Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
List of periodic functions
List article

This is a list of some well-known periodic functions. The constant function f (x) = c, where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.

Smooth functions

All trigonometric functions listed have period 2 π {\displaystyle 2\pi } , unless otherwise stated. For the following trigonometric functions:

Un is the nth up/down number, Bn is the nth Bernoulli number in Jacobi elliptic functions, q = e − π K ( 1 − m ) K ( m ) {\displaystyle q=e^{-\pi {\frac {K(1-m)}{K(m)}}}}
NameSymbolFormula 1Fourier Series
Sine sin ⁡ ( x ) {\displaystyle \sin(x)} ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}} sin ⁡ ( x ) {\displaystyle \sin(x)}
cas (mathematics) cas ⁡ ( x ) {\displaystyle \operatorname {cas} (x)} sin ⁡ ( x ) + cos ⁡ ( x ) {\displaystyle \sin(x)+\cos(x)} sin ⁡ ( x ) + cos ⁡ ( x ) {\displaystyle \sin(x)+\cos(x)}
Cosine cos ⁡ ( x ) {\displaystyle \cos(x)} ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n}}{(2n)!}}} cos ⁡ ( x ) {\displaystyle \cos(x)}
cis (mathematics) e i x , cis ⁡ ( x ) {\displaystyle e^{ix},\operatorname {cis} (x)} cos(x) + i sin(x) cos ⁡ ( x ) + i sin ⁡ ( x ) {\displaystyle \cos(x)+i\sin(x)}
Tangent tan ⁡ ( x ) {\displaystyle \tan(x)} sin ⁡ x cos ⁡ x = ∑ n = 0 ∞ U 2 n + 1 x 2 n + 1 ( 2 n + 1 ) ! {\displaystyle {\frac {\sin x}{\cos x}}=\sum _{n=0}^{\infty }{\frac {U_{2n+1}x^{2n+1}}{(2n+1)!}}} 2 ∑ n = 1 ∞ ( − 1 ) n − 1 sin ⁡ ( 2 n x ) {\displaystyle 2\sum _{n=1}^{\infty }(-1)^{n-1}\sin(2nx)} 2
Cotangent cot ⁡ ( x ) {\displaystyle \cot(x)} cos ⁡ x sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n 2 2 n B 2 n x 2 n − 1 ( 2 n ) ! {\displaystyle {\frac {\cos x}{\sin x}}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}2^{2n}B_{2n}x^{2n-1}}{(2n)!}}} i + 2 i ∑ n = 1 ∞ ( cos ⁡ 2 n x − i sin ⁡ 2 n x ) {\displaystyle i+2i\sum _{n=1}^{\infty }(\cos 2nx-i\sin 2nx)}
Secant sec ⁡ ( x ) {\displaystyle \sec(x)} 1 cos ⁡ x = ∑ n = 0 ∞ U 2 n x 2 n ( 2 n ) ! {\displaystyle {\frac {1}{\cos x}}=\sum _{n=0}^{\infty }{\frac {U_{2n}x^{2n}}{(2n)!}}} -
Cosecant csc ⁡ ( x ) {\displaystyle \csc(x)} 1 sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n + 1 2 ( 2 2 n − 1 − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! {\displaystyle {\frac {1}{\sin x}}=\sum _{n=0}^{\infty }{\frac {(-1)^{n+1}2\left(2^{2n-1}-1\right)B_{2n}x^{2n-1}}{(2n)!}}} -
Exsecant exsec ⁡ ( x ) {\displaystyle \operatorname {exsec} (x)} sec ⁡ ( x ) − 1 {\displaystyle \sec(x)-1} -
Excosecant excsc ⁡ ( x ) {\displaystyle \operatorname {excsc} (x)} csc ⁡ ( x ) − 1 {\displaystyle \csc(x)-1} -
Versine versin ⁡ ( x ) {\displaystyle \operatorname {versin} (x)} 1 − cos ⁡ ( x ) {\displaystyle 1-\cos(x)} 1 − cos ⁡ ( x ) {\displaystyle 1-\cos(x)}
Vercosine vercosin ⁡ ( x ) {\displaystyle \operatorname {vercosin} (x)} 1 + cos ⁡ ( x ) {\displaystyle 1+\cos(x)} 1 + cos ⁡ ( x ) {\displaystyle 1+\cos(x)}
Coversine coversin ⁡ ( x ) {\displaystyle \operatorname {coversin} (x)} 1 − sin ⁡ ( x ) {\displaystyle 1-\sin(x)} 1 − sin ⁡ ( x ) {\displaystyle 1-\sin(x)}
