospinal fluid, enclose and protect the brain and spinal cord (the central nervous system). The pia mater is a delicate impermeable membrane that firmly adheres to the surface of the brain, following all the minor contours. The arachnoid mater (so named because of its spider-web-like appearance) is a loosely fitting sac on top of the pia mater. The subarachnoid space separates the arachnoid and pia mater membranes and is filled with cerebrospinal fluid. The outermost membrane, the dura mater, is a thick durable membrane, which is attached to both the arachnoid membrane and the skull.

In bacterial meningitis, bacteria reach the meninges by one of two main routes: through the bloodstream (hematogenous spread) or through direct contact between the meninges and either the nasal cavity or the skin. In most cases, meningitis follows invasion of the bloodstream by organisms that live on mucosal surfaces such as the nasal cavity. This is often in turn preceded by viral infections, which break down the normal barrier provided by the mucosal surfaces. Once bacteria have entered the bloodstream, they enter the subarachnoid space in places where the blood–brain barrier is vulnerable – such as the choroid plexus. Meningitis occurs in 25% of newborns with bloodstream infections due to group B streptococci; this phenomenon is much less common in adults.100 Direct contamination of the cerebrospinal fluid may arise from indwelling devices, skull fractures, or infections of the nasopharynx or the nasal sinuses that have formed a tract with the subarachnoid space (see above); occasionally, congenital defects of the dura mater can be identified.101

The large-scale inflammation that occurs in the subarachnoid space during meningitis is not a direct result of bacterial infection but can rather largely be attributed to the response of the immune system to the entry of bacteria into the central nervous system. When components of the bacterial cell membrane are identified by the immune cells of the brain (astrocytes and microglia), they respond by releasing large amounts of cytokines, hormone-like mediators that recruit other immune cells and stimulate other tissues to participate in an immune response. The blood–brain barrier becomes more permeable, leading to "vasogenic" cerebral edema (swelling of the brain due to fluid leakage from blood vessels). Large numbers of white blood cells enter the CSF, causing inflammation of the meninges and leading to "interstitial" edema (swelling due to fluid between the cells). In addition, the walls of the blood vessels themselves become inflamed (cerebral vasculitis), which leads to decreased blood flow and a third type of edema, "cytotoxic" edema. The three forms of cerebral edema all lead to increased intracranial pressure; together with the lowered blood pressure often encountered in sepsis, this means that it is harder for blood to enter the brain; consequently brain cells are deprived of oxygen and undergo apoptosis (programmed cell death).102

Administration of antibiotics may initially worsen the process outlined above, by increasing the amount of bacterial cell membrane products released through the destruction of bacteria. Particular treatments, such as the use of corticosteroids, are aimed at dampening the immune system's response to this phenomenon.103104

Diagnosis

CSF findings in different forms of meningitis105
Type of meningitis  Glucose  ProteinCells
Acute bacteriallowhighPMNs,often > 300/mm3
Acute viralnormalnormal or highmononuclear,< 300/mm3
Tuberculouslowhighmononuclear andPMNs, < 300/mm3
Fungallowhigh< 300/mm3
Malignantlowhighusuallymononuclear

Diagnosing meningitis as promptly as possible can improve outcomes.106 There are no specific signs or symptoms that can indicate meningitis, and a lumbar puncture (spinal tap) to examine the cerebrospinal fluid is recommended for diagnosis.107 Lumbar puncture is contraindicated if there is a mass in the brain (tumor or abscess) or the intracranial pressure (ICP) is elevated, as it may lead to brain herniation. If someone is at risk for either a mass or raised ICP (recent head injury, a known immune system problem, localizing neurological signs, or evidence on examination of a raised ICP), a CT or MRI scan is recommended prior to the lumbar puncture.108109110 This applies in 45% of all adult cases.111

There are no physical tests that can rule out or determine if a person has meningitis.112 The jolt accentuation test is not specific or sensitive enough to completely rule out meningitis.113

If someone is suspected of having meningitis, blood tests are performed for markers of inflammation (e.g. C-reactive protein, complete blood count), as well as blood cultures.114115 If a CT or MRI is required before LP, or if LP proves difficult, professional guidelines suggest that antibiotics should be administered first to prevent delay in treatment,116 especially if this may be longer than 30 minutes.117118 Often, CT or MRI scans are performed at a later stage to assess for complications of meningitis.119

In severe forms of meningitis, monitoring of blood electrolytes may be important; for example, hyponatremia is common in bacterial meningitis.120 The cause of hyponatremia, however, is controversial and may include dehydration, the inappropriate secretion of the antidiuretic hormone (SIADH), or overly aggressive intravenous fluid administration.121122

Lumbar puncture

A lumbar puncture is done by positioning the person, usually lying on the side, applying local anesthetic, and inserting a needle into the dural sac (a sac around the spinal cord) to collect cerebrospinal fluid (CSF). When this has been achieved, the "opening pressure" of the CSF is measured using a manometer. The pressure is normally between 6 and 18 cm water (cmH2O);123 in bacterial meningitis the pressure is usually elevated.124125 In cryptococcal meningitis, intracranial pressure is markedly elevated.126 The initial appearance of the fluid may prove an indication of the nature of the infection: cloudy CSF indicates higher levels of protein, white and red blood cells and/or bacteria, and therefore may suggest bacterial meningitis.127

The CSF sample is examined for presence and types of white blood cells, red blood cells, protein content and glucose level.128 Gram staining of the sample may demonstrate bacteria in bacterial meningitis, but absence of bacteria does not exclude bacterial meningitis as they are only seen in 60% of cases; this figure is reduced by a further 20% if antibiotics were administered before the sample was taken. Gram staining is also less reliable in particular infections such as listeriosis. Microbiological culture of the sample is more sensitive (it identifies the organism in 70–85% of cases) but results can take up to 48 hours to become available.129 The type of white blood cell predominantly present (see table) indicates whether meningitis is bacterial (usually neutrophil-predominant) or viral (usually lymphocyte-predominant),130 although at the beginning of the disease this is not always a reliable indicator. Less commonly, eosinophils predominate, suggesting parasitic or fungal etiology, among others.131

The concentration of glucose in CSF is normally above 40% of that in blood. In bacterial meningitis it is typically lower; the CSF glucose level is therefore divided by the blood glucose (CSF glucose to serum glucose ratio). A ratio ≤0.4 is indicative of bacterial meningitis;132 in the newborn, glucose levels in CSF are normally higher, and a ratio below 0.6 (60%) is therefore considered abnormal.133 High levels of lactate in CSF indicate a higher likelihood of bacterial meningitis, as does a higher white blood cell count.134 If lactate levels are less than 35 mg/dl and the person has not previously received antibiotics then this may rule out bacterial meningitis.135

Various other specialized tests may be used to distinguish between different types of meningitis. A latex agglutination test may be positive in meningitis caused by Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Escherichia coli and group B streptococci; its routine use is not encouraged as it rarely leads to changes in treatment, but it may be used if other tests are not diagnostic. Similarly, the limulus lysate test may be positive in meningitis caused by Gram-negative bacteria, but it is of limited use unless other tests have been unhelpful.136 Polymerase chain reaction (PCR) is a technique used to amplify small traces of bacterial DNA in order to detect the presence of bacterial or viral DNA in cerebrospinal fluid; it is a highly sensitive and specific test since only trace amounts of the infecting agent's DNA is required. It may identify bacteria in bacterial meningitis and may assist in distinguishing the various causes of viral meningitis (enterovirus, herpes simplex virus 2 and mumps in those not vaccinated for this).137 Serology (identification of antibodies to viruses) may be useful in viral meningitis.138 If tuberculous meningitis is suspected, the sample is processed for Ziehl–Neelsen stain, which has a low sensitivity, and tuberculosis culture, which takes a long time to process; PCR is being used increasingly.139 Diagnosis of cryptococcal meningitis can be made at low cost using an India ink stain of the CSF; however, testing for cryptococcal antigen in blood or CSF is more sensitive.140141

A diagnostic and therapeutic difficulty is "partially treated meningitis", where there are meningitis symptoms after receiving antibiotics (such as for presumptive sinusitis). When this happens, CSF findings may resemble those of viral meningitis, but antibiotic treatment may need to be continued until there is definitive positive evidence of a viral cause (e.g. a positive enterovirus PCR).142

Postmortem

Meningitis can be diagnosed after death has occurred. The findings from a post mortem are usually a widespread inflammation of the pia mater and arachnoid layers of the meninges. Neutrophil granulocytes tend to have migrated to the cerebrospinal fluid and the base of the brain, along with cranial nerves and the spinal cord, may be surrounded with pus – as may the meningeal vessels.143

Prevention

For some causes of meningitis, protection can be provided in the long term through vaccination, or in the short term with antibiotics. Some behavioral measures may also be effective.

Behavioral

Bacterial and viral meningitis are contagious, but neither is as contagious as the common cold or flu.144 Both can be transmitted through droplets of respiratory secretions during close contact such as kissing, sneezing or coughing on someone,145 but bacterial meningitis cannot be spread by only breathing the air where a person with meningitis has been. Viral meningitis is typically caused by enteroviruses, and is most commonly spread through fecal contamination.146 The risk of infection can be decreased by changing the behavior that led to transmission.

