The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals.
Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
We don't have any images related to List of integrals of logarithmic functions yet.
You can add one yourself here.
We don't have any YouTube videos related to List of integrals of logarithmic functions yet.
You can add one yourself here.
We don't have any PDF documents related to List of integrals of logarithmic functions yet.
You can add one yourself here.
We don't have any Books related to List of integrals of logarithmic functions yet.
You can add one yourself here.
We don't have any archived web articles related to List of integrals of logarithmic functions yet.
Integrals involving only logarithmic functions
∫ log a x d x = x log a x − x ln a = x ln a ( ln x − 1 ) {\displaystyle \int \log _{a}x\,dx=x\log _{a}x-{\frac {x}{\ln a}}={\frac {x}{\ln a}}(\ln x-1)} ∫ ln ( a x ) d x = x ln ( a x ) − x = x ( ln ( a x ) − 1 ) {\displaystyle \int \ln(ax)\,dx=x\ln(ax)-x=x(\ln(ax)-1)} ∫ ln ( a x + b ) d x = a x + b a ( ln ( a x + b ) − 1 ) {\displaystyle \int \ln(ax+b)\,dx={\frac {ax+b}{a}}(\ln(ax+b)-1)} ∫ ( ln x ) 2 d x = x ( ln x ) 2 − 2 x ln x + 2 x {\displaystyle \int (\ln x)^{2}\,dx=x(\ln x)^{2}-2x\ln x+2x} ∫ ( ln x ) n d x = ( − 1 ) n n ! x ∑ k = 0 n ( − ln x ) k k ! {\displaystyle \int (\ln x)^{n}\,dx=(-1)^{n}n!x\sum _{k=0}^{n}{\frac {(-\ln x)^{k}}{k!}}} ∫ d x ln x = ln | ln x | + ln x + ∑ k = 2 ∞ ( ln x ) k k ⋅ k ! {\displaystyle \int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{k=2}^{\infty }{\frac {(\ln x)^{k}}{k\cdot k!}}} ∫ d x ln x = li ( x ) {\displaystyle \int {\frac {dx}{\ln x}}=\operatorname {li} (x)} , the logarithmic integral. ∫ d x ( ln x ) n = − x ( n − 1 ) ( ln x ) n − 1 + 1 n − 1 ∫ d x ( ln x ) n − 1 (for n ≠ 1 ) {\displaystyle \int {\frac {dx}{(\ln x)^{n}}}=-{\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ ln f ( x ) d x = x ln f ( x ) − ∫ x f ′ ( x ) f ( x ) d x (for differentiable f ( x ) > 0 ) {\displaystyle \int \ln f(x)\,dx=x\ln f(x)-\int x{\frac {f'(x)}{f(x)}}\,dx\qquad {\mbox{(for differentiable }}f(x)>0{\mbox{)}}}Integrals involving logarithmic and power functions
∫ x m ln x d x = x m + 1 ( ln x m + 1 − 1 ( m + 1 ) 2 ) (for m ≠ − 1 ) {\displaystyle \int x^{m}\ln x\,dx=x^{m+1}\left({\frac {\ln x}{m+1}}-{\frac {1}{(m+1)^{2}}}\right)\qquad {\mbox{(for }}m\neq -1{\mbox{)}}} ∫ x m ( ln x ) n d x = x m + 1 ( ln x ) n m + 1 − n m + 1 ∫ x m ( ln x ) n − 1 d x (for m ≠ − 1 ) {\displaystyle \int x^{m}(\ln x)^{n}\,dx={\frac {x^{m+1}(\ln x)^{n}}{m+1}}-{\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{(for }}m\neq -1{\mbox{)}}} ∫ ( ln x ) n d x x = ( ln x ) n + 1 n + 1 (for n ≠ − 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x}}={\frac {(\ln x)^{n+1}}{n+1}}\qquad {\mbox{(for }}n\neq -1{\mbox{)}}} ∫ ln x d x x m = − ln x ( m − 1 ) x m − 1 − 1 ( m − 1 ) 2 x m − 1 (for m ≠ 1 ) {\displaystyle \int {\frac {\ln x\,dx}{x^{m}}}=-{\frac {\ln