Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Fluorine
Chemical element with atomic number 9 and a atomic mass of 19

Fluorine is a highly reactive chemical element with symbol F and atomic number 9. It is the lightest halogen and exists as a pale yellow diatomic gas at standard conditions. Fluorine was first isolated by Henri Moissan in 1886 using electrolysis. Its largest application is in uranium enrichment. Commercial uses mainly involve fluorine compounds such as hydrogen fluoride and organofluorine compounds like PTFE. The fluoride ion helps prevent dental cavities and is used in toothpaste and water fluoridation. However, fluorocarbon gases are potent greenhouse gases with significant global-warming potentials.

Related Image Collections Add Image
We don't have any YouTube videos related to Fluorine yet.
We don't have any PDF documents related to Fluorine yet.
We don't have any Books related to Fluorine yet.

Characteristics

Electron configuration

Fluorine atoms have nine electrons, one fewer than neon, and electron configuration 1s22s22p5: two electrons in a filled inner shell and seven in an outer shell requiring one more to be filled. The outer electrons are ineffective at nuclear shielding, and experience a high effective nuclear charge of 9 − 2 = 7; this affects the atom's physical properties.3

Fluorine's first ionization energy is third-highest among all elements, behind helium and neon,4 which complicates the removal of electrons from neutral fluorine atoms. It also has a high electron affinity, second only to chlorine,5 and tends to capture an electron to become isoelectronic with the noble gas neon;6 it has the highest electronegativity of any reactive element.7 Fluorine atoms have a small covalent radius of around 60 picometers, similar to those of its period neighbors oxygen and neon.8910

Reactivity

The bond energy of difluorine is much lower than that of either Cl2 or Br2 and similar to the easily cleaved peroxide bond; this, along with high electronegativity, accounts for fluorine's easy dissociation, high reactivity, and strong bonds to non-fluorine atoms.1112 Conversely, bonds to other atoms are very strong because of fluorine's high electronegativity. Unreactive substances like powdered steel, glass fragments, and asbestos fibers react quickly with cold fluorine gas; wood and water spontaneously combust under a fluorine jet.1314

Reactions of elemental fluorine with metals require varying conditions. Alkali metals cause explosions and alkaline earth metals display vigorous activity in bulk; to prevent passivation from the formation of metal fluoride layers, most other metals such as aluminium and iron must be powdered,15 and noble metals require pure fluorine gas at 300–450 °C (572–842 °F).16 Some solid nonmetals (sulfur, phosphorus) react vigorously in liquid fluorine.17 Hydrogen sulfide18 and sulfur dioxide19 combine readily with fluorine, the latter sometimes explosively; sulfuric acid exhibits much less activity, requiring elevated temperatures.20

Hydrogen, like some of the alkali metals, reacts explosively with fluorine.21 Carbon, as lamp black, reacts at room temperature to yield tetrafluoromethane. Graphite combines with fluorine above 400 °C (752 °F) to produce non-stoichiometric carbon monofluoride; higher temperatures generate gaseous fluorocarbons, sometimes with explosions.22 Carbon dioxide and carbon monoxide react at or just above room temperature,23 whereas paraffins and other organic chemicals generate strong reactions:24 even completely substituted haloalkanes such as carbon tetrachloride, normally incombustible, may explode.25 Although nitrogen trifluoride is stable, nitrogen requires an electric discharge at elevated temperatures for reaction with fluorine to occur, due to the very strong triple bond in elemental nitrogen;26 ammonia may react explosively.2728 Oxygen does not combine with fluorine under ambient conditions, but can be made to react using electric discharge at low temperatures and pressures; the products tend to disintegrate into their constituent elements when heated.293031 Heavier halogens32 react readily with fluorine as does the noble gas radon;33 of the other noble gases, only xenon and krypton react, and only under special conditions.34 Argon does not react with fluorine gas; however, it does form a compound with fluorine, argon fluorohydride.

Phases

Main article: Phases of fluorine

At room temperature, fluorine is a gas of diatomic molecules,35 pale yellow when pure (sometimes described as yellow-green).36 It has a characteristic halogen-like pungent and biting odor detectable at 20 ppb.37 Fluorine condenses into a bright yellow liquid at −188 °C (−306.4 °F), a transition temperature similar to those of oxygen and nitrogen.38

Fluorine has two solid forms, α- and β-fluorine. The latter crystallizes at −220 °C (−364.0 °F) and is transparent and soft, with the same disordered cubic structure of freshly crystallized solid oxygen,3940 unlike the orthorhombic systems of other solid halogens.4142 Further cooling to −228 °C (−378.4 °F) induces a phase transition into opaque and hard α-fluorine, which has a monoclinic structure with dense, angled layers of molecules. The transition from β- to α-fluorine is more exothermic than the condensation of fluorine, and can be violent.4344

Isotopes

Main article: Isotopes of fluorine

Only one isotope of fluorine occurs naturally in abundance, the stable isotope 19F.45 It has a high magnetogyric ratio46 and exceptional sensitivity to magnetic fields; because it is also the only stable isotope, it is used in magnetic resonance imaging.47 Eighteen radioisotopes with mass numbers 13–31 have been synthesized, of which 18F is the most stable with a half-life of 109.734 minutes.4849 18F is a natural trace radioisotope produced by cosmic ray spallation of atmospheric argon as well as by reaction of protons with natural oxygen: 18O + p → 18F + n.50 Other radioisotopes have half-lives less than 70 seconds; most decay in less than half a second.51 The isotopes 17F and 18F undergo β+ decay and electron capture, lighter isotopes decay by proton emission, and those heavier than 19F undergo β− decay (the heaviest ones with delayed neutron emission).5253 Two metastable isomers of fluorine are known, 18mF, with a half-life of 162(7) nanoseconds, and 26mF, with a half-life of 2.2(1) milliseconds.54