Vaccination

Since the 1980s, many countries have included immunization against Haemophilus influenzae type B in their routine childhood vaccination schemes. This has practically eliminated this pathogen as a cause of meningitis in young children in those countries. In the countries in which the disease burden is highest, however, the vaccine is still too expensive.147148 Similarly, immunization against mumps has led to a sharp fall in the number of cases of mumps meningitis, which prior to vaccination occurred in 15% of all cases of mumps.149

Meningococcus vaccines exist against groups A, B, C, W135 and Y.150151152 In countries where the vaccine for meningococcus group C was introduced, cases caused by this pathogen have decreased substantially.153 A quadrivalent vaccine now exists, which combines four vaccines with the exception of B; immunization with this ACW135Y vaccine is now a visa requirement for taking part in Hajj.154 Development of a vaccine against group B meningococci has proved much more difficult, as its surface proteins (which would normally be used to make a vaccine) only elicit a weak response from the immune system, or cross-react with normal human proteins.155156 Still, some countries (New Zealand, Cuba, Norway and Chile) have developed vaccines against local strains of group B meningococci; some have shown good results and are used in local immunization schedules.157 Two new vaccines, both approved in 2014, are effective against a wider range of group B meningococci strains.158159 In Africa, until recently, the approach for prevention and control of meningococcal epidemics was based on early detection of the disease and emergency reactive mass vaccination of the population at risk with bivalent A/C or trivalent A/C/W135 polysaccharide vaccines,160 though the introduction of MenAfriVac (meningococcus group A vaccine) has demonstrated effectiveness in young people and has been described as a model for product development partnerships in resource-limited settings.161162

Routine vaccination against Streptococcus pneumoniae with the pneumococcal conjugate vaccine (PCV), which is active against seven common serotypes of this pathogen, significantly reduces the incidence of pneumococcal meningitis.163164 The pneumococcal polysaccharide vaccine, which covers 23 strains, is only administered to certain groups (e.g. those who have had a splenectomy, the surgical removal of the spleen); it does not elicit a significant immune response in all recipients, e.g. small children.165 Childhood vaccination with Bacillus Calmette-Guérin has been reported to significantly reduce the rate of tuberculous meningitis, but its waning effectiveness in adulthood has prompted a search for a better vaccine.166

Antibiotics

Short-term antibiotic prophylaxis is another method of prevention, particularly of meningococcal meningitis. In cases of meningococcal meningitis, preventative treatment in close contacts with antibiotics (e.g. rifampicin, ciprofloxacin or ceftriaxone) can reduce their risk of contracting the condition, but does not protect against future infections.167168 Resistance to rifampicin has been noted to increase after use, which has caused some to recommend considering other agents.169 While antibiotics are frequently used in an attempt to prevent meningitis in those with a basilar skull fracture there is not enough evidence to determine whether this is beneficial or harmful.170 This applies to those with or without a CSF leak.171

Management

Meningitis is potentially life-threatening and has a high mortality rate if untreated;172 delay in treatment has been associated with a poorer outcome.173 Thus, treatment with wide-spectrum antibiotics should not be delayed while confirmatory tests are being conducted.174 If meningococcal disease is suspected in primary care, guidelines recommend that benzylpenicillin be administered before transfer to hospital.175 Intravenous fluids should be administered if hypotension (low blood pressure) or shock are present.176 It is not clear whether intravenous fluid should be given routinely or whether this should be restricted.177 Given that meningitis can cause a number of early severe complications, regular medical review is recommended to identify these complications early178 and to admit the person to an intensive care unit, if deemed necessary.179

Mechanical ventilation may be needed if the level of consciousness is very low, or if there is evidence of respiratory failure. If there are signs of raised intracranial pressure, measures to monitor the pressure may be taken; this would allow the optimization of the cerebral perfusion pressure and various treatments to decrease the intracranial pressure with medication (e.g. mannitol).180 Seizures are treated with anticonvulsants.181 Hydrocephalus (obstructed flow of CSF) may require insertion of a temporary or long-term drainage device, such as a cerebral shunt.182 The osmotic therapy, glycerol, has an unclear effect on mortality but may decrease hearing problems.183

Bacterial meningitis

Antibiotics

Empiric antibiotics (treatment without exact diagnosis) should be started immediately, even before the results of the lumbar puncture and CSF analysis are known. The choice of initial treatment depends largely on the kind of bacteria that cause meningitis in a particular place and population. For instance, in the United Kingdom, empirical treatment consists of a third-generation cefalosporin such as cefotaxime or ceftriaxone.184185 In the US, where resistance to cefalosporins is increasingly found in streptococci, addition of vancomycin to the initial treatment is recommended.186187188 Chloramphenicol, either alone or in combination with ampicillin, however, appears to work equally well.189

Empirical therapy may be chosen on the basis of the person's age, whether the infection was preceded by a head injury, whether the person has undergone recent neurosurgery and whether or not a cerebral shunt is present.190 In young children and those over 50 years of age, as well as those who are immunocompromised, the addition of ampicillin is recommended to cover Listeria monocytogenes.191192 Once the Gram stain results become available, and the broad type of bacterial cause is known, it may be possible to change the antibiotics to those likely to deal with the presumed group of pathogens.193 The results of the CSF culture generally take longer to become available (24–48 hours). Once they do, empiric therapy may be switched to specific antibiotic therapy targeted to the specific causative organism and its sensitivities to antibiotics.194 For an antibiotic to be effective in meningitis it must not only be active against the pathogenic bacterium but also reach the meninges in adequate quantities; some antibiotics have inadequate penetrance and therefore have little use in meningitis. Most of the antibiotics used in meningitis have not been tested directly on people with meningitis in clinical trials. Rather, the relevant knowledge has mostly derived from laboratory studies in rabbits.195 Tuberculous meningitis requires prolonged treatment with antibiotics. While tuberculosis of the lungs is typically treated for six months, those with tuberculous meningitis are typically treated for a year or longer.196

Fluid therapy

Fluid given intravenously are an essential part of treatment of bacterial meningitis. There is no difference in terms of mortality or acute severe neurological complications in children given a maintenance regimen over restricted-fluid regimen, but evidence is in favor of the maintenance regimen in terms of emergence of chronic severe neurological complications.197

Steroids

Additional treatment with corticosteroids (usually dexamethasone) has shown some benefits, such as a reduction of hearing loss, and better short term neurological outcomes198 in adolescents and adults from high-income countries with low rates of HIV.199 Some research has found reduced rates of death200 while other research has not.201 They also appear to be beneficial in those with tuberculosis meningitis, at least in those who are HIV negative.202

Professional guidelines therefore recommend the commencement of dexamethasone or a similar corticosteroid just before the first dose of antibiotics is given, and continued for four days.203204 Given that most of the benefit of the treatment is confined to those with pneumococcal meningitis, some guidelines suggest that dexamethasone be discontinued if another cause for meningitis is identified.205206 The likely mechanism is suppression of overactive inflammation.207

Additional treatment with corticosteroids have a different role in children than in adults. Though the benefit of corticosteroids has been demonstrated in adults as well as in children from high-income countries, their use in children from low-income countries is not supported by the evidence; the reason for this discrepancy is not clear.208 Even in high-income countries, the benefit of corticosteroids is only seen when they are given prior to the first dose of antibiotics, and is greatest in cases of H. influenzae meningitis,209210 the incidence of which has decreased dramatically since the introduction of the Hib vaccine. Thus, corticosteroids are recommended in the treatment of pediatric meningitis if the cause is H. influenzae, and only if given prior to the first dose of antibiotics; other uses are controversial.211

Adjuvant therapies

In addition to the primary therapy of antibiotics and corticosteroids, other adjuvant therapies are under development or are sometimes used to try and improve survival from bacterial meningitis and reduce the risk of neurological problems. Examples of adjuvant therapies that have been trialed include acetaminophen, immunoglobulin therapy, heparin, pentoxifyline, and a mononucleotide mixture with succinic acid.212 It is not clear if any of these therapies are helpful or worsen outcomes in people with acute bacterial meningitis.213

Viral meningitis

Viral meningitis typically only requires supportive therapy; most viruses responsible for causing meningitis are not amenable to specific treatment. Viral meningitis tends to run a more benign course than bacterial meningitis. Herpes simplex virus and varicella zoster virus may respond to treatment with antiviral drugs such as aciclovir, but there are no clinical trials that have specifically addressed whether this treatment is effective.214 Mild cases of viral meningitis can be treated at home with conservative measures such as fluid, bedrest, and analgesics.215

Fungal meningitis

Fungal meningitis, such as cryptococcal meningitis, is treated with long courses of high dose antifungals, such as amphotericin B and flucytosine.216217 Raised intracranial pressure is common in fungal meningitis, and frequent (ideally daily) lumbar punctures to relieve the pressure are recommended,218 or alternatively a lumbar drain.219

Prognosis

Untreated, bacterial meningitis is almost always fatal. According to the WHO, bacterial meningitis has an overall mortality rate of 16.7% (with treatment).220 Viral meningitis, in contrast, tends to resolve spontaneously and is rarely fatal. With treatment, mortality (risk of death) from bacterial meningitis depends on the age of the person and the underlying cause. Of newborns, 20–30% may die from an episode of bacterial meningitis. This risk is much lower in older children, whose mortality is about 2%, but rises again to about 19–37% in adults.221222

Risk of death is predicted by various factors apart from age, such as the pathogen and the time it takes for the pathogen to be cleared from the cerebrospinal fluid,223 the severity of the generalized illness, a decreased level of consciousness or an abnormally low count of white blood cells in the CSF.224 Meningitis caused by H. influenzae and meningococci has a better prognosis than cases caused by group B streptococci, coliforms and S. pneumoniae.225 In adults, too, meningococcal meningitis has a lower mortality (3–7%) than pneumococcal disease.226

In children there are several potential disabilities which may result from damage to the nervous system, including sensorineural hearing loss, epilepsy, learning and behavioral difficulties, as well as decreased intelligence.227 These occur in about 15% of survivors.228 Some of the hearing loss may be reversible.229 In adults, 66% of all cases emerge without disability. The main problems are deafness (in 14%) and cognitive impairment (in 10%).230

Tuberculous meningitis in children continues to be associated with a significant risk of death even with treatment (19%), and a significant proportion of the surviving children have ongoing neurological problems. Just over a third of all cases survives with no problems.231

Epidemiology

Although meningitis is a notifiable disease in many countries, the exact incidence rate is unknown.232 In 2013 meningitis resulted in 303,000 deaths – down from 464,000 deaths in 1990.233 In 2010 it was estimated that meningitis resulted in 420,000 deaths,234 excluding cryptococcal meningitis.235

Bacterial meningitis occurs in about 3 people per 100,000 annually in Western countries. Population-wide studies have shown that viral meningitis is more common, at 10.9 per 100,000, and occurs more often in the summer. In Brazil, the rate of bacterial meningitis is higher, at 45.8 per 100,000 annually.236 Sub-Saharan Africa has been plagued by large epidemics of meningococcal meningitis for over a century,237 leading to it being labeled the "meningitis belt". Epidemics typically occur in the dry season (December to June), and an epidemic wave can last two to three years, dying out during the intervening rainy seasons.238 Attack rates of 100–800 cases per 100,000 are encountered in this area,239 which is poorly served by medical care. These cases are predominantly caused by meningococci.240 The largest epidemic ever recorded in history swept across the entire region in 1996–1997, causing over 250,000 cases and 25,000 deaths.241