x}{(m-1)x^{m-1}}}-{\frac {1}{(m-1)^{2}x^{m-1}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}} ∫ ( ln x ) n d x x m = − ( ln x ) n ( m − 1 ) x m − 1 + n m − 1 ∫ ( ln x ) n − 1 d x x m (for m ≠ 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}dx}{x^{m}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}} ∫ x m d x ( ln x ) n = − x m + 1 ( n − 1 ) ( ln x ) n − 1 + m + 1 n − 1 ∫ x m d x ( ln x ) n − 1 (for n ≠ 1 ) {\displaystyle \int {\frac {x^{m}\,dx}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ d x x ln x = ln | ln x | {\displaystyle \int {\frac {dx}{x\ln x}}=\ln \left|\ln x\right|} ∫ d x x ln x ln ln x = ln | ln | ln x | | {\displaystyle \int {\frac {dx}{x\ln x\ln \ln x}}=\ln \left|\ln \left|\ln x\right|\right|} , etc. ∫ d x x ln ln x = li ( ln x ) {\displaystyle \int {\frac {dx}{x\ln \ln x}}=\operatorname {li} (\ln x)} ∫ d x x n ln x = ln | ln x | + ∑ k = 1 ∞ ( − 1 ) k ( n − 1 ) k ( ln x ) k k ⋅ k ! {\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln \left|\ln x\right|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(n-1)^{k}(\ln x)^{k}}{k\cdot k!}}} ∫ d x x ( ln x ) n = − 1 ( n − 1 ) ( ln x ) n − 1 (for n ≠ 1 ) {\displaystyle \int {\frac {dx}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ ln ( x 2 + a 2 ) d x = x ln ( x 2 + a 2 ) − 2 x + 2 a tan − 1 x a {\displaystyle \int \ln(x^{2}+a^{2})\,dx=x\ln(x^{2}+a^{2})-2x+2a\tan ^{-1}{\frac {x}{a}}} ∫ x x 2 + a 2 ln ( x 2 + a 2 ) d x = 1 4 ln 2 ( x 2 + a 2 ) {\displaystyle \int {\frac {x}{x^{2}+a^{2}}}\ln(x^{2}+a^{2})\,dx={\frac {1}{4}}\ln ^{2}(x^{2}+a^{2})}Integrals involving logarithmic and trigonometric functions
∫ sin ( ln x ) d x = x 2 ( sin ( ln x ) − cos ( ln x ) ) {\displaystyle \int \sin(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))} ∫ cos ( ln x ) d x = x 2 ( sin ( ln x ) + cos ( ln x ) ) {\displaystyle \int \cos(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))}Integrals involving logarithmic and exponential functions
∫ e x ( x ln x − x − 1 x ) d x = e x ( x ln x − x − ln x ) {\displaystyle \int e^{x}\left(x\ln x-x-{\frac {1}{x}}\right)\,dx=e^{x}(x\ln x-x-\ln x)} ∫ 1 e x ( 1 x − ln x ) d x = ln x e x {\displaystyle \int {\frac {1}{e^{x}}}\left({\frac {1}{x}}-\ln x\right)\,dx={\frac {\ln x}{e^{x}}}} ∫ e x ( 1 ln x − 1 x ( ln x ) 2 ) d x = e x ln x {\displaystyle \int e^{x}\left({\frac {1}{\ln x}}-{\frac {1}{x(\ln x)^{2}}}\right)\,dx={\frac {e^{x}}{\ln x}}}n consecutive integrations
For n {\displaystyle n} consecutive integrations, the formula
∫ ln x d x = x ( ln x − 1 ) + C 0 {\displaystyle \int \ln x\,dx=x(\ln x-1)+C_{0}}generalizes to
∫ ⋯ ∫ ln x d x ⋯ d x = x n n ! ( ln x − ∑ k = 1 n 1 k ) + ∑ k = 0 n − 1 C k x k k ! {\displaystyle \int \dotsi \int \ln x\,dx\dotsm dx={\frac {x^{n}}{n!}}\left(\ln \,x-\sum _{k=1}^{n}{\frac {1}{k}}\right)+\sum _{k=0}^{n-1}C_{k}{\frac {x^{k}}{k!}}}See also
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1964. A few integrals are listed on page 69.