Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Jacobi zeta function

In mathematics, the Jacobi zeta function Z(u) is the logarithmic derivative of the Jacobi theta function Θ(u). It is also commonly denoted as zn ⁡ ( u , k ) {\displaystyle \operatorname {zn} (u,k)}

Θ ( u ) = Θ 4 ( π u 2 K ) {\displaystyle \Theta (u)=\Theta _{4}\left({\frac {\pi u}{2K}}\right)} Z ( u ) = ∂ ∂ u ln ⁡ Θ ( u ) {\displaystyle Z(u)={\frac {\partial }{\partial u}}\ln \Theta (u)} = Θ ′ ( u ) Θ ( u ) {\displaystyle ={\frac {\Theta '(u)}{\Theta (u)}}} 2 Z ( ϕ | m ) = E ( ϕ | m ) − E ( m ) K ( m ) F ( ϕ | m ) {\displaystyle Z(\phi |m)=E(\phi |m)-{\frac {E(m)}{K(m)}}F(\phi |m)} 3 Where E, K, and F are generic Incomplete Elliptical Integrals of the first and second kind. Jacobi Zeta Functions being kinds of Jacobi theta functions have applications to all their relevant fields and application. zn ⁡ ( u , k ) = Z ( u ) = ∫ 0 u dn 2 ⁡ v − E K d v {\displaystyle \operatorname {zn} (u,k)=Z(u)=\int _{0}^{u}\operatorname {dn} ^{2}v-{\frac {E}{K}}dv} 4 This relates Jacobi's common notation of, dn ⁡ u = 1 − m sin ⁡ θ 2 {\displaystyle \operatorname {dn} {u}={\sqrt {1-m\sin {\theta }^{2}}}} , sn ⁡ u = sin ⁡ θ {\displaystyle \operatorname {sn} u=\sin {\theta }} , cn ⁡ u = cos ⁡ θ {\displaystyle \operatorname {cn} u=\cos {\theta }} .5 to Jacobi's Zeta function. Some additional relations include , zn ⁡ ( u , k ) = π 2 K Θ 1 ′ π u 2 K Θ 1 π u 2 K − cn ⁡ u dn ⁡ u sn ⁡ u {\displaystyle \operatorname {zn} (u,k)={\frac {\pi }{2K}}{\frac {\Theta _{1}'{\frac {\pi u}{2K}}}{\Theta _{1}{\frac {\pi u}{2K}}}}-{\frac {\operatorname {cn} {u}\,\operatorname {dn} {u}}{\operatorname {sn} {u}}}} 6 zn ⁡ ( u , k ) = π 2 K Θ 2 ′ π u 2 K Θ 2 π u 2 K − sn ⁡ u dn ⁡ u cn ⁡ u {\displaystyle \operatorname {zn} (u,k)={\frac {\pi }{2K}}{\frac {\Theta _{2}'{\frac {\pi u}{2K}}}{\Theta _{2}{\frac {\pi u}{2K}}}}-{\frac {\operatorname {sn} {u}\,\operatorname {dn} {u}}{\operatorname {cn} {u}}}} 7 zn ⁡ ( u , k ) = π 2 K Θ 3 ′ π u 2 K Θ 3 π u 2 K − k 2 sn ⁡ u cn ⁡ u dn ⁡ u {\displaystyle \operatorname {zn} (u,k)={\frac {\pi }{2K}}{\frac {\Theta _{3}'{\frac {\pi u}{2K}}}{\Theta _{3}{\frac {\pi u}{2K}}}}-k^{2}{\frac {\operatorname {sn} {u}\,\operatorname {cn} {u}}{\operatorname {dn} {u}}}} 8 zn ⁡ ( u , k ) = π 2 K Θ 4 ′ π u 2 K Θ 4 π u 2 K {\displaystyle \operatorname {zn} (u,k)={\frac {\pi }{2K}}{\frac {\Theta _{4}'{\frac {\pi u}{2K}}}{\Theta _{4}{\frac {\pi u}{2K}}}}} 9
We don't have any images related to Jacobi zeta function yet.
We don't have any YouTube videos related to Jacobi zeta function yet.
We don't have any PDF documents related to Jacobi zeta function yet.
We don't have any Books related to Jacobi zeta function yet.
We don't have any archived web articles related to Jacobi zeta function yet.

References

  1. Gradshteyn, Ryzhik, I.S., I.M. "Table of Integrals, Series, and Products" (PDF). booksite.com.{{cite web}}: CS1 maint: multiple names: authors list (link) https://booksite.elsevier.com/samplechapters/9780123736376/Sample_Chapters/01~Front_Matter.pdf

  2. Abramowitz, Milton; Stegun, Irene A. (2012-04-30). Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Courier Corporation. ISBN 978-0-486-15824-2. 978-0-486-15824-2

  3. Weisstein, Eric W. "Jacobi Zeta Function". mathworld.wolfram.com. Retrieved 2019-12-02. http://mathworld.wolfram.com/JacobiZetaFunction.html

  4. Gradshteyn, Ryzhik, I.S., I.M. "Table of Integrals, Series, and Products" (PDF). booksite.com.{{cite web}}: CS1 maint: multiple names: authors list (link) https://booksite.elsevier.com/samplechapters/9780123736376/Sample_Chapters/01~Front_Matter.pdf

  5. Gradshteyn, Ryzhik, I.S., I.M. "Table of Integrals, Series, and Products" (PDF). booksite.com.{{cite web}}: CS1 maint: multiple names: authors list (link) https://booksite.elsevier.com/samplechapters/9780123736376/Sample_Chapters/01~Front_Matter.pdf

  6. Gradshteyn, Ryzhik, I.S., I.M. "Table of Integrals, Series, and Products" (PDF). booksite.com.{{cite web}}: CS1 maint: multiple names: authors list (link) https://booksite.elsevier.com/samplechapters/9780123736376/Sample_Chapters/01~Front_Matter.pdf

  7. Gradshteyn, Ryzhik, I.S., I.M. "Table of Integrals, Series, and Products" (PDF). booksite.com.{{cite web}}: CS1 maint: multiple names: authors list (link) https://booksite.elsevier.com/samplechapters/9780123736376/Sample_Chapters/01~Front_Matter.pdf

  8. Gradshteyn, Ryzhik, I.S., I.M. "Table of Integrals, Series, and Products" (PDF). booksite.com.{{cite web}}: CS1 maint: multiple names: authors list (link) https://booksite.elsevier.com/samplechapters/9780123736376/Sample_Chapters/01~Front_Matter.pdf

  9. Gradshteyn, Ryzhik, I.S., I.M. "Table of Integrals, Series, and Products" (PDF). booksite.com.{{cite web}}: CS1 maint: multiple names: authors list (link) https://booksite.elsevier.com/samplechapters/9780123736376/Sample_Chapters/01~Front_Matter.pdf