Covercosine covercosin ⁡ ( x ) {\displaystyle \operatorname {covercosin} (x)} 1 + sin ⁡ ( x ) {\displaystyle 1+\sin(x)} 1 + sin ⁡ ( x ) {\displaystyle 1+\sin(x)}
Haversine haversin ⁡ ( x ) {\displaystyle \operatorname {haversin} (x)} 1 − cos ⁡ ( x ) 2 {\displaystyle {\frac {1-\cos(x)}{2}}} 1 2 − 1 2 cos ⁡ ( x ) {\displaystyle {\frac {1}{2}}-{\frac {1}{2}}\cos(x)}
Havercosine havercosin ⁡ ( x ) {\displaystyle \operatorname {havercosin} (x)} 1 + cos ⁡ ( x ) 2 {\displaystyle {\frac {1+\cos(x)}{2}}} 1 2 + 1 2 cos ⁡ ( x ) {\displaystyle {\frac {1}{2}}+{\frac {1}{2}}\cos(x)}
Hacoversine hacoversin ⁡ ( x ) {\displaystyle \operatorname {hacoversin} (x)} 1 − sin ⁡ ( x ) 2 {\displaystyle {\frac {1-\sin(x)}{2}}} 1 2 − 1 2 sin ⁡ ( x ) {\displaystyle {\frac {1}{2}}-{\frac {1}{2}}\sin(x)}
Hacovercosine hacovercosin ⁡ ( x ) {\displaystyle \operatorname {hacovercosin} (x)} 1 + sin ⁡ ( x ) 2 {\displaystyle {\frac {1+\sin(x)}{2}}} 1 2 + 1 2 sin ⁡ ( x ) {\displaystyle {\frac {1}{2}}+{\frac {1}{2}}\sin(x)}
Jacobi elliptic function sn sn ⁡ ( x , m ) {\displaystyle \operatorname {sn} (x,m)} sin ⁡ am ⁡ ( x , m ) {\displaystyle \sin \operatorname {am} (x,m)} 2 π K ( m ) m ∑ n = 0 ∞ q n + 1 / 2 1 − q 2 n + 1   sin ⁡ ( 2 n + 1 ) π x 2 K ( m ) {\displaystyle {\frac {2\pi }{K(m){\sqrt {m}}}}\sum _{n=0}^{\infty }{\frac {q^{n+1/2}}{1-q^{2n+1}}}~\sin {\frac {(2n+1)\pi x}{2K(m)}}}
Jacobi elliptic function cn cn ⁡ ( x , m ) {\displaystyle \operatorname {cn} (x,m)} cos ⁡ am ⁡ ( x , m ) {\displaystyle \cos \operatorname {am} (x,m)} 2 π K ( m ) m ∑ n = 0 ∞ q n + 1 / 2 1 + q 2 n + 1   cos ⁡ ( 2 n + 1 ) π x 2 K ( m ) {\displaystyle {\frac {2\pi }{K(m){\sqrt {m}}}}\sum _{n=0}^{\infty }{\frac {q^{n+1/2}}{1+q^{2n+1}}}~\cos {\frac {(2n+1)\pi x}{2K(m)}}}
Jacobi elliptic function dn dn ⁡ ( x , m ) {\displaystyle \operatorname {dn} (x,m)} 1 − m sn 2 ⁡ ( x , m ) {\displaystyle {\sqrt {1-m\operatorname {sn} ^{2}(x,m)}}} π 2 K ( m ) + 2 π K ( m ) ∑ n = 1 ∞ q n 1 + q 2 n   cos ⁡ n π x K ( m ) {\displaystyle {\frac {\pi }{2K(m)}}+{\frac {2\pi }{K(m)}}\sum _{n=1}^{\infty }{\frac {q^{n}}{1+q^{2n}}}~\cos {\frac {n\pi x}{K(m)}}}
Jacobi elliptic function zn zn ⁡ ( x , m ) {\displaystyle \operatorname {zn} (x,m)} ∫ 0 x [ dn ⁡ ( t , m ) 2 − E ( m ) K ( m ) ] d t {\displaystyle \int _{0}^{x}\left[\operatorname {dn} (t,m)^{2}-{\frac {E(m)}{K(m)}}\right]dt} 2 π K ( m ) ∑ n = 1 ∞ q n 1 − q 2 n   sin ⁡ n π x K ( m ) {\displaystyle {\frac {2\pi }{K(m)}}\sum _{n=1}^{\infty }{\frac {q^{n}}{1-q^{2n}}}~\sin {\frac {n\pi x}{K(m)}}}
Weierstrass elliptic function ℘ ( x , Λ ) {\displaystyle \wp (x,\Lambda )} 1 x 2 + ∑ λ ∈ Λ − { 0 } [ 1 ( x − λ ) 2 − 1 λ 2 ] {\displaystyle {\frac {1}{x^{2}}}+\sum _{\lambda \in \Lambda -\{0\}}\left[{\frac {1}{(x-\lambda )^{2}}}-{\frac {1}{\lambda ^{2}}}\right]} {\displaystyle }
Clausen function Cl 2 ⁡ ( x ) {\displaystyle \operatorname {Cl} _{2}(x)} − ∫ 0 x ln ⁡ | 2 sin ⁡ t 2 | d t {\displaystyle -\int _{0}^{x}\ln \left|2\sin {\frac {t}{2}}\right|dt} ∑ k = 1 ∞ sin ⁡ k x k 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin kx}{k^{2}}}}