Occurrence

Main article: Origin and occurrence of fluorine

Universe

Solar System abundances55
Atomic numberElementRelative amount
6Carbon4,800
7Nitrogen1,500
8Oxygen8,800
9Fluorine1
10Neon1,400
11Sodium24
12Magnesium430

Among the lighter elements, fluorine's abundance value of 400 ppb (parts per billion) – 24th among elements in the universe – is exceptionally low: other elements from carbon to magnesium are twenty or more times as common.56 This is because stellar nucleosynthesis processes bypass fluorine, and any fluorine atoms otherwise created have high nuclear cross sections, allowing collisions with hydrogen or helium to generate oxygen or neon respectively.5758

Beyond this transient existence, three explanations have been proposed for the presence of fluorine:5960

Earth

See also: List of countries by fluorite production

Fluorine is the 13th most abundant element in Earth's crust at 600–700 ppm (parts per million) by mass.61 Though believed not to occur naturally, elemental fluorine has been shown to be present as an occlusion in antozonite, a variant of fluorite.62 Most fluorine exists as fluoride-containing minerals. Fluorite, fluorapatite and cryolite are the most industrially significant.6364 Fluorite (CaF2), also known as fluorspar, abundant worldwide, is the main source of fluoride, and hence fluorine. China and Mexico are the major suppliers.6566676869 Fluorapatite (Ca5(PO4)3F), which contains most of the world's fluoride, is an inadvertent source of fluoride as a byproduct of fertilizer production.70 Cryolite (Na3AlF6), used in the production of aluminium, is the most fluorine-rich mineral. Economically viable natural sources of cryolite have been exhausted, and most is now synthesised commercially.71

Other minerals such as topaz contain fluorine. Fluorides, unlike other halides, are insoluble and do not occur in commercially favorable concentrations in saline waters.72 Trace quantities of organofluorines of uncertain origin have been detected in volcanic eruptions and geothermal springs.73 The existence of gaseous fluorine in crystals, suggested by the smell of crushed antozonite, is contentious;7475 a 2012 study reported the presence of 0.04% F2 by weight in antozonite, attributing these inclusions to radiation from the presence of tiny amounts of uranium.76

History

Main article: History of fluorine

Early discoveries

In 1529, Georgius Agricola described fluorite as an additive used to lower the melting point of metals during smelting.777879 He penned the Latin word fluorēs (fluor, flow) for fluorite rocks. The name later evolved into fluorspar (still commonly used) and then fluorite.808182 The composition of fluorite was later determined to be calcium difluoride.83

Hydrofluoric acid was used in glass etching from 1720 onward.84 Andreas Sigismund Marggraf first characterized it in 1764 when he heated fluorite with sulfuric acid, and the resulting solution corroded its glass container.8586 Swedish chemist Carl Wilhelm Scheele repeated the experiment in 1771, and named the acidic product fluss-spats-syran (fluorspar acid).8788 In 1810, the French physicist André-Marie Ampère suggested that hydrogen and an element analogous to chlorine constituted hydrofluoric acid.89 He also proposed in a letter to Sir Humphry Davy dated August 26, 1812 that this then-unknown substance may be named fluorine from fluoric compounds and the -ine suffix of other halogens.9091 This word, often with modifications, is used in most European languages; however, Greek, Russian, and some others, following Ampère's later suggestion, use the name ftor or derivatives, from the Greek φθόριος (phthorios, destructive).92 The New Latin name fluorum gave the element its current symbol F; Fl was used in early papers.9394

Isolation

Initial studies on fluorine were so dangerous that several 19th-century experimenters were deemed "fluorine martyrs" after misfortunes with hydrofluoric acid.95 Isolation of elemental fluorine was hindered by the extreme corrosiveness of both elemental fluorine itself and hydrogen fluoride, as well as the lack of a simple and suitable electrolyte.9697 Edmond Frémy postulated that electrolysis of pure hydrogen fluoride to generate fluorine was feasible and devised a method to produce anhydrous samples from acidified potassium bifluoride; instead, he discovered that the resulting (dry) hydrogen fluoride did not conduct electricity.9899100 Frémy's former student Henri Moissan persevered, and after much trial and error found that a mixture of potassium bifluoride and dry hydrogen fluoride was a conductor, enabling electrolysis. To prevent rapid corrosion of the platinum in his electrochemical cells, he cooled the reaction to extremely low temperatures in a special bath and forged cells from a more resistant mixture of platinum and iridium, and used fluorite stoppers.101102 In 1886, after 74 years of effort by many chemists, Moissan isolated elemental fluorine.103104

In 1906, two months before his death, Moissan received the Nobel Prize in Chemistry,105 with the following citation:106

[I]n recognition of the great services rendered by him in his investigation and isolation of the element fluorine ... The whole world has admired the great experimental skill with which you have studied that savage beast among the elements.107

Later uses

The Frigidaire division of General Motors (GM) experimented with chlorofluorocarbon refrigerants in the late 1920s, and Kinetic Chemicals was formed as a joint venture between GM and DuPont in 1930 hoping to market Freon-12 (CCl2F2) as one such refrigerant. It replaced earlier and more toxic compounds, increased demand for kitchen refrigerators, and became profitable; by 1949 DuPont had bought out Kinetic and marketed several other Freon compounds.108109110111 Polytetrafluoroethylene (Teflon) was serendipitously discovered in 1938 by Roy J. Plunkett while working on refrigerants at Kinetic, and its superlative chemical and thermal resistance lent it to accelerated commercialization and mass production by 1941.112113114

Large-scale production of elemental fluorine began during World War II. Germany used high-temperature electrolysis to make tons of the planned incendiary chlorine trifluoride115 and the Manhattan Project used huge quantities to produce uranium hexafluoride for uranium enrichment. Since UF6 is as corrosive as fluorine, gaseous diffusion plants required special materials: nickel for membranes, fluoropolymers for seals, and liquid fluorocarbons as coolants and lubricants. This burgeoning nuclear industry later drove post-war fluorochemical development.116