Meningococcal disease occurs in epidemics in areas where many people live together for the first time, such as army barracks during mobilization, university and college campuses242 and the annual Hajj pilgrimage.243 Although the pattern of epidemic cycles in Africa is not well understood, several factors have been associated with the development of epidemics in the meningitis belt. They include: medical conditions (immunological susceptibility of the population), demographic conditions (travel and large population displacements), socioeconomic conditions (overcrowding and poor living conditions), climatic conditions (drought and dust storms), and concurrent infections (acute respiratory infections).244

There are significant differences in the local distribution of causes for bacterial meningitis. For instance, while N. meningitides groups B and C cause most disease episodes in Europe, group A is found in Asia and continues to predominate in Africa, where it causes most of the major epidemics in the meningitis belt, accounting for about 80% to 85% of documented meningococcal meningitis cases.245

History

Some suggest that Hippocrates may have realized the existence of meningitis,246 and it seems that meningism was known to pre-Renaissance physicians such as Avicenna.247 The description of tuberculous meningitis, then called "dropsy in the brain", is often attributed to Edinburgh physician Sir Robert Whytt in a posthumous report that appeared in 1768, although the link with tuberculosis and its pathogen was not made until the next century.248249

It appears that epidemic meningitis is a relatively recent phenomenon.250 The first recorded major outbreak occurred in Geneva in 1805.251252 Several other epidemics in Europe and the United States were described shortly afterward, and the first report of an epidemic in Africa appeared in 1840. African epidemics became much more common in the 20th century, starting with a major epidemic sweeping Nigeria and Ghana in 1905–1908.253

The first report of bacterial infection underlying meningitis was by the Austrian bacteriologist Anton Weichselbaum, who in 1887 described the meningococcus.254 Mortality from meningitis was very high (over 90%) in early reports. In 1906, antiserum was produced in horses; this was developed further by the American scientist Simon Flexner and markedly decreased mortality from meningococcal disease.255256 In 1944, penicillin was first reported to be effective in meningitis.257 The introduction in the late 20th century of Haemophilus vaccines led to a marked fall in cases of meningitis associated with this pathogen,258 and in 2002, evidence emerged that treatment with steroids could improve the prognosis of bacterial meningitis.259260261

See also

Wikimedia Commons has media related to Meningitis.

References

  1. Putz K, Hayani K, Zar FA (September 2013). "Meningitis". Primary Care: Clinics in Office Practice. 40 (3): 707–726. doi:10.1016/j.pop.2013.06.001. PMID 23958365. /wiki/Doi_(identifier)

  2. "Bacterial Meningitis". U.S. Centers for Disease Control and Prevention (CDC). 1 April 2014. Archived from the original on 5 March 2016. Retrieved 5 March 2016. https://www.cdc.gov/meningitis/bacterial.html

  3. "Bacterial Meningitis". U.S. Centers for Disease Control and Prevention (CDC). 1 April 2014. Archived from the original on 5 March 2016. Retrieved 5 March 2016. https://www.cdc.gov/meningitis/bacterial.html

  4. "Bacterial Meningitis". U.S. Centers for Disease Control and Prevention (CDC). 1 April 2014. Archived from the original on 5 March 2016. Retrieved 5 March 2016. https://www.cdc.gov/meningitis/bacterial.html

  5. "NHS medical conditions meningitis". National Health Service (NHS). 20 October 2017. Archived from the original on 26 April 2022. Retrieved 26 April 2022. https://www.nhs.uk/conditions/meningitis/

  6. "Meningitis". World Health Organization (WHO). Archived from the original on 10 January 2022. Retrieved 30 May 2023. https://www.who.int/news-room/fact-sheets/detail/meningitis

  7. Ginsberg L (March 2004). "Difficult and recurrent meningitis". Journal of Neurology, Neurosurgery, and Psychiatry. 75 Suppl 1 (90001): i16–21. doi:10.1136/jnnp.2003.034272. PMC 1765649. PMID 14978146. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1765649

  8. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  9. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  10. "Bacterial Meningitis". U.S. Centers for Disease Control and Prevention (CDC). 1 April 2014. Archived from the original on 5 March 2016. Retrieved 5 March 2016. https://www.cdc.gov/meningitis/bacterial.html

  11. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  12. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  13. "Bacterial Meningitis". U.S. Centers for Disease Control and Prevention (CDC). 1 April 2014. Archived from the original on 5 March 2016. Retrieved 5 March 2016. https://www.cdc.gov/meningitis/bacterial.html

  14. "Bacterial Meningitis". U.S. Centers for Disease Control and Prevention (CDC). 1 April 2014. Archived from the original on 5 March 2016. Retrieved 5 March 2016. https://www.cdc.gov/meningitis/bacterial.html

  15. "Viral Meningitis". U.S. Centers for Disease Control and Prevention (CDC). 26 November 2014. Archived from the original on 4 March 2016. Retrieved 5 March 2016. https://www.cdc.gov/meningitis/viral.html

  16. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  17. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  18. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  19. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  20. "Global Disease Burden 2019". Archived from the original on 19 April 2022. Retrieved 26 April 2022. https://ghdx.healthdata.org/gbd-2019

  21. "Global Disease Burden 2019". Archived from the original on 19 April 2022. Retrieved 26 April 2022. https://ghdx.healthdata.org/gbd-2019

  22. "Bacterial Meningitis". U.S. Centers for Disease Control and Prevention (CDC). 1 April 2014. Archived from the original on 5 March 2016. Retrieved 5 March 2016. https://www.cdc.gov/meningitis/bacterial.html

  23. "Meningococcal meningitis Fact sheet N°141". World Health Organization (WHO). November 2015. Archived from the original on 5 March 2016. Retrieved 5 March 2016. https://www.who.int/mediacentre/factsheets/fs141/en/

  24. "Meningococcal meningitis Fact sheet N°141". World Health Organization (WHO). November 2015. Archived from the original on 5 March 2016. Retrieved 5 March 2016. https://www.who.int/mediacentre/factsheets/fs141/en/

  25. Mosby's pocket dictionary of medicine, nursing & health professions (6th ed.). St. Louis: Mosby/Elsevier. 2010. p. traumatic meningitis. ISBN 978-0-323-06604-4. Archived from the original on 10 September 2017. 978-0-323-06604-4

  26. Liddell HG, Scott R (1940). "μῆνιγξ". A Greek-English Lexicon. Oxford: Clarendon Press. Archived from the original on 8 November 2013. https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dmh%3Dnigc

  27. van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M (October 2004). "Clinical features and prognostic factors in adults with bacterial meningitis" (PDF). The New England Journal of Medicine. 351 (18): 1849–59. doi:10.1056/NEJMoa040845. PMID 15509818. S2CID 22287169. Archived (PDF) from the original on 3 August 2020. Retrieved 30 December 2018. https://pure.uva.nl/ws/files/4089960/45119_204449y.pdf

  28. van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M (October 2004). "Clinical features and prognostic factors in adults with bacterial meningitis" (PDF). The New England Journal of Medicine. 351 (18): 1849–59. doi:10.1056/NEJMoa040845. PMID 15509818. S2CID 22287169. Archived (PDF) from the original on 3 August 2020. Retrieved 30 December 2018. https://pure.uva.nl/ws/files/4089960/45119_204449y.pdf

  29. Attia J, Hatala R, Cook DJ, Wong JG (July 1999). "The rational clinical examination. Does this adult patient have acute meningitis?". JAMA. 282 (2): 175–81. doi:10.1001/jama.282.2.175. PMID 10411200. /wiki/Doi_(identifier)

  30. Attia J, Hatala R, Cook DJ, Wong JG (July 1999). "The rational clinical examination. Does this adult patient have acute meningitis?". JAMA. 282 (2): 175–81. doi:10.1001/jama.282.2.175. PMID 10411200. /wiki/Doi_(identifier)

  31. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  32. Theilen U, Wilson L, Wilson G, Beattie JO, Qureshi S, Simpson D (June 2008). "Management of invasive meningococcal disease in children and young people: summary of SIGN guidelines". BMJ. 336 (7657): 1367–70. doi:10.1136/bmj.a129. PMC 2427067. PMID 18556318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427067

  33. Management of invasive meningococcal disease in children and young people (PDF). Edinburgh: Scottish Intercollegiate Guidelines Network (SIGN). May 2008. ISBN 978-1-905813-31-5. Archived (PDF) from the original on 9 July 2014. 978-1-905813-31-5

  34. Attia J, Hatala R, Cook DJ, Wong JG (July 1999). "The rational clinical examination. Does this adult patient have acute meningitis?". JAMA. 282 (2): 175–81. doi:10.1001/jama.282.2.175. PMID 10411200. /wiki/Doi_(identifier)

  35. Attia J, Hatala R, Cook DJ, Wong JG (July 1999). "The rational clinical examination. Does this adult patient have acute meningitis?". JAMA. 282 (2): 175–81. doi:10.1001/jama.282.2.175. PMID 10411200. /wiki/Doi_(identifier)

  36. Thomas KE, Hasbun R, Jekel J, Quagliarello VJ (July 2002). "The diagnostic accuracy of Kernig's sign, Brudzinski's sign, and nuchal rigidity in adults with suspected meningitis". Clinical Infectious Diseases. 35 (1): 46–52. doi:10.1086/340979. PMID 12060874. S2CID 3196834. https://doi.org/10.1086%2F340979

  37. Attia J, Hatala R, Cook DJ, Wong JG (July 1999). "The rational clinical examination. Does this adult patient have acute meningitis?". JAMA. 282 (2): 175–81. doi:10.1001/jama.282.2.175. PMID 10411200. /wiki/Doi_(identifier)

  38. Attia J, Hatala R, Cook DJ, Wong JG (July 1999). "The rational clinical examination. Does this adult patient have acute meningitis?". JAMA. 282 (2): 175–81. doi:10.1001/jama.282.2.175. PMID 10411200. /wiki/Doi_(identifier)

  39. "Meningitis". World Health Organization (WHO). Archived from the original on 25 April 2022. Retrieved 25 April 2022. https://www.who.int/health-topics/meningitis

  40. Theilen U, Wilson L, Wilson G, Beattie JO, Qureshi S, Simpson D (June 2008). "Management of invasive meningococcal disease in children and young people: summary of SIGN guidelines". BMJ. 336 (7657): 1367–70. doi:10.1136/bmj.a129. PMC 2427067. PMID 18556318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427067

  41. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  42. Logan SA, MacMahon E (January 2008). "Viral meningitis". BMJ. 336 (7634): 36–40. doi:10.1136/bmj.39409.673657.AE. PMC 2174764. PMID 18174598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174764