Non-smooth functions

The following functions have period p {\displaystyle p} and take x {\displaystyle x} as their argument. The symbol ⌊ n ⌋ {\displaystyle \lfloor n\rfloor } is the floor function of n {\displaystyle n} and sgn {\displaystyle \operatorname {sgn} } is the sign function.

K means Elliptic integral K(m)

NameFormulaLimitFourier SeriesNotes
Triangle wave 4 p ( x − p 2 ⌊ 2 x p + 1 2 ⌋ ) ( − 1 ) ⌊ 2 x p + 1 2 ⌋ {\displaystyle {\frac {4}{p}}\left(x-{\frac {p}{2}}\left\lfloor {\frac {2x}{p}}+{\frac {1}{2}}\right\rfloor \right)(-1)^{\left\lfloor {\frac {2x}{p}}+{\frac {1}{2}}\right\rfloor }} lim m → 1 − zs ⁡ ( 4 K x p − K , m ) {\displaystyle \lim _{m\rightarrow 1^{-}}\operatorname {zs} \left({\frac {4Kx}{p}}-K,m\right)} 8 π 2 ∑ n o d d ∞ ( − 1 ) ( n − 1 ) / 2 n 2 sin ⁡ ( 2 π n x p ) {\displaystyle {\frac {8}{\pi ^{2}}}\sum _{n\,\mathrm {odd} }^{\infty }{\frac {(-1)^{(n-1)/2}}{n^{2}}}\sin \left({\frac {2\pi nx}{p}}\right)} non-continuous first derivative
Sawtooth wave 2 ( x p − ⌊ 1 2 + x p ⌋ ) {\displaystyle 2\left({\frac {x}{p}}-\left\lfloor {\frac {1}{2}}+{\frac {x}{p}}\right\rfloor \right)} − lim m → 1 − zn ⁡ ( 2 K x p + K , m ) {\displaystyle -\lim _{m\rightarrow 1^{-}}\operatorname {zn} \left({\frac {2Kx}{p}}+K,m\right)} 2 π ∑ n = 1 ∞ ( − 1 ) n − 1 n sin ⁡ ( 2 π n x p ) {\displaystyle {\frac {2}{\pi }}\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{n}}\sin \left({\frac {2\pi nx}{p}}\right)} non-continuous
Square wave sgn ⁡ ( sin ⁡ 2 π x p ) {\displaystyle \operatorname {sgn} \left(\sin {\frac {2\pi x}{p}}\right)} lim m → 1 − sn ⁡ ( 4 K x p , m ) {\displaystyle \lim _{m\rightarrow 1^{-}}\operatorname {sn} \left({\frac {4Kx}{p}},m\right)} 4 π ∑ n o d d ∞ 1 n sin ⁡ ( 2 π n x p ) {\displaystyle {\frac {4}{\pi }}\sum _{n\,\mathrm {odd} }^{\infty }{\frac {1}{n}}\sin \left({\frac {2\pi nx}{p}}\right)} non-continuous
Pulse wave H ( cos ⁡ 2 π x p − cos ⁡ π t p ) {\displaystyle H\left(\cos {\frac {2\pi x}{p}}-\cos {\frac {\pi t}{p}}\right)}