Compounds

Main article: Fluorine compounds

Fluorine has a rich chemistry, encompassing organic and inorganic domains. It combines with metals, nonmetals, metalloids, and most noble gases.117 Fluorine's high electron affinity results in a preference for ionic bonding; when it forms covalent bonds, these are polar, and almost always single.118119120

Oxidation states

In compounds, fluorine almost exclusively assumes an oxidation state of −1. Fluorine in F2 is defined to have oxidation state 0. The unstable species F−2 and F−3, which decompose at around 40 K, have intermediate oxidation states;121 F+4 and a few related species are predicted to be stable.122

Metals

See also: Fluoride volatility

Alkali metals form ionic and highly soluble monofluorides; these have the cubic arrangement of sodium chloride and analogous chlorides.123124 Alkaline earth difluorides possess strong ionic bonds but are insoluble in water,125 with the exception of beryllium difluoride, which also exhibits some covalent character and has a quartz-like structure.126 Rare earth elements and many other metals form mostly ionic trifluorides.127128129

Covalent bonding first comes to prominence in the tetrafluorides: those of zirconium, hafnium130131 and several actinides132 are ionic with high melting points,133134 while those of titanium,135 vanadium,136 and niobium are polymeric,137 melting or decomposing at no more than 350 °C (662 °F).138 Pentafluorides continue this trend with their linear polymers and oligomeric complexes.139140141 Thirteen metal hexafluorides are known,142 all octahedral, and are mostly volatile solids but for liquid MoF6 and ReF6, and gaseous WF6.143144145 Rhenium heptafluoride, the only characterized metal heptafluoride, is a low-melting molecular solid with pentagonal bipyramidal molecular geometry.146 Gold heptafluoride is a low-temperature complex of molecular F2 with AuF5, with NPA calculations indicating that the fluorine in the F2 ligand is nearly neutral while those in the AuF5 portion of the molecule have strong negative partial charges. This is consistent with the F2 ligand representing fluorine in the zero oxidation state.147 Metal fluorides with more fluorine atoms are particularly reactive.148

Structural progression of metal fluorides
Sodium fluoride, ionicBismuth pentafluoride, polymericRhenium heptafluoride, molecular

Hydrogen

Main articles: Hydrogen fluoride and hydrofluoric acid

Hydrogen and fluorine combine to yield hydrogen fluoride, in which discrete molecules form clusters by hydrogen bonding, resembling water more than hydrogen chloride.149150151 It boils at a much higher temperature than heavier hydrogen halides and unlike them is miscible with water.152 Hydrogen fluoride readily hydrates on contact with water to form aqueous hydrogen fluoride, also known as hydrofluoric acid. Unlike the other hydrohalic acids, which are strong, hydrofluoric acid is a weak acid at low concentrations.153154 However, it can attack glass, something the other acids cannot do.[134]

Other reactive nonmetals

Binary fluorides of metalloids and p-block nonmetals are generally covalent and volatile, with varying reactivities. Period 3 and heavier nonmetals can form hypervalent fluorides.155

Boron trifluoride is planar and possesses an incomplete octet. It functions as a Lewis acid and combines with Lewis bases like ammonia to form adducts.156 Carbon tetrafluoride is tetrahedral and inert;157 its group analogues, silicon and germanium tetrafluoride, are also tetrahedral158 but behave as Lewis acids.159160 The pnictogens form trifluorides that increase in reactivity and basicity with higher molecular weight, although nitrogen trifluoride resists hydrolysis and is not basic.161 The pentafluorides of phosphorus, arsenic, and antimony are more reactive than their respective trifluorides, with antimony pentafluoride the strongest neutral Lewis acid known, only behind gold pentafluoride.162163164

Chalcogens have diverse fluorides: unstable difluorides have been reported for oxygen (the only known compound with oxygen in an oxidation state of +2), sulfur, and selenium; tetrafluorides and hexafluorides exist for sulfur, selenium, and tellurium. The latter are stabilized by more fluorine atoms and lighter central atoms, so sulfur hexafluoride is especially inert.165166 Chlorine, bromine, and iodine can each form mono-, tri-, and pentafluorides, but only iodine heptafluoride has been characterized among possible interhalogen heptafluorides.167 Many of them are powerful sources of fluorine atoms, and industrial applications using chlorine trifluoride require precautions similar to those using fluorine.168169

Noble gases

Main article: Noble gas compound

Noble gases, having complete electron shells, defied reaction with other elements until 1962 when Neil Bartlett reported synthesis of xenon hexafluoroplatinate;170 xenon difluoride, tetrafluoride, hexafluoride, and multiple oxyfluorides have been isolated since then.171 Among other noble gases, krypton forms a difluoride,172 and radon and fluorine generate a solid suspected to be radon difluoride.173174 Binary fluorides of lighter noble gases are exceptionally unstable: argon and hydrogen fluoride combine under extreme conditions to give argon fluorohydride.175 Helium has no long-lived fluorides,176 and no neon fluoride has ever been observed;177 helium fluorohydride has been detected for milliseconds at high pressures and low temperatures.178

Organic compounds

Main article: Organofluorine chemistry

The carbon–fluorine bond is organic chemistry's strongest,179 and gives stability to organofluorines.180 It is almost non-existent in nature, but is used in artificial compounds. Research in this area is usually driven by commercial applications;181 the compounds involved are diverse and reflect the complexity inherent in organic chemistry.182

Discrete molecules

Main articles: Fluorocarbon and Perfluorinated compound

The substitution of hydrogen atoms in an alkane by progressively more fluorine atoms gradually alters several properties: melting and boiling points are lowered, density increases, solubility in hydrocarbons decreases and overall stability increases. Perfluorocarbons,183 in which all hydrogen atoms are substituted, are insoluble in most organic solvents, reacting at ambient conditions only with sodium in liquid ammonia.184