  43. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  44. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  45. Varon J, Chen K, Sternbach GL (1998). "Rupert Waterhouse and Carl Friderichsen: adrenal apoplexy". The Journal of Emergency Medicine. 16 (4): 643–47. doi:10.1016/S0736-4679(98)00061-4. PMID 9696186. /wiki/Doi_(identifier)

  46. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  47. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  48. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  49. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  50. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  51. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  52. Attia J, Hatala R, Cook DJ, Wong JG (July 1999). "The rational clinical examination. Does this adult patient have acute meningitis?". JAMA. 282 (2): 175–81. doi:10.1001/jama.282.2.175. PMID 10411200. /wiki/Doi_(identifier)

  53. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  54. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  55. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  56. "Meningitis". World Health Organization (WHO). Archived from the original on 10 January 2022. Retrieved 30 May 2023. https://www.who.int/news-room/fact-sheets/detail/meningitis

  57. Ginsberg L (March 2004). "Difficult and recurrent meningitis". Journal of Neurology, Neurosurgery, and Psychiatry. 75 Suppl 1 (90001): i16–21. doi:10.1136/jnnp.2003.034272. PMC 1765649. PMID 14978146. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1765649

  58. "Amebic Meningitis". U.S. Centers for Disease Control and Prevention (CDC). 12 August 2022. Archived from the original on 24 May 2023. Retrieved 31 May 2023. https://www.cdc.gov/meningitis/amebic.html

  59. Ginsberg L (March 2004). "Difficult and recurrent meningitis". Journal of Neurology, Neurosurgery, and Psychiatry. 75 Suppl 1 (90001): i16–21. doi:10.1136/jnnp.2003.034272. PMC 1765649. PMID 14978146. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1765649

  60. Ginsberg L (March 2004). "Difficult and recurrent meningitis". Journal of Neurology, Neurosurgery, and Psychiatry. 75 Suppl 1 (90001): i16–21. doi:10.1136/jnnp.2003.034272. PMC 1765649. PMID 14978146. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1765649

  61. "Bacterial Meningitis". U.S. Centers for Disease Control and Prevention (CDC). 6 August 2019. Archived from the original on 5 March 2016. Retrieved 3 December 2020. https://www.cdc.gov/meningitis/bacterial.html

  62. "Prevent Listeria". U.S. Centers for Disease Control and Prevention (CDC). 17 June 2019. Archived from the original on 7 May 2020. Retrieved 3 December 2020. https://www.cdc.gov/listeria/prevention.html

  63. "Listeria (Listeriosis)". U.S. Centers for Disease Control and Prevention (CDC). 22 October 2015. Archived from the original on 19 December 2015. Retrieved 23 December 2015. https://www.cdc.gov/listeria/index.html

  64. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  65. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  66. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  67. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  68. Hsu HE, Shutt KA, Moore MR, Beall BW, Bennett NM, Craig AS, et al. (January 2009). "Effect of pneumococcal conjugate vaccine on pneumococcal meningitis". The New England Journal of Medicine. 360 (3): 244–56. doi:10.1056/NEJMoa0800836. PMC 4663990. PMID 19144940. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663990

  69. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  70. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  71. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  72. Wei BP, Robins-Browne RM, Shepherd RK, Clark GM, O'Leary SJ (January 2008). "Can we prevent cochlear implant recipients from developing pneumococcal meningitis?". Clinical Infectious Diseases. 46 (1): e1–7. doi:10.1086/524083. PMID 18171202. https://doi.org/10.1086%2F524083

  73. Zeana C, Kubin CJ, Della Latta P, Hammer SM (2001). "Vancomycin-resistant Enterococcus faecium meningitis successfully managed with linezolid: case report and review of the literature". Clin Infect Dis. 33 (4): 477–482. doi:10.1086/321896. PMID 11462183. https://doi.org/10.1086%2F321896

  74. Thwaites G, Chau TT, Mai NT, Drobniewski F, McAdam K, Farrar J (March 2000). "Tuberculous meningitis". Journal of Neurology, Neurosurgery, and Psychiatry. 68 (3): 289–99. doi:10.1136/jnnp.68.3.289. PMC 1736815. PMID 10675209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1736815

  75. Tebruegge M, Curtis N (July 2008). "Epidemiology, etiology, pathogenesis, and diagnosis of recurrent bacterial meningitis". Clinical Microbiology Reviews. 21 (3): 519–37. doi:10.1128/CMR.00009-08. PMC 2493086. PMID 18625686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493086

  76. Tebruegge M, Curtis N (July 2008). "Epidemiology, etiology, pathogenesis, and diagnosis of recurrent bacterial meningitis". Clinical Microbiology Reviews. 21 (3): 519–37. doi:10.1128/CMR.00009-08. PMC 2493086. PMID 18625686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493086

  77. Tebruegge M, Curtis N (July 2008). "Epidemiology, etiology, pathogenesis, and diagnosis of recurrent bacterial meningitis". Clinical Microbiology Reviews. 21 (3): 519–37. doi:10.1128/CMR.00009-08. PMC 2493086. PMID 18625686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493086

  78. Tebruegge M, Curtis N (July 2008). "Epidemiology, etiology, pathogenesis, and diagnosis of recurrent bacterial meningitis". Clinical Microbiology Reviews. 21 (3): 519–37. doi:10.1128/CMR.00009-08. PMC 2493086. PMID 18625686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493086

  79. Logan SA, MacMahon E (January 2008). "Viral meningitis". BMJ. 336 (7634): 36–40. doi:10.1136/bmj.39409.673657.AE. PMC 2174764. PMID 18174598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174764

  80. "Meningitis | Viral". U.S. Centers for Disease Control and Prevention (CDC). 19 February 2019. Archived from the original on 4 March 2016. Retrieved 26 March 2019. https://www.cdc.gov/meningitis/viral.html

  81. Shalabi M, Whitley RJ (November 2006). "Recurrent benign lymphocytic meningitis". Clinical Infectious Diseases. 43 (9): 1194–97. doi:10.1086/508281. PMID 17029141. https://doi.org/10.1086%2F508281

  82. Raman Sharma R (2010). "Fungal infections of the nervous system: current perspective and controversies in management". International Journal of Surgery. 8 (8): 591–601. doi:10.1016/j.ijsu.2010.07.293. PMID 20673817. https://doi.org/10.1016%2Fj.ijsu.2010.07.293

  83. Sirven JI, Malamut BL (2008). Clinical neurology of the older adult (2nd ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. p. 439. ISBN 978-0-7817-6947-1. Archived from the original on 15 May 2016. 978-0-7817-6947-1

  84. Honda H, Warren DK (September 2009). "Central nervous system infections: meningitis and brain abscess". Infectious Disease Clinics of North America. 23 (3): 609–23. doi:10.1016/j.idc.2009.04.009. PMID 19665086. /wiki/Doi_(identifier)

  85. Kauffman CA, Pappas PG, Patterson TF (June 2013). "Fungal infections associated with contaminated methylprednisolone injections". The New England Journal of Medicine. 368 (26): 2495–500. doi:10.1056/NEJMra1212617. PMID 23083312. https://doi.org/10.1056%2FNEJMra1212617

  86. Sirven JI, Malamut BL (2008). Clinical neurology of the older adult (2nd ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. p. 439. ISBN 978-0-7817-6947-1. Archived from the original on 15 May 2016. 978-0-7817-6947-1

  87. Kauffman CA, Pappas PG, Sobel JD, Dismukes WE (1 January 2011). Essentials of clinical mycology (2nd ed.). New York: Springer. p. 77. ISBN 978-1-4419-6639-1. Archived from the original on 10 May 2016. 978-1-4419-6639-1

  88. Durski KN, Kuntz KM, Yasukawa K, Virnig BA, Meya DB, Boulware DR (July 2013). "Cost-effective diagnostic checklists for meningitis in resource-limited settings". Journal of Acquired Immune Deficiency Syndromes. 63 (3): e101–08. doi:10.1097/QAI.0b013e31828e1e56. PMC 3683123. PMID 23466647. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683123

  89. Kauffman CA, Pappas PG, Sobel JD, Dismukes WE (1 January 2011). Essentials of clinical mycology (2nd ed.). New York: Springer. p. 31. ISBN 978-1-4419-6639-1. Archived from the original on 16 May 2016. 978-1-4419-6639-1

  90. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM (February 2009). "Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS". AIDS. 23 (4): 525–30. doi:10.1097/QAD.0b013e328322ffac. PMID 19182676. S2CID 5735550. https://doi.org/10.1097%2FQAD.0b013e328322ffac

  91. Sirven JI, Malamut BL (2008). Clinical neurology of the older adult (2nd ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. p. 439. ISBN 978-0-7817-6947-1. Archived from the original on 15 May 2016. 978-0-7817-6947-1

  92. Graeff-Teixeira C, da Silva AC, Yoshimura K (April 2009). "Update on eosinophilic meningoencephalitis and its clinical relevance". Clinical Microbiology Reviews. 22 (2): 322–348, Table of Contents. doi:10.1128/CMR.00044-08. PMC 2668237. PMID 19366917. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668237

  93. "Amebic Meningitis". U.S. Centers for Disease Control and Prevention (CDC). 12 August 2022. Archived from the original on 24 May 2023. Retrieved 31 May 2023. https://www.cdc.gov/meningitis/amebic.html

  94. Gleissner B, Chamberlain MC (May 2006). "Neoplastic meningitis". The Lancet. Neurology. 5 (5): 443–52. doi:10.1016/S1474-4422(06)70443-4. PMID 16632315. S2CID 21335554. /wiki/Doi_(identifier)

  95. Moris G, Garcia-Monco JC (June 1999). "The challenge of drug-induced aseptic meningitis". Archives of Internal Medicine. 159 (11): 1185–94. doi:10.1001/archinte.159.11.1185. PMID 10371226. https://doi.org/10.1001%2Farchinte.159.11.1185

  96. Ginsberg L (March 2004). "Difficult and recurrent meningitis". Journal of Neurology, Neurosurgery, and Psychiatry. 75 Suppl 1 (90001): i16–21. doi:10.1136/jnnp.2003.034272. PMC 1765649. PMID 14978146. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1765649

  97. Ginsberg L (March 2004). "Difficult and recurrent meningitis". Journal of Neurology, Neurosurgery, and Psychiatry. 75 Suppl 1 (90001): i16–21. doi:10.1136/jnnp.2003.034272. PMC 1765649. PMID 14978146. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1765649