where H {\displaystyle H} is the Heaviside step functiont is how long the pulse stays at 1

t p + ∑ n = 1 ∞ 2 n π sin ⁡ ( π n t p ) cos ⁡ ( 2 π n x p ) {\displaystyle {\frac {t}{p}}+\sum _{n=1}^{\infty }{\frac {2}{n\pi }}\sin \left({\frac {\pi nt}{p}}\right)\cos \left({\frac {2\pi nx}{p}}\right)} non-continuous
Magnitude of sine wave with amplitude, A, and period, p/2 A | sin ⁡ π x p | {\displaystyle A\left|\sin {\frac {\pi x}{p}}\right|} 4 A 2 π + ∑ n = 1 ∞ 4 A π 1 4 n 2 − 1 cos ⁡ 2 π n x p {\displaystyle {\frac {4A}{2\pi }}+\sum _{n=1}^{\infty }{\frac {4A}{\pi }}{\frac {1}{4n^{2}-1}}\cos {\frac {2\pi nx}{p}}} 3: p. 193 non-continuous
Cycloid p − p cos ⁡ ( f ( − 1 ) ( 2 π x p ) ) 2 π {\displaystyle {\frac {p-p\cos \left(f^{(-1)}\left({\frac {2\pi x}{p}}\right)\right)}{2\pi }}}

given f ( x ) = x − sin ⁡ ( x ) {\displaystyle f(x)=x-\sin(x)} and f ( − 1 ) ( x ) {\displaystyle f^{(-1)}(x)} is

its real-valued inverse.

p π ( 3 4 + ∑ n = 1 ∞ J n ⁡ ( n ) − J n − 1 ⁡ ( n ) n cos ⁡ 2 π n x p ) {\displaystyle {\frac {p}{\pi }}{\biggl (}{\frac {3}{4}}+\sum _{n=1}^{\infty }{\frac {\operatorname {J} _{n}(n)-\operatorname {J} _{n-1}(n)}{n}}\cos {\frac {2\pi nx}{p}}{\biggr )}}

where J n ⁡ ( x ) {\displaystyle \operatorname {J} _{n}(x)} is the Bessel Function of the first kind.

non-continuous first derivative
Dirac comb ∑ n = − ∞ ∞ δ ( x − n p ) {\displaystyle \sum _{n=-\infty }^{\infty }\delta (x-np)} lim m → 1 − 2 K ( m ) p π dn ⁡ ( 2 K x p , m ) {\displaystyle \lim _{m\rightarrow 1^{-}}{\frac {2K(m)}{p\pi }}\operatorname {dn} \left({\frac {2Kx}{p}},m\right)} 1 p ∑ n = − ∞ ∞ e 2 n π i x p {\displaystyle {\frac {1}{p}}\sum _{n=-\infty }^{\infty }e^{\frac {2n\pi ix}{p}}} non-continuous
Dirichlet function 1 Q ( x ) = { 1 x ∈ Q 0 x ∉ Q {\displaystyle {\displaystyle \mathbf {1} _{\mathbb {Q} }(x)={\begin{cases}1&x\in \mathbb {Q} \\0&x\notin \mathbb {Q} \end{cases}}}} lim m , n → ∞ cos 2 m ⁡ ( n ! x π ) {\displaystyle \lim _{m,n\rightarrow \infty }\cos ^{2m}(n!x\pi )} -non-continuous

Vector-valued functions

Doubly periodic functions

Notes

References

  1. Formulae are given as Taylor series or derived from other entries.

  2. Orloff, Jeremy. "ES.1803 Fourier Expansion of tan(x)" (PDF). Massachusetts Institute of Technology. Archived from the original (PDF) on 2019-03-31. https://web.archive.org/web/20190331130103/http://web.mit.edu/jorloff/www/18.03-esg/notes/fourier-tan.pdf

  3. Papula, Lothar (2009). Mathematische Formelsammlung: für Ingenieure und Naturwissenschaftler. Vieweg+Teubner Verlag. ISBN 978-3834807571. 978-3834807571