The term perfluorinated compound is used for what would otherwise be a perfluorocarbon if not for the presence of a functional group,185186 often a carboxylic acid. These compounds share many properties with perfluorocarbons such as stability and hydrophobicity,187 while the functional group augments their reactivity, enabling them to adhere to surfaces or act as surfactants.188 Fluorosurfactants, in particular, can lower the surface tension of water more than their hydrocarbon-based analogues. Fluorotelomers, which have some unfluorinated carbon atoms near the functional group, are also regarded as perfluorinated.189

Polymers

Polymers exhibit the same stability increases afforded by fluorine substitution (for hydrogen) in discrete molecules; their melting points generally increase too.190 Polytetrafluoroethylene (PTFE), the simplest fluoropolymer and perfluoro analogue of polyethylene with structural unit –CF2–, demonstrates this change as expected, but its very high melting point makes it difficult to mold.191 Various PTFE derivatives are less temperature-tolerant but easier to mold: fluorinated ethylene propylene replaces some fluorine atoms with trifluoromethyl groups, perfluoroalkoxy alkanes do the same with trifluoromethoxy groups,192 and Nafion contains perfluoroether side chains capped with sulfonic acid groups.193194 Other fluoropolymers retain some hydrogen atoms; polyvinylidene fluoride has half the fluorine atoms of PTFE and polyvinyl fluoride has a quarter, but both behave much like perfluorinated polymers.195

Production

Elemental fluorine and virtually all fluorine compounds are produced from hydrogen fluoride or its aqueous solution, hydrofluoric acid. Hydrogen fluoride is produced in kilns by the endothermic reaction of fluorite (CaF2) with sulfuric acid:196

CaF2 + H2SO4 → 2 HF(g) + CaSO4

The gaseous HF can then be absorbed in water or liquefied.197

About 20% of manufactured HF is a byproduct of fertilizer production, which produces hexafluorosilicic acid (H2SiF6), which can be degraded to release HF thermally and by hydrolysis:

H2SiF6 → 2 HF + SiF4 SiF4 + 2 H2O → 4 HF + SiO2

Industrial routes to F2

Moissan's method is used to produce industrial quantities of fluorine, via the electrolysis of a potassium bifluoride/hydrogen fluoride mixture: hydrogen ions are reduced at a steel container cathode and fluoride ions are oxidized at a carbon block anode, under 8–12 volts, to generate hydrogen and fluorine gas respectively.198199 Temperatures are elevated, KF•2HF melting at 70 °C (158 °F) and being electrolyzed at 70–130 °C (158–266 °F). KF, which acts to provide electrical conductivity, is essential since pure HF cannot be electrolyzed because it is virtually non-conductive.200201202 Fluorine can be stored in steel cylinders that have passivated interiors, at temperatures below 200 °C (392 °F); otherwise nickel can be used.203204 Regulator valves and pipework are made of nickel, the latter possibly using Monel instead.205 Frequent passivation, along with the strict exclusion of water and greases, must be undertaken. In the laboratory, glassware may carry fluorine gas under low pressure and anhydrous conditions;206 some sources instead recommend nickel-Monel-PTFE systems.207

Laboratory routes

While preparing for a 1986 conference to celebrate the centennial of Moissan's achievement, Karl O. Christe reasoned that chemical fluorine generation should be feasible since some metal fluoride anions have no stable neutral counterparts; their acidification potentially triggers oxidation instead. He devised a method which evolves fluorine at high yield and atmospheric pressure:208

2 KMnO4 + 2 KF + 10 HF + 3 H2O2 → 2 K2MnF6 + 8 H2O + 3 O2↑ 2 K2MnF6 + 4 SbF5 → 4 KSbF6 + 2 MnF3 + F2↑

Christe later commented that the reactants "had been known for more than 100 years and even Moissan could have come up with this scheme."209 As late as 2008, some references still asserted that fluorine was too reactive for any chemical isolation.210

Industrial applications

Main article: Fluorochemical industry

Fluorite mining, which supplies most global fluorine, peaked in 1989 when 5.6 million metric tons of ore were extracted. Chlorofluorocarbon restrictions lowered this to 3.6 million tons in 1994; production has since been increasing. Around 4.5 million tons of ore and revenue of US$550 million were generated in 2003; later reports estimated 2011 global fluorochemical sales at $15 billion and predicted 2016–18 production figures of 3.5 to 5.9 million tons, and revenue of at least $20 billion.211212213214215 Froth flotation separates mined fluorite into two main metallurgical grades of equal proportion: 60–85% pure metspar is almost all used in iron smelting whereas 97%+ pure acidspar is mainly converted to the key industrial intermediate hydrogen fluoride.216217218

See also: Industrial gas

At least 17,000 metric tons of fluorine are produced each year. It costs only $5–8 per kilogram as uranium or sulfur hexafluoride, but many times more as an element because of handling challenges. Most processes using free fluorine in large amounts employ in situ generation under vertical integration.219

The largest application of fluorine gas, consuming up to 7,000 metric tons annually, is in the preparation of UF6 for the nuclear fuel cycle. Fluorine is used to fluorinate uranium tetrafluoride, itself formed from uranium dioxide and hydrofluoric acid.220 Fluorine is monoisotopic, so any mass differences between UF6 molecules are due to the presence of 235U or 238U, enabling uranium enrichment via gaseous diffusion or gas centrifuge.221222 About 6,000 metric tons per year go into producing the inert dielectric SF6 for high-voltage transformers and circuit breakers, eliminating the need for hazardous polychlorinated biphenyls associated with oil-filled devices.223 Several fluorine compounds are used in electronics: rhenium and tungsten hexafluoride in chemical vapor deposition, tetrafluoromethane in plasma etching224225226 and nitrogen trifluoride in cleaning equipment.227 Fluorine is also used in the synthesis of organic fluorides, but its reactivity often necessitates conversion first to the gentler ClF3, BrF3, or IF5, which together allow calibrated fluorination. Fluorinated pharmaceuticals use sulfur tetrafluoride instead.228