  98. Tebruegge M, Curtis N (July 2008). "Epidemiology, etiology, pathogenesis, and diagnosis of recurrent bacterial meningitis". Clinical Microbiology Reviews. 21 (3): 519–37. doi:10.1128/CMR.00009-08. PMC 2493086. PMID 18625686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493086

  99. Ginsberg L (March 2004). "Difficult and recurrent meningitis". Journal of Neurology, Neurosurgery, and Psychiatry. 75 Suppl 1 (90001): i16–21. doi:10.1136/jnnp.2003.034272. PMC 1765649. PMID 14978146. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1765649

  100. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  101. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  102. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  103. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  104. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  105. Provan D, Krentz A (2005). Oxford Handbook of Clinical and Laboratory Investigation. Oxford: Oxford University Press. ISBN 978-0-19-856663-2. 978-0-19-856663-2

  106. Mount HR, Boyle SD (September 2017). "Aseptic and Bacterial Meningitis: Evaluation, Treatment, and Prevention". American Family Physician. 96 (5): 314–322. ISSN 0002-838X. PMID 28925647. Archived from the original on 21 October 2020. Retrieved 18 October 2020. https://www.aafp.org/afp/2017/0901/p314.html

  107. Mount HR, Boyle SD (September 2017). "Aseptic and Bacterial Meningitis: Evaluation, Treatment, and Prevention". American Family Physician. 96 (5): 314–322. ISSN 0002-838X. PMID 28925647. Archived from the original on 21 October 2020. Retrieved 18 October 2020. https://www.aafp.org/afp/2017/0901/p314.html

  108. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  109. Chaudhuri A, Martinez-Martin P, Martin PM, Kennedy PG, Andrew Seaton R, Portegies P, et al. (July 2008). "EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults". European Journal of Neurology. 15 (7): 649–59. doi:10.1111/j.1468-1331.2008.02193.x. PMID 18582342. S2CID 12415715. https://doi.org/10.1111%2Fj.1468-1331.2008.02193.x

  110. Heyderman RS, Lambert HP, O'Sullivan I, Stuart JM, Taylor BL, Wall RA (February 2003). "Early management of suspected bacterial meningitis and meningococcal septicaemia in adults" (PDF). The Journal of Infection. 46 (2): 75–77. doi:10.1053/jinf.2002.1110. PMID 12634067. Archived from the original (PDF) on 25 July 2011. – formal guideline at "Early management of suspected meningitis and meningococcal septicaemia in immunocompetent adults". British Infection Society. December 2004. Archived from the original on 19 October 2013. Retrieved 19 October 2008. https://web.archive.org/web/20110725103638/http://www.britishinfection.org/drupal/sites/default/files/meningitisJI2003.pdf

  111. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  112. Iguchi M, Noguchi Y, Yamamoto S, Tanaka Y, Tsujimoto H (June 2020). "Diagnostic test accuracy of jolt accentuation for headache in acute meningitis in the emergency setting". The Cochrane Database of Systematic Reviews. 2020 (6): CD012824. doi:10.1002/14651858.CD012824.pub2. ISSN 1469-493X. PMC 7386453. PMID 32524581. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386453

  113. Iguchi M, Noguchi Y, Yamamoto S, Tanaka Y, Tsujimoto H (June 2020). "Diagnostic test accuracy of jolt accentuation for headache in acute meningitis in the emergency setting". The Cochrane Database of Systematic Reviews. 2020 (6): CD012824. doi:10.1002/14651858.CD012824.pub2. ISSN 1469-493X. PMC 7386453. PMID 32524581. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386453

  114. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  115. Chaudhuri A, Martinez-Martin P, Martin PM, Kennedy PG, Andrew Seaton R, Portegies P, et al. (July 2008). "EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults". European Journal of Neurology. 15 (7): 649–59. doi:10.1111/j.1468-1331.2008.02193.x. PMID 18582342. S2CID 12415715. https://doi.org/10.1111%2Fj.1468-1331.2008.02193.x

  116. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  117. Chaudhuri A, Martinez-Martin P, Martin PM, Kennedy PG, Andrew Seaton R, Portegies P, et al. (July 2008). "EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults". European Journal of Neurology. 15 (7): 649–59. doi:10.1111/j.1468-1331.2008.02193.x. PMID 18582342. S2CID 12415715. https://doi.org/10.1111%2Fj.1468-1331.2008.02193.x

  118. Heyderman RS, Lambert HP, O'Sullivan I, Stuart JM, Taylor BL, Wall RA (February 2003). "Early management of suspected bacterial meningitis and meningococcal septicaemia in adults" (PDF). The Journal of Infection. 46 (2): 75–77. doi:10.1053/jinf.2002.1110. PMID 12634067. Archived from the original (PDF) on 25 July 2011. – formal guideline at "Early management of suspected meningitis and meningococcal septicaemia in immunocompetent adults". British Infection Society. December 2004. Archived from the original on 19 October 2013. Retrieved 19 October 2008. https://web.archive.org/web/20110725103638/http://www.britishinfection.org/drupal/sites/default/files/meningitisJI2003.pdf

  119. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  120. Maconochie IK, Bhaumik S (November 2016). "Fluid therapy for acute bacterial meningitis" (PDF). The Cochrane Database of Systematic Reviews. 2016 (11): CD004786. doi:10.1002/14651858.CD004786.pub5. PMC 6464853. PMID 27813057. Archived (PDF) from the original on 4 August 2020. Retrieved 30 December 2018. Careful management of fluid and electrolyte balance is also important in the treatment of meningitis... there are different opinions regarding the cause of hyponatraemia... if dehydration, rather than inappropriately increased antidiuresis... fluid restriction is open to question http://archive.lstmed.ac.uk/8112/1/Cochrane_Fluid%20therapy%20for%20acute%20bacterial%20meningitis.pdf

  121. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  122. Maconochie IK, Bhaumik S (November 2016). "Fluid therapy for acute bacterial meningitis" (PDF). The Cochrane Database of Systematic Reviews. 2016 (11): CD004786. doi:10.1002/14651858.CD004786.pub5. PMC 6464853. PMID 27813057. Archived (PDF) from the original on 4 August 2020. Retrieved 30 December 2018. Careful management of fluid and electrolyte balance is also important in the treatment of meningitis... there are different opinions regarding the cause of hyponatraemia... if dehydration, rather than inappropriately increased antidiuresis... fluid restriction is open to question http://archive.lstmed.ac.uk/8112/1/Cochrane_Fluid%20therapy%20for%20acute%20bacterial%20meningitis.pdf

  123. Straus SE, Thorpe KE, Holroyd-Leduc J (October 2006). "How do I perform a lumbar puncture and analyze the results to diagnose bacterial meningitis?". JAMA. 296 (16): 2012–22. doi:10.1001/jama.296.16.2012. PMID 17062865. https://doi.org/10.1001%2Fjama.296.16.2012

  124. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  125. Chaudhuri A, Martinez-Martin P, Martin PM, Kennedy PG, Andrew Seaton R, Portegies P, et al. (July 2008). "EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults". European Journal of Neurology. 15 (7): 649–59. doi:10.1111/j.1468-1331.2008.02193.x. PMID 18582342. S2CID 12415715. https://doi.org/10.1111%2Fj.1468-1331.2008.02193.x

  126. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. (February 2010). "Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america". Clinical Infectious Diseases. 50 (3): 291–322. doi:10.1086/649858. PMC 5826644. PMID 20047480. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826644

  127. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  128. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  129. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  130. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  131. Graeff-Teixeira C, da Silva AC, Yoshimura K (April 2009). "Update on eosinophilic meningoencephalitis and its clinical relevance". Clinical Microbiology Reviews. 22 (2): 322–348, Table of Contents. doi:10.1128/CMR.00044-08. PMC 2668237. PMID 19366917. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668237

  132. Straus SE, Thorpe KE, Holroyd-Leduc J (October 2006). "How do I perform a lumbar puncture and analyze the results to diagnose bacterial meningitis?". JAMA. 296 (16): 2012–22. doi:10.1001/jama.296.16.2012. PMID 17062865. https://doi.org/10.1001%2Fjama.296.16.2012

  133. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  134. Straus SE, Thorpe KE, Holroyd-Leduc J (October 2006). "How do I perform a lumbar puncture and analyze the results to diagnose bacterial meningitis?". JAMA. 296 (16): 2012–22. doi:10.1001/jama.296.16.2012. PMID 17062865. https://doi.org/10.1001%2Fjama.296.16.2012

  135. Sakushima K, Hayashino Y, Kawaguchi T, Jackson JL, Fukuhara S (April 2011). "Diagnostic accuracy of cerebrospinal fluid lactate for differentiating bacterial meningitis from aseptic meningitis: a meta-analysis". The Journal of Infection. 62 (4): 255–62. doi:10.1016/j.jinf.2011.02.010. hdl:2115/48503. PMID 21382412. S2CID 206172763. /wiki/Doi_(identifier)

  136. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  137. Logan SA, MacMahon E (January 2008). "Viral meningitis". BMJ. 336 (7634): 36–40. doi:10.1136/bmj.39409.673657.AE. PMC 2174764. PMID 18174598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174764

  138. Logan SA, MacMahon E (January 2008). "Viral meningitis". BMJ. 336 (7634): 36–40. doi:10.1136/bmj.39409.673657.AE. PMC 2174764. PMID 18174598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174764

  139. Thwaites G, Chau TT, Mai NT, Drobniewski F, McAdam K, Farrar J (March 2000). "Tuberculous meningitis". Journal of Neurology, Neurosurgery, and Psychiatry. 68 (3): 289–99. doi:10.1136/jnnp.68.3.289. PMC 1736815. PMID 10675209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1736815

  140. Bicanic T, Harrison TS (2004). "Cryptococcal meningitis". British Medical Bulletin. 72 (1): 99–118. doi:10.1093/bmb/ldh043. PMID 15838017. https://doi.org/10.1093%2Fbmb%2Fldh043

  141. Tenforde MW, Shapiro AE, Rouse B, Jarvis JN, Li T, Eshun-Wilson I, et al. (July 2018). "Treatment for HIV-associated cryptococcal meningitis". The Cochrane Database of Systematic Reviews. 2018 (7): CD005647. doi:10.1002/14651858.CD005647.pub3. PMC 6513250. PMID 30045416. CD005647. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513250

  142. Logan SA, MacMahon E (January 2008). "Viral meningitis". BMJ. 336 (7634): 36–40. doi:10.1136/bmj.39409.673657.AE. PMC 2174764. PMID 18174598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174764

  143. Warrell DA, Farrar JJ, Crook DW (2003). "24.14.1 Bacterial meningitis". Oxford Textbook of Medicine Volume 3 (Fourth ed.). Oxford University Press. pp. 1115–29. ISBN 978-0-19-852787-9. 978-0-19-852787-9

  144. "Causes and How It Spreads". U.S. Centers for Disease Control and Prevention (CDC). 7 February 2022. Archived from the original on 29 June 2011. Retrieved 18 June 2011. https://www.cdc.gov/meningococcal/about/causes-transmission.html

  145. "Causes and How It Spreads". U.S. Centers for Disease Control and Prevention (CDC). 7 February 2022. Archived from the original on 29 June 2011. Retrieved 18 June 2011. https://www.cdc.gov/meningococcal/about/causes-transmission.html

  146. "Causes and How It Spreads". U.S. Centers for Disease Control and Prevention (CDC). 7 February 2022. Archived from the original on 29 June 2011. Retrieved 18 June 2011. https://www.cdc.gov/meningococcal/about/causes-transmission.html

  147. Segal S, Pollard AJ (2004). "Vaccines against bacterial meningitis". British Medical Bulletin. 72 (1): 65–81. doi:10.1093/bmb/ldh041. PMID 15802609. https://doi.org/10.1093%2Fbmb%2Fldh041

  148. Peltola H (April 2000). "Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates". Clinical Microbiology Reviews. 13 (2): 302–17. doi:10.1128/CMR.13.2.302-317.2000. PMC 100154. PMID 10756001. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC100154

  149. Logan SA, MacMahon E (January 2008). "Viral meningitis". BMJ. 336 (7634): 36–40. doi:10.1136/bmj.39409.673657.AE. PMC 2174764. PMID 18174598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174764

  150. Harrison LH (January 2006). "Prospects for vaccine prevention of meningococcal infection". Clinical Microbiology Reviews. 19 (1): 142–64. doi:10.1128/CMR.19.1.142-164.2006. PMC 1360272. PMID 16418528. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360272

  151. "A new MenB (meningococcal B) vaccine". Meningitis Research Foundation. Archived from the original on 29 November 2014. Retrieved 23 November 2014. https://web.archive.org/web/20141129191130/http://www.meningitis.org/menb-vaccine

  152. "First vaccine approved by FDA to prevent serogroup B Meningococcal disease" (Press release). U.S. Food and Drug Administration (FDA). 29 October 2014. Archived from the original on 16 November 2014. https://www.fda.gov/news-events/press-announcements/first-vaccine-approved-fda-prevent-serogroup-b-meningococcal-disease

  153. Segal S, Pollard AJ (2004). "Vaccines against bacterial meningitis". British Medical Bulletin. 72 (1): 65–81. doi:10.1093/bmb/ldh041. PMID 15802609. https://doi.org/10.1093%2Fbmb%2Fldh041

  154. Wilder-Smith A (October 2007). "Meningococcal vaccine in travelers". Current Opinion in Infectious Diseases. 20 (5): 454–60. doi:10.1097/QCO.0b013e3282a64700. PMID 17762777. S2CID 9411482. /wiki/Doi_(identifier)

  155. Segal S, Pollard AJ (2004). "Vaccines against bacterial meningitis". British Medical Bulletin. 72 (1): 65–81. doi:10.1093/bmb/ldh041. PMID 15802609. https://doi.org/10.1093%2Fbmb%2Fldh041

  156. Harrison LH (January 2006). "Prospects for vaccine prevention of meningococcal infection". Clinical Microbiology Reviews. 19 (1): 142–64. doi:10.1128/CMR.19.1.142-164.2006. PMC 1360272. PMID 16418528. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360272

  157. Harrison LH (January 2006). "Prospects for vaccine prevention of meningococcal infection". Clinical Microbiology Reviews. 19 (1): 142–64. doi:10.1128/CMR.19.1.142-164.2006. PMC 1360272. PMID 16418528. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360272

  158. "A new MenB (meningococcal B) vaccine". Meningitis Research Foundation. Archived from the original on 29 November 2014. Retrieved 23 November 2014. https://web.archive.org/web/20141129191130/http://www.meningitis.org/menb-vaccine

  159. "First vaccine approved by FDA to prevent serogroup B Meningococcal disease" (Press release). U.S. Food and Drug Administration (FDA). 29 October 2014. Archived from the original on 16 November 2014. https://www.fda.gov/news-events/press-announcements/first-vaccine-approved-fda-prevent-serogroup-b-meningococcal-disease

  160. World Health Organization (September 2000). "Detecting meningococcal meningitis epidemics in highly-endemic African countries". Weekly Epidemiological Record. 75 (38): 306–309. hdl:10665/231278. PMID 11045076. /wiki/World_Health_Organization

  161. Bishai DM, Champion C, Steele ME, Thompson L (June 2011). "Product development partnerships hit their stride: lessons from developing a meningitis vaccine for Africa". Health Affairs. 30 (6): 1058–64. doi:10.1377/hlthaff.2011.0295. PMID 21653957. /wiki/Doi_(identifier)

  162. Marc LaForce F, Ravenscroft N, Djingarey M, Viviani S (June 2009). "Epidemic meningitis due to Group A Neisseria meningitidis in the African meningitis belt: a persistent problem with an imminent solution". Vaccine. 27 (Suppl 2): B13–19. doi:10.1016/j.vaccine.2009.04.062. PMID 19477559. /wiki/Doi_(identifier)

  163. Segal S, Pollard AJ (2004). "Vaccines against bacterial meningitis". British Medical Bulletin. 72 (1): 65–81. doi:10.1093/bmb/ldh041. PMID 15802609. https://doi.org/10.1093%2Fbmb%2Fldh041

  164. Weisfelt M, de Gans J, van der Poll T, van de Beek D (April 2006). "Pneumococcal meningitis in adults: new approaches to management and prevention". The Lancet. Neurology. 5 (4): 332–42. doi:10.1016/S1474-4422(06)70409-4. PMID 16545750. S2CID 19318114. /wiki/Doi_(identifier)

  165. Weisfelt M, de Gans J, van der Poll T, van de Beek D (April 2006). "Pneumococcal meningitis in adults: new approaches to management and prevention". The Lancet. Neurology. 5 (4): 332–42. doi:10.1016/S1474-4422(06)70409-4. PMID 16545750. S2CID 19318114. /wiki/Doi_(identifier)

  166. Segal S, Pollard AJ (2004). "Vaccines against bacterial meningitis". British Medical Bulletin. 72 (1): 65–81. doi:10.1093/bmb/ldh041. PMID 15802609. https://doi.org/10.1093%2Fbmb%2Fldh041

  167. Chaudhuri A, Martinez-Martin P, Martin PM, Kennedy PG, Andrew Seaton R, Portegies P, et al. (July 2008). "EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults". European Journal of Neurology. 15 (7): 649–59. doi:10.1111/j.1468-1331.2008.02193.x. PMID 18582342. S2CID 12415715. https://doi.org/10.1111%2Fj.1468-1331.2008.02193.x

  168. Zalmanovici Trestioreanu A, Fraser A, Gafter-Gvili A, Paul M, Leibovici L (October 2013). "Antibiotics for preventing meningococcal infections". The Cochrane Database of Systematic Reviews. 10 (10): CD004785. doi:10.1002/14651858.CD004785.pub5. PMC 6698485. PMID 24163051. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698485

  169. Zalmanovici Trestioreanu A, Fraser A, Gafter-Gvili A, Paul M, Leibovici L (October 2013). "Antibiotics for preventing meningococcal infections". The Cochrane Database of Systematic Reviews. 10 (10): CD004785. doi:10.1002/14651858.CD004785.pub5. PMC 6698485. PMID 24163051. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698485

  170. Ratilal BO, Costa J, Pappamikail L, Sampaio C (April 2015). "Antibiotic prophylaxis for preventing meningitis in patients with basilar skull fractures". The Cochrane Database of Systematic Reviews. 2015 (4): CD004884. doi:10.1002/14651858.CD004884.pub4. PMC 10554555. PMID 25918919. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10554555

  171. Ratilal BO, Costa J, Pappamikail L, Sampaio C (April 2015). "Antibiotic prophylaxis for preventing meningitis in patients with basilar skull fractures". The Cochrane Database of Systematic Reviews. 2015 (4): CD004884. doi:10.1002/14651858.CD004884.pub4. PMC 10554555. PMID 25918919. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10554555

  172. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  173. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  174. Heyderman RS, Lambert HP, O'Sullivan I, Stuart JM, Taylor BL, Wall RA (February 2003). "Early management of suspected bacterial meningitis and meningococcal septicaemia in adults" (PDF). The Journal of Infection. 46 (2): 75–77. doi:10.1053/jinf.2002.1110. PMID 12634067. Archived from the original (PDF) on 25 July 2011. – formal guideline at "Early management of suspected meningitis and meningococcal septicaemia in immunocompetent adults". British Infection Society. December 2004. Archived from the original on 19 October 2013. Retrieved 19 October 2008. https://web.archive.org/web/20110725103638/http://www.britishinfection.org/drupal/sites/default/files/meningitisJI2003.pdf

  175. Theilen U, Wilson L, Wilson G, Beattie JO, Qureshi S, Simpson D (June 2008). "Management of invasive meningococcal disease in children and young people: summary of SIGN guidelines". BMJ. 336 (7657): 1367–70. doi:10.1136/bmj.a129. PMC 2427067. PMID 18556318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427067

  176. Heyderman RS, Lambert HP, O'Sullivan I, Stuart JM, Taylor BL, Wall RA (February 2003). "Early management of suspected bacterial meningitis and meningococcal septicaemia in adults" (PDF). The Journal of Infection. 46 (2): 75–77. doi:10.1053/jinf.2002.1110. PMID 12634067. Archived from the original (PDF) on 25 July 2011. – formal guideline at "Early management of suspected meningitis and meningococcal septicaemia in immunocompetent adults". British Infection Society. December 2004. Archived from the original on 19 October 2013. Retrieved 19 October 2008. https://web.archive.org/web/20110725103638/http://www.britishinfection.org/drupal/sites/default/files/meningitisJI2003.pdf

  177. Maconochie IK, Bhaumik S (November 2016). "Fluid therapy for acute bacterial meningitis" (PDF). The Cochrane Database of Systematic Reviews. 2016 (11): CD004786. doi:10.1002/14651858.CD004786.pub5. PMC 6464853. PMID 27813057. Archived (PDF) from the original on 4 August 2020. Retrieved 30 December 2018. http://archive.lstmed.ac.uk/8112/1/Cochrane_Fluid%20therapy%20for%20acute%20bacterial%20meningitis.pdf

  178. Heyderman RS, Lambert HP, O'Sullivan I, Stuart JM, Taylor BL, Wall RA (February 2003). "Early management of suspected bacterial meningitis and meningococcal septicaemia in adults" (PDF). The Journal of Infection. 46 (2): 75–77. doi:10.1053/jinf.2002.1110. PMID 12634067. Archived from the original (PDF) on 25 July 2011. – formal guideline at "Early management of suspected meningitis and meningococcal septicaemia in immunocompetent adults". British Infection Society. December 2004. Archived from the original on 19 October 2013. Retrieved 19 October 2008. https://web.archive.org/web/20110725103638/http://www.britishinfection.org/drupal/sites/default/files/meningitisJI2003.pdf

  179. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  180. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  181. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  182. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  183. Wall EC, Ajdukiewicz KM, Bergman H, Heyderman RS, Garner P (February 2018). "Osmotic therapies added to antibiotics for acute bacterial meningitis". The Cochrane Database of Systematic Reviews. 2018 (2): CD008806. doi:10.1002/14651858.CD008806.pub3. PMC 5815491. PMID 29405037. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815491

  184. Chaudhuri A, Martinez-Martin P, Martin PM, Kennedy PG, Andrew Seaton R, Portegies P, et al. (July 2008). "EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults". European Journal of Neurology. 15 (7): 649–59. doi:10.1111/j.1468-1331.2008.02193.x. PMID 18582342. S2CID 12415715. https://doi.org/10.1111%2Fj.1468-1331.2008.02193.x

  185. Heyderman RS, Lambert HP, O'Sullivan I, Stuart JM, Taylor BL, Wall RA (February 2003). "Early management of suspected bacterial meningitis and meningococcal septicaemia in adults" (PDF). The Journal of Infection. 46 (2): 75–77. doi:10.1053/jinf.2002.1110. PMID 12634067. Archived from the original (PDF) on 25 July 2011. – formal guideline at "Early management of suspected meningitis and meningococcal septicaemia in immunocompetent adults". British Infection Society. December 2004. Archived from the original on 19 October 2013. Retrieved 19 October 2008. https://web.archive.org/web/20110725103638/http://www.britishinfection.org/drupal/sites/default/files/meningitisJI2003.pdf

  186. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  187. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  188. Chaudhuri A, Martinez-Martin P, Martin PM, Kennedy PG, Andrew Seaton R, Portegies P, et al. (July 2008). "EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults". European Journal of Neurology. 15 (7): 649–59. doi:10.1111/j.1468-1331.2008.02193.x. PMID 18582342. S2CID 12415715. https://doi.org/10.1111%2Fj.1468-1331.2008.02193.x

  189. Prasad K, Kumar A, Gupta PK, Singhal T (October 2007). Prasad K (ed.). "Third generation cephalosporins versus conventional antibiotics for treating acute bacterial meningitis". The Cochrane Database of Systematic Reviews. 2007 (4): CD001832. doi:10.1002/14651858.CD001832.pub3. PMC 8078560. PMID 17943757. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078560

  190. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  191. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  192. Chaudhuri A, Martinez-Martin P, Martin PM, Kennedy PG, Andrew Seaton R, Portegies P, et al. (July 2008). "EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults". European Journal of Neurology. 15 (7): 649–59. doi:10.1111/j.1468-1331.2008.02193.x. PMID 18582342. S2CID 12415715. https://doi.org/10.1111%2Fj.1468-1331.2008.02193.x

  193. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  194. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  195. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  196. Thwaites G, Chau TT, Mai NT, Drobniewski F, McAdam K, Farrar J (March 2000). "Tuberculous meningitis". Journal of Neurology, Neurosurgery, and Psychiatry. 68 (3): 289–99. doi:10.1136/jnnp.68.3.289. PMC 1736815. PMID 10675209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1736815

  197. Maconochie IK, Bhaumik S (November 2016). "Fluid therapy for acute bacterial meningitis". The Cochrane Database of Systematic Reviews. 2016 (11): CD004786. doi:10.1002/14651858.CD004786.pub5. ISSN 1469-493X. PMC 6464853. PMID 27813057. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464853

  198. Brouwer MC, McIntyre P, Prasad K, van de Beek D (September 2015). "Corticosteroids for acute bacterial meningitis". The Cochrane Database of Systematic Reviews. 2015 (9): CD004405. doi:10.1002/14651858.CD004405.pub5. PMC 6491272. PMID 26362566. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491272

  199. Assiri AM, Alasmari FA, Zimmerman VA, Baddour LM, Erwin PJ, Tleyjeh IM (May 2009). "Corticosteroid administration and outcome of adolescents and adults with acute bacterial meningitis: a meta-analysis". Mayo Clinic Proceedings. 84 (5): 403–09. doi:10.4065/84.5.403. PMC 2676122. PMID 19411436. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676122

  200. Assiri AM, Alasmari FA, Zimmerman VA, Baddour LM, Erwin PJ, Tleyjeh IM (May 2009). "Corticosteroid administration and outcome of adolescents and adults with acute bacterial meningitis: a meta-analysis". Mayo Clinic Proceedings. 84 (5): 403–09. doi:10.4065/84.5.403. PMC 2676122. PMID 19411436. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676122

  201. Brouwer MC, McIntyre P, Prasad K, van de Beek D (September 2015). "Corticosteroids for acute bacterial meningitis". The Cochrane Database of Systematic Reviews. 2015 (9): CD004405. doi:10.1002/14651858.CD004405.pub5. PMC 6491272. PMID 26362566. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491272

  202. Prasad K, Singh MB, Ryan H (April 2016). "Corticosteroids for managing tuberculous meningitis". The Cochrane Database of Systematic Reviews. 2016 (4): CD002244. doi:10.1002/14651858.CD002244.pub4. PMC 4916936. PMID 27121755. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916936

  203. Chaudhuri A, Martinez-Martin P, Martin PM, Kennedy PG, Andrew Seaton R, Portegies P, et al. (July 2008). "EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults". European Journal of Neurology. 15 (7): 649–59. doi:10.1111/j.1468-1331.2008.02193.x. PMID 18582342. S2CID 12415715. https://doi.org/10.1111%2Fj.1468-1331.2008.02193.x

  204. Heyderman RS, Lambert HP, O'Sullivan I, Stuart JM, Taylor BL, Wall RA (February 2003). "Early management of suspected bacterial meningitis and meningococcal septicaemia in adults" (PDF). The Journal of Infection. 46 (2): 75–77. doi:10.1053/jinf.2002.1110. PMID 12634067. Archived from the original (PDF) on 25 July 2011. – formal guideline at "Early management of suspected meningitis and meningococcal septicaemia in immunocompetent adults". British Infection Society. December 2004. Archived from the original on 19 October 2013. Retrieved 19 October 2008. https://web.archive.org/web/20110725103638/http://www.britishinfection.org/drupal/sites/default/files/meningitisJI2003.pdf

  205. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  206. Chaudhuri A, Martinez-Martin P, Martin PM, Kennedy PG, Andrew Seaton R, Portegies P, et al. (July 2008). "EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults". European Journal of Neurology. 15 (7): 649–59. doi:10.1111/j.1468-1331.2008.02193.x. PMID 18582342. S2CID 12415715. https://doi.org/10.1111%2Fj.1468-1331.2008.02193.x

  207. de Gans J, van de Beek D (November 2002). "Dexamethasone in adults with bacterial meningitis". The New England Journal of Medicine. 347 (20): 1549–56. doi:10.1056/NEJMoa021334. PMID 12432041. S2CID 72596402. Archived from the original on 29 August 2021. Retrieved 20 October 2018. http://dare.uva.nl/personal/pure/en/publications/dexamethasone-in-adults-with-bacterial-meningitis(72435a94-1ea1-488f-9407-345b79b068cc).html

  208. Brouwer MC, McIntyre P, Prasad K, van de Beek D (September 2015). "Corticosteroids for acute bacterial meningitis". The Cochrane Database of Systematic Reviews. 2015 (9): CD004405. doi:10.1002/14651858.CD004405.pub5. PMC 6491272. PMID 26362566. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491272

  209. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  210. McIntyre PB, Berkey CS, King SM, Schaad UB, Kilpi T, Kanra GY, et al. (September 1997). "Dexamethasone as adjunctive therapy in bacterial meningitis. A meta-analysis of randomized clinical trials since 1988". JAMA. 278 (11): 925–31. doi:10.1001/jama.1997.03550110063038. PMID 9302246. /wiki/Doi_(identifier)

  211. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. (November 2004). "Practice guidelines for the management of bacterial meningitis". Clinical Infectious Diseases. 39 (9): 1267–84. doi:10.1086/425368. PMID 15494903. https://doi.org/10.1086%2F425368

  212. Fisher J, Linder A, Calevo MG, Bentzer P (November 2021). "Non-corticosteroid adjuvant therapies for acute bacterial meningitis". The Cochrane Database of Systematic Reviews. 2021 (11): CD013437. doi:10.1002/14651858.CD013437.pub2. ISSN 1469-493X. PMC 8610076. PMID 34813078. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610076

  213. Fisher J, Linder A, Calevo MG, Bentzer P (November 2021). "Non-corticosteroid adjuvant therapies for acute bacterial meningitis". The Cochrane Database of Systematic Reviews. 2021 (11): CD013437. doi:10.1002/14651858.CD013437.pub2. ISSN 1469-493X. PMC 8610076. PMID 34813078. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610076

  214. Logan SA, MacMahon E (January 2008). "Viral meningitis". BMJ. 336 (7634): 36–40. doi:10.1136/bmj.39409.673657.AE. PMC 2174764. PMID 18174598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174764

  215. "Meningitis and Encephalitis Fact Sheet". National Institute of Neurological Disorders and Stroke (NINDS). 11 December 2007. Archived from the original on 4 January 2014. Retrieved 27 April 2009. http://www.ninds.nih.gov/disorders/encephalitis_meningitis/detail_encephalitis_meningitis.htm

  216. Bicanic T, Harrison TS (2004). "Cryptococcal meningitis". British Medical Bulletin. 72 (1): 99–118. doi:10.1093/bmb/ldh043. PMID 15838017. https://doi.org/10.1093%2Fbmb%2Fldh043

  217. Gottfredsson M, Perfect JR (2000). "Fungal meningitis". Seminars in Neurology. 20 (3): 307–22. doi:10.1055/s-2000-9394. PMID 11051295. S2CID 37046726. /wiki/Doi_(identifier)

  218. Bicanic T, Harrison TS (2004). "Cryptococcal meningitis". British Medical Bulletin. 72 (1): 99–118. doi:10.1093/bmb/ldh043. PMID 15838017. https://doi.org/10.1093%2Fbmb%2Fldh043

  219. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. (February 2010). "Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america". Clinical Infectious Diseases. 50 (3): 291–322. doi:10.1086/649858. PMC 5826644. PMID 20047480. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826644

  220. "Meningitis". World Health Organization (WHO). Archived from the original on 10 January 2022. Retrieved 30 May 2023. https://www.who.int/news-room/fact-sheets/detail/meningitis

  221. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  222. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  223. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  224. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  225. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  226. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  227. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  228. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  229. Richardson MP, Reid A, Tarlow MJ, Rudd PT (February 1997). "Hearing loss during bacterial meningitis". Archives of Disease in Childhood. 76 (2): 134–38. doi:10.1136/adc.76.2.134. PMC 1717058. PMID 9068303. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1717058

  230. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (January 2006). "Community-acquired bacterial meningitis in adults". The New England Journal of Medicine. 354 (1): 44–53. doi:10.1056/NEJMra052116. PMID 16394301. /wiki/Doi_(identifier)

  231. Chiang SS, Khan FA, Milstein MB, Tolman AW, Benedetti A, Starke JR, et al. (October 2014). "Treatment outcomes of childhood tuberculous meningitis: a systematic review and meta-analysis". The Lancet. Infectious Diseases. 14 (10): 947–57. doi:10.1016/S1473-3099(14)70852-7. PMID 25108337. /wiki/Doi_(identifier)

  232. Logan SA, MacMahon E (January 2008). "Viral meningitis". BMJ. 336 (7634): 36–40. doi:10.1136/bmj.39409.673657.AE. PMC 2174764. PMID 18174598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174764

  233. GBD 2013 Mortality Causes of Death Collaborators (January 2015). "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013". Lancet. 385 (9963): 117–71. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604. PMID 25530442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340604

  234. Lozano R, Naghavi M, Foreman K, et al. (December 2012). "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2095–128. doi:10.1016/S0140-6736(12)61728-0. hdl:10536/DRO/DU:30050819. PMC 10790329. PMID 23245604. S2CID 1541253. Archived from the original on 19 May 2020. Retrieved 23 March 2020. https://zenodo.org/record/2557786

  235. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM (February 2009). "Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS". AIDS. 23 (4): 525–30. doi:10.1097/QAD.0b013e328322ffac. PMID 19182676. S2CID 5735550. https://doi.org/10.1097%2FQAD.0b013e328322ffac

  236. Attia J, Hatala R, Cook DJ, Wong JG (July 1999). "The rational clinical examination. Does this adult patient have acute meningitis?". JAMA. 282 (2): 175–81. doi:10.1001/jama.282.2.175. PMID 10411200. /wiki/Doi_(identifier)

  237. Lapeyssonnie L (1963). "Cerebrospinal Meningitis in Africa". Bulletin of the World Health Organization. 28 Suppl (Suppl): 1–114. PMC 2554630. PMID 14259333. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2554630

  238. Greenwood B (1999). "Manson Lecture. Meningococcal meningitis in Africa". Transactions of the Royal Society of Tropical Medicine and Hygiene. 93 (4): 341–53. doi:10.1016/S0035-9203(99)90106-2. PMID 10674069. /wiki/Doi_(identifier)

  239. World Health Organization (1998). Control of epidemic meningococcal disease, practical guidelines, 2nd edition, WHO/EMC/BA/98 (PDF). Vol. 3. pp. 1–83. Archived (PDF) from the original on 30 October 2013. https://www.who.int/csr/resources/publications/meningitis/whoemcbac983.pdf

  240. Attia J, Hatala R, Cook DJ, Wong JG (July 1999). "The rational clinical examination. Does this adult patient have acute meningitis?". JAMA. 282 (2): 175–81. doi:10.1001/jama.282.2.175. PMID 10411200. /wiki/Doi_(identifier)

  241. World Health Organization (August 2003). "Meningococcal meningitis : Overview". Weekly Epidemiological Record. 78 (33): 294–296. hdl:10665/232232. PMID 14509123. /wiki/Hdl_(identifier)

  242. Sáez-Llorens X, McCracken GH (June 2003). "Bacterial meningitis in children". Lancet. 361 (9375): 2139–48. doi:10.1016/S0140-6736(03)13693-8. PMID 12826449. S2CID 6226323. /wiki/Doi_(identifier)

  243. Wilder-Smith A (October 2007). "Meningococcal vaccine in travelers". Current Opinion in Infectious Diseases. 20 (5): 454–60. doi:10.1097/QCO.0b013e3282a64700. PMID 17762777. S2CID 9411482. /wiki/Doi_(identifier)

  244. World Health Organization (1998). Control of epidemic meningococcal disease, practical guidelines, 2nd edition, WHO/EMC/BA/98 (PDF). Vol. 3. pp. 1–83. Archived (PDF) from the original on 30 October 2013. https://www.who.int/csr/resources/publications/meningitis/whoemcbac983.pdf

  245. World Health Organization (1998). Control of epidemic meningococcal disease, practical guidelines, 2nd edition, WHO/EMC/BA/98 (PDF). Vol. 3. pp. 1–83. Archived (PDF) from the original on 30 October 2013. https://www.who.int/csr/resources/publications/meningitis/whoemcbac983.pdf

  246. Attia J, Hatala R, Cook DJ, Wong JG (July 1999). "The rational clinical examination. Does this adult patient have acute meningitis?". JAMA. 282 (2): 175–81. doi:10.1001/jama.282.2.175. PMID 10411200. /wiki/Doi_(identifier)

  247. Walker AE, Laws ER, Udvarhelyi GB (1998). "Infections and inflammatory involvement of the CNS". The Genesis of Neuroscience. Thieme. pp. 219–21. ISBN 978-1-879284-62-3. Archived from the original on 4 March 2022. Retrieved 24 August 2020. 978-1-879284-62-3

  248. Walker AE, Laws ER, Udvarhelyi GB (1998). "Infections and inflammatory involvement of the CNS". The Genesis of Neuroscience. Thieme. pp. 219–21. ISBN 978-1-879284-62-3. Archived from the original on 4 March 2022. Retrieved 24 August 2020. 978-1-879284-62-3

  249. Whytt R (1768). Observations on the Dropsy in the Brain. Edinburgh: J. Balfour.

  250. Greenwood B (June 2006). "Editorial: 100 years of epidemic meningitis in West Africa – has anything changed?". Tropical Medicine & International Health. 11 (6): 773–80. doi:10.1111/j.1365-3156.2006.01639.x. PMID 16771997. S2CID 28838510. /wiki/Doi_(identifier)

  251. Greenwood B (June 2006). "Editorial: 100 years of epidemic meningitis in West Africa – has anything changed?". Tropical Medicine & International Health. 11 (6): 773–80. doi:10.1111/j.1365-3156.2006.01639.x. PMID 16771997. S2CID 28838510. /wiki/Doi_(identifier)

  252. Vieusseux G (1806). "Mémoire sur le Maladie qui a regne à Génève au printemps de 1805". Journal de Médecine, de Chirurgie et de Pharmacologie (Bruxelles) (in French). 11: 50–53.

  253. Greenwood B (June 2006). "Editorial: 100 years of epidemic meningitis in West Africa – has anything changed?". Tropical Medicine & International Health. 11 (6): 773–80. doi:10.1111/j.1365-3156.2006.01639.x. PMID 16771997. S2CID 28838510. /wiki/Doi_(identifier)

  254. Weichselbaum A (1887). "Ueber die Aetiologie der akuten Meningitis cerebro-spinalis". Fortschrift der Medizin (in German). 5: 573–83.

  255. Flexner S (May 1913). "The results of the serum treatment in thirteen hundred cases of epidemic meningitis". The Journal of Experimental Medicine. 17 (5): 553–76. doi:10.1084/jem.17.5.553. PMC 2125091. PMID 19867668. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2125091

  256. Swartz MN (October 2004). "Bacterial meningitis – a view of the past 90 years". The New England Journal of Medicine. 351 (18): 1826–28. doi:10.1056/NEJMp048246. PMID 15509815. /wiki/Doi_(identifier)

  257. Rosenberg DH, Arling PA (1944). "Penicillin in the treatment of meningitis". Journal of the American Medical Association. 125 (15): 1011–17. doi:10.1001/jama.1944.02850330009002. reproduced in Rosenberg DH, Arling PA (April 1984). "Landmark article Aug 12, 1944: Penicillin in the treatment of meningitis. By D.H. Rosenberg and P.A.Arling". JAMA. 251 (14): 1870–76. doi:10.1001/jama.251.14.1870. PMID 6366279. /wiki/Journal_of_the_American_Medical_Association

  258. Peltola H (April 2000). "Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates". Clinical Microbiology Reviews. 13 (2): 302–17. doi:10.1128/CMR.13.2.302-317.2000. PMC 100154. PMID 10756001. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC100154

  259. Brouwer MC, McIntyre P, Prasad K, van de Beek D (September 2015). "Corticosteroids for acute bacterial meningitis". The Cochrane Database of Systematic Reviews. 2015 (9): CD004405. doi:10.1002/14651858.CD004405.pub5. PMC 6491272. PMID 26362566. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491272

  260. de Gans J, van de Beek D (November 2002). "Dexamethasone in adults with bacterial meningitis". The New England Journal of Medicine. 347 (20): 1549–56. doi:10.1056/NEJMoa021334. PMID 12432041. S2CID 72596402. Archived from the original on 29 August 2021. Retrieved 20 October 2018. http://dare.uva.nl/personal/pure/en/publications/dexamethasone-in-adults-with-bacterial-meningitis(72435a94-1ea1-488f-9407-345b79b068cc).html

  261. Swartz MN (October 2004). "Bacterial meningitis – a view of the past 90 years". The New England Journal of Medicine. 351 (18): 1826–28. doi:10.1056/NEJMp048246. PMID 15509815. /wiki/Doi_(identifier)