Inorganic fluorides

As with other iron alloys, around 3 kg (6.6 lb) metspar is added to each metric ton of steel; the fluoride ions lower its melting point and viscosity.229230 Alongside its role as an additive in materials like enamels and welding rod coats, most acidspar is reacted with sulfuric acid to form hydrofluoric acid, which is used in steel pickling, glass etching and alkane cracking.231 One-third of HF goes into synthesizing cryolite and aluminium trifluoride, both fluxes in the Hall–Héroult process for aluminium extraction; replenishment is necessitated by their occasional reactions with the smelting apparatus. Each metric ton of aluminium requires about 23 kg (51 lb) of flux.232233 Fluorosilicates consume the second largest portion, with sodium fluorosilicate used in water fluoridation and laundry effluent treatment, and as an intermediate en route to cryolite and silicon tetrafluoride.234 Other important inorganic fluorides include those of cobalt, nickel, and ammonium.235236237

Organic fluorides

Organofluorides consume over 20% of mined fluorite and over 40% of hydrofluoric acid, with refrigerant gases dominating and fluoropolymers increasing their market share.238239 Surfactants are a minor application but generate over $1 billion in annual revenue.240 Due to the danger from direct hydrocarbon–fluorine reactions above −150 °C (−238 °F), industrial fluorocarbon production is indirect, mostly through halogen exchange reactions such as Swarts fluorination, in which chlorocarbon chlorines are substituted for fluorines by hydrogen fluoride under catalysts. Electrochemical fluorination subjects hydrocarbons to electrolysis in hydrogen fluoride, and the Fowler process treats them with solid fluorine carriers like cobalt trifluoride.241242

Refrigerant gases

See also: Refrigerant

Halogenated refrigerants, termed Freons in informal contexts,243 are identified by R-numbers that denote the amount of fluorine, chlorine, carbon, and hydrogen present.244245 Chlorofluorocarbons (CFCs) like R-11, R-12, and R-114 once dominated organofluorines, peaking in production in the 1980s. Used for air conditioning systems, propellants and solvents, their production was below one-tenth of this peak by the early 2000s, after widespread international prohibition.246 Hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) were designed as replacements; their synthesis consumes more than 90% of the fluorine in the organic industry. Important HCFCs include R-22, chlorodifluoromethane, and R-141b. The main HFC is R-134a247 with a new type of molecule HFO-1234yf, a Hydrofluoroolefin (HFO) coming to prominence owing to its global warming potential of less than 1% that of HFC-134a.248

Polymers

Main article: Fluoropolymer

About 180,000 metric tons of fluoropolymers were produced in 2006 and 2007, generating over $3.5 billion revenue per year.249 The global market was estimated at just under $6 billion in 2011.250 Fluoropolymers can only be formed by polymerizing free radicals.251

Polytetrafluoroethylene (PTFE), sometimes called by its DuPont name Teflon,252 represents 60–80% by mass of the world's fluoropolymer production.253 The largest application is in electrical insulation since PTFE is an excellent dielectric. It is also used in the chemical industry where corrosion resistance is needed, in coating pipes, tubing, and gaskets. Another major use is in PFTE-coated fiberglass cloth for stadium roofs. The major consumer application is for non-stick cookware.254 Jerked PTFE film becomes expanded PTFE (ePTFE), a fine-pored membrane sometimes referred to by the brand name Gore-Tex and used for rainwear, protective apparel, and filters; ePTFE fibers may be made into seals and dust filters.255 Other fluoropolymers, including fluorinated ethylene propylene, mimic PTFE's properties and can substitute for it; they are more moldable, but also more costly and have lower thermal stability. Films from two different fluoropolymers replace glass in solar cells.256257

The chemically resistant (but expensive) fluorinated ionomers are used as electrochemical cell membranes, of which the first and most prominent example is Nafion. Developed in the 1960s, it was initially deployed as fuel cell material in spacecraft and then replaced mercury-based chloralkali process cells. Recently, the fuel cell application has reemerged with efforts to install proton exchange membrane fuel cells into automobiles.258259260 Fluoroelastomers such as Viton are crosslinked fluoropolymer mixtures mainly used in O-rings;261 perfluorobutane (C4F10) is used as a fire-extinguishing agent.262

Surfactants

Main articles: Fluorinated surfactant and Durable water repellent

Fluorosurfactants are small organofluorine molecules used for repelling water and stains. Although expensive (comparable to pharmaceuticals at $200–2000 per kilogram), they yielded over $1 billion in annual revenues by 2006; Scotchgard alone generated over $300 million in 2000.263264265 Fluorosurfactants are a minority in the overall surfactant market, most of which is taken up by much cheaper hydrocarbon-based products. Applications in paints are burdened by compounding costs; this use was valued at only $100 million in 2006.266

Agrichemicals

About 30% of agrichemicals contain fluorine,267 most of them herbicides and fungicides with a few crop regulators. Fluorine substitution, usually of a single atom or at most a trifluoromethyl group, is a robust modification with effects analogous to fluorinated pharmaceuticals: increased biological stay time, membrane crossing, and altering of molecular recognition.268 Trifluralin is a prominent example, with large-scale use in the U.S. as a weedkiller,269270 but it is a suspected carcinogen and has been banned in many European countries.271 Sodium monofluoroacetate (1080) is a mammalian poison in which one sodium acetate hydrogen is replaced with fluorine; it disrupts cell metabolism by replacing acetate in the citric acid cycle. First synthesized in the late 19th century, it was recognized as an insecticide in the early 20th century, and was later deployed in its current use. New Zealand, the largest consumer of 1080, uses it to protect kiwis from the invasive Australian common brushtail possum.272 Europe and the U.S. have banned 1080.273274275

Medicinal applications

Dental care

Main articles: Fluoride therapy, Water fluoridation, and Water fluoridation controversy

Population studies from the mid-20th century onwards show topical fluoride reduces dental caries. This was first attributed to the conversion of tooth enamel hydroxyapatite into the more durable fluorapatite, but studies on pre-fluoridated teeth refuted this hypothesis, and current theories involve fluoride aiding enamel growth in small caries.276 After studies of children in areas where fluoride was naturally present in drinking water, controlled public water supply fluoridation to fight tooth decay277 began in the 1940s and is now applied to water supplying 6 percent of the global population, including two-thirds of Americans.278279 Reviews of the scholarly literature in 2000 and 2007 associated water fluoridation with a significant reduction of tooth decay in children.280 Despite such endorsements and evidence of no adverse effects other than mostly benign dental fluorosis,281 opposition still exists on ethical and safety grounds.282283 The benefits of fluoridation have lessened, possibly due to other fluoride sources, but are still measurable in low-income groups.284 Sodium monofluorophosphate and sometimes sodium or tin(II) fluoride are often found in fluoride toothpastes, first introduced in the U.S. in 1955 and now ubiquitous in developed countries, alongside fluoridated mouthwashes, gels, foams, and varnishes.285286

Pharmaceuticals

Twenty percent of modern pharmaceuticals contain fluorine.287 One of these, the cholesterol-reducer atorvastatin (Lipitor), made more revenue than any other drug until it became generic in 2011.288 The combination asthma prescription Seretide, a top-ten revenue drug in the mid-2000s, contains two active ingredients, one of which – fluticasone – is fluorinated.289 Many drugs are fluorinated to delay inactivation and lengthen dosage periods because the carbon–fluorine bond is very stable.290 Fluorination also increases lipophilicity because the bond is more hydrophobic than the carbon–hydrogen bond, and this often helps in cell membrane penetration and hence bioavailability.291

Tricyclics and other pre-1980s antidepressants had several side effects due to their non-selective interference with neurotransmitters other than the serotonin target; the fluorinated fluoxetine was selective and one of the first to avoid this problem. Many current antidepressants receive this same treatment, including the selective serotonin reuptake inhibitors: citalopram, its enantiomer escitalopram, and fluvoxamine and paroxetine.292293 Quinolones are artificial broad-spectrum antibiotics that are often fluorinated to enhance their effects. These include ciprofloxacin and levofloxacin.294295296297 Fluorine also finds use in steroids:298 fludrocortisone is a blood pressure-raising mineralocorticoid, and triamcinolone and dexamethasone are strong glucocorticoids.299 The majority of inhaled anesthetics are heavily fluorinated; the prototype halothane is much more inert and potent than its contemporaries. Later compounds such as the fluorinated ethers sevoflurane and desflurane are better than halothane and are almost insoluble in blood, allowing faster waking times.300301

PET scanning

Main article: Positron emission tomography

Fluorine-18 is often found in radioactive tracers for positron emission tomography, as its half-life of almost two hours is long enough to allow for its transport from production facilities to imaging centers.302 The most common tracer is fluorodeoxyglucose303 which, after intravenous injection, is taken up by glucose-requiring tissues such as the brain and most malignant tumors;304 computer-assisted tomography can then be used for detailed imaging.305

Oxygen carriers

See also: Blood substitute and Liquid breathing

Liquid fluorocarbons can hold large volumes of oxygen or carbon dioxide, more so than blood, and have attracted attention for their possible uses in artificial blood and in liquid breathing.306 Because fluorocarbons do not normally mix with water, they must be mixed into emulsions (small droplets of perfluorocarbon suspended in water) to be used as blood.307308 One such product, Oxycyte, has been through initial clinical trials.309 These substances can aid endurance athletes and are banned from sports; one cyclist's near death in 1998 prompted an investigation into their abuse.310311 Applications of pure perfluorocarbon liquid breathing (which uses pure perfluorocarbon liquid, not a water emulsion) include assisting burn victims and premature babies with deficient lungs. Partial and complete lung filling have been considered, though only the former has had any significant tests in humans.312 An Alliance Pharmaceuticals effort reached clinical trials but was abandoned because the results were not better than normal therapies.313

Biological role

Main article: Biological aspects of fluorine

Fluorine is not essential for humans and other mammals, but small amounts are known to be beneficial for the strengthening of dental enamel (where the formation of fluorapatite makes the enamel more resistant to attack, from acids produced by bacterial fermentation of sugars). Small amounts of fluorine may be beneficial for bone strength, but the latter has not been definitively established.314 Both the WHO and the Institute of Medicine of the US National Academies publish recommended daily allowance (RDA) and upper tolerated intake of fluorine, which varies with age and gender.315316

Natural organofluorines have been found in microorganisms, plants317 and, recently, animals.318 The most common is fluoroacetate, which is used as a defense against herbivores by at least 40 plants in Africa, Australia and Brazil.319 Other examples include terminally fluorinated fatty acids, fluoroacetone, and 2-fluorocitrate.320 An enzyme that binds fluorine to carbon – adenosyl-fluoride synthase – was discovered in bacteria in 2002.321

Toxicity

Main article: Fluorine-related hazards

Elemental fluorine is highly toxic to living organisms. Its effects in humans start at concentrations lower than hydrogen cyanide's 50 ppm322 and are similar to those of chlorine:323 significant irritation of the eyes and respiratory system as well as liver and kidney damage occur above 25 ppm, which is the immediately dangerous to life and health value for fluorine.324 The eyes and nose are seriously damaged at 100 ppm,325 and inhalation of 1,000 ppm fluorine will cause death in minutes,326 compared to 270 ppm for hydrogen cyanide.327

Hydrofluoric acid

See also: Chemical burn

Hydrofluoric acid is the weakest of the hydrohalic acids, having a pKa of 3.2 at 25 °C.328 Pure hydrogen fluoride is a volatile liquid due to the presence of hydrogen bonding, while the other hydrogen halides are gases. It is able to attack glass, concrete, metals, and organic matter.329

Hydrofluoric acid is a contact poison with greater hazards than many strong acids like sulfuric acid even though it is weak: it remains neutral in aqueous solution and thus penetrates tissue faster, whether through inhalation, ingestion or the skin, and at least nine U.S. workers died in such accidents from 1984 to 1994. It reacts with calcium and magnesium in the blood leading to hypocalcemia and possible death through cardiac arrhythmia.330 Insoluble calcium fluoride formation triggers strong pain331 and burns larger than 160 cm2 (25 in2) can cause serious systemic toxicity.332

Exposure may not be evident for eight hours for 50% HF, rising to 24 hours for lower concentrations, and a burn may initially be painless as hydrogen fluoride affects nerve function. If skin has been exposed to HF, damage can be reduced by rinsing it under a jet of water for 10–15 minutes and removing contaminated clothing.333 Calcium gluconate is often applied next, providing calcium ions to bind with fluoride; skin burns can be treated with 2.5% calcium gluconate gel or special rinsing solutions.334335336 Hydrofluoric acid absorption requires further medical treatment; calcium gluconate may be injected or administered intravenously. Using calcium chloride – a common laboratory reagent – in lieu of calcium gluconate is contraindicated, and may lead to severe complications. Excision or amputation of affected parts may be required.337338

Fluoride ion

See also: Fluoride toxicity

Soluble fluorides are moderately toxic: 5–10 g sodium fluoride, or 32–64 mg fluoride ions per kilogram of body mass, represents a lethal dose for adults.339 One-fifth of the lethal dose can cause adverse health effects,340 and chronic excess consumption may lead to skeletal fluorosis, which affects millions in Asia and Africa, and, in children, to reduced intelligence.341342 Ingested fluoride forms hydrofluoric acid in the stomach which is easily absorbed by the intestines, where it crosses cell membranes, binds with calcium and interferes with various enzymes, before urinary excretion. Exposure limits are determined by urine testing of the body's ability to clear fluoride ions.343344

Historically, most cases of fluoride poisoning have been caused by accidental ingestion of insecticides containing inorganic fluorides.345 Most current calls to poison control centers for possible fluoride poisoning come from the ingestion of fluoride-containing toothpaste.346 Malfunctioning water fluoridation equipment is another cause: one incident in Alaska affected almost 300 people and killed one person.347 Dangers from toothpaste are aggravated for small children, and the Centers for Disease Control and Prevention recommends supervising children below six brushing their teeth so that they do not swallow toothpaste.348 One regional study examined a year of pre-teen fluoride poisoning reports totaling 87 cases, including one death from ingesting insecticide. Most had no symptoms, but about 30% had stomach pains.349 A larger study across the U.S. had similar findings: 80% of cases involved children under six, and there were few serious cases.350

Environmental concerns

Atmosphere

See also: Ozone depletion and global warming

The Montreal Protocol, signed in 1987, set strict regulations on chlorofluorocarbons (CFCs) and bromofluorocarbons due to their ozone damaging potential (ODP). The high stability which suited them to their original applications also meant that they were not decomposing until they reached higher altitudes, where liberated chlorine and bromine atoms attacked ozone molecules.351 Even with the ban, and early indications of its efficacy, predictions warned that several generations would pass before full recovery.352353 With one-tenth the ODP of CFCs, hydrochlorofluorocarbons (HCFCs) are the current replacements,354 and are themselves scheduled for substitution by 2030–2040 by hydrofluorocarbons (HFCs) with no chlorine and zero ODP.355 In 2007 this date was brought forward to 2020 for developed countries;356 the Environmental Protection Agency had already prohibited one HCFC's production and capped those of two others in 2003.357 Fluorocarbon gases are generally greenhouse gases with global-warming potentials (GWPs) of about 100 to 10,000; sulfur hexafluoride has a value of around 20,000.358 An outlier is HFO-1234yf which is a new type of refrigerant called a Hydrofluoroolefin (HFO) and has attracted global demand due to its GWP of less than 1 compared to 1,430 for the current refrigerant standard HFC-134a.359

Biopersistence

Main article: Biopersistence of fluorinated organics

Organofluorines exhibit biopersistence due to the strength of the carbon–fluorine bond. Perfluoroalkyl acids (PFAAs), which are sparingly water-soluble owing to their acidic functional groups, are noted persistent organic pollutants;360 perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are most often researched.361362363 PFAAs have been found in trace quantities worldwide from polar bears to humans, with PFOS and PFOA known to reside in breast milk and the blood of newborn babies. A 2013 review showed a slight correlation between groundwater and soil PFAA levels and human activity; there was no clear pattern of one chemical dominating, and higher amounts of PFOS were correlated to higher amounts of PFOA.364365366 In the body, PFAAs bind to proteins such as serum albumin; they tend to concentrate within humans in the liver and blood before excretion through the kidneys. Dwell time in the body varies greatly by species, with half-lives of days in rodents, and years in humans.367368369 High doses of PFOS and PFOA cause cancer and death in newborn rodents but human studies have not established an effect at current exposure levels.370371372

See also

  • Chemistry portal

Notes

Sources

Citations

Indexed references

  • Media related to Fluorine at Wikimedia Commons

References

  1. Assuming that hydrogen is not considered a halogen. /wiki/Hydrogen

  2. Lee et al. 2014. - Lee, Stephen; et al. (2014). "Monofluoroacetate-Containing Plants That Are Potentially Toxic to Livestock". Journal of Agricultural and Food Chemistry. 62 (30). ACS Publications: 7345–7354. Bibcode:2014JAFC...62.7345L. doi:10.1021/jf500563h. PMID 24724702. https://ui.adsabs.harvard.edu/abs/2014JAFC...62.7345L

  3. Jaccaud et al. 2000, p. 381. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  4. Dean 1999, p. 564. - Dean, John A. (1999). Lange's Handbook of Chemistry (15th ed.). New York: McGraw-Hill. ISBN 0-07-016190-9.

  5. Lide 2004, pp. 10.137–10.138. - Lide, David R. (2004). Handbook of Chemistry and Physics (84th ed.). Boca Raton: CRC Press. ISBN 0-8493-0566-7. https://archive.org/details/crchandbookofche81lide

  6. Jaccaud et al. 2000, p. 381. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  7. Moore, Stanitski & Jurs 2010, p. 156. - Moore, John W.; Stanitski, Conrad L.; Jurs, Peter C. (2010). Principles of Chemistry: The Molecular Science. Belmont: Brooks/Cole. ISBN 978-0-495-39079-4.

  8. Cordero et al. 2008. - Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. (2008). "Covalent Radii Revisited". Dalton Transactions (21): 2832–2838. doi:10.1039/b801115j. PMID 18478144. https://doi.org/10.1039%2Fb801115j

  9. Pyykkö & Atsumi 2009. - Pyykkö, Pekka; Atsumi, Michiko (2009). "Molecular Double-Bond Covalent Radii for Elements Li–E112". Chemistry: A European Journal. 15 (46): 12770–9. doi:10.1002/chem.200901472. PMID 19856342. https://doi.org/10.1002%2Fchem.200901472

  10. Sources disagree on the radii of oxygen, fluorine, and neon atoms. Precise comparison is thus impossible.

  11. Greenwood & Earnshaw 1998, p. 804. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  12. Macomber 1996, p. 230 - Macomber, Roger (1996). Organic chemistry. Vol. 1. Sausalito: University Science Books. ISBN 978-0-935702-90-3.

  13. Jaccaud et al. 2000, p. 382. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  14. Nelson 1947. - Nelson, Eugene W. (1947). "'Bad Man' of The Elements". Popular Mechanics. 88 (2): 106–108, 260. https://books.google.com/books?id=1t8DAAAAMBAJ&pg=PA106

  15. Greenwood & Earnshaw 1998, p. 804. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  16. Lidin, Molochko & Andreeva 2000, pp. 442–455. - Lidin, R.; Molochko, V. A.; Andreeva, L. L. (2000). Химические свойства неорганических веществ [Chemical Properties of Inorganic Substances] (in Russian). Moscow: Khimiya. ISBN 5-7245-1163-0.

  17. Wiberg, Wiberg & Holleman 2001, p. 404. - Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 978-0-12-352651-9.

  18. Wiberg, Wiberg & Holleman 2001, p. 404. - Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 978-0-12-352651-9.

  19. Patnaik 2007, p. 472. - Patnaik, Pradyot (2007). A Comprehensive Guide to the Hazardous Properties of Chemical Substances (3rd ed.). Hoboken: John Wiley & Sons. ISBN 978-0-471-71458-3.

  20. Aigueperse et al. 2000, p. 400. - Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R. E.; Cue, J. P. (2000). "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 397–441. doi:10.1002/14356007. ISBN 3527306730. https://doi.org/10.1002%2F14356007

  21. Greenwood & Earnshaw 1998, pp. 76, 804. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  22. Kuriakose & Margrave 1965. - Kuriakose, A. K.; Margrave, J. L. (1965). "Kinetics of the Reactions of Elemental Fluorine. IV. Fluorination of Graphite". Journal of Physical Chemistry. 69 (8): 2772–2775. doi:10.1021/j100892a049. https://doi.org/10.1021%2Fj100892a049

  23. Hasegawa et al. 2007. - Hasegawa, Y.; Otani, R.; Yonezawa, S.; Takashima, M. (2007). "Reaction Between Carbon Dioxide and Elementary Fluorine". Journal of Fluorine Chemistry. 128 (1): 17–28. Bibcode:2007JFluC.128...17H. doi:10.1016/j.jfluchem.2006.09.002. hdl:10098/1665. S2CID 95754841. https://ui.adsabs.harvard.edu/abs/2007JFluC.128...17H

  24. Lagow 1970, pp. 64–78. - Lagow, R. J. (1970). The Reactions of Elemental Fluorine; A New Approach to Fluorine Chemistry (PDF) (PhD, Rice University, TX). Ann Arbor: UMI. http://scholarship.rice.edu/bitstream/handle/1911/16744/9514194.PDF

  25. Navarrini et al. 2012. - Navarrini, Walter; Venturini, Francesco; Tortelli, Vito; Basak, Soubir; Pimparkar, Ketan P.; Adamo, Andrea; Jensen, Klavs F. (2012). "Direct fluorination of carbon monoxide in microreactors". Journal of Fluorine Chemistry. 142: 19–23. Bibcode:2012JFluC.142...19N. doi:10.1016/j.jfluchem.2012.06.006. https://ui.adsabs.harvard.edu/abs/2012JFluC.142...19N

  26. Lidin, Molochko & Andreeva 2000, p. 252. - Lidin, R.; Molochko, V. A.; Andreeva, L. L. (2000). Химические свойства неорганических веществ [Chemical Properties of Inorganic Substances] (in Russian). Moscow: Khimiya. ISBN 5-7245-1163-0.

  27. Tanner Industries 2011. - Tanner Industries (January 2011). "Anhydrous Ammonia: (MSDS) Material Safety Data Sheet". tannerind.com. Retrieved 24 October 2013. http://www.tannerind.com/anhydrous-msds.html

  28. Morrow, Perry & Cohen 1959. - Morrow, S. I.; Perry, D. D.; Cohen, M. S. (1959). "The Formation of Dinitrogen Tetrafluoride in the Reaction of Fluorine and Ammonia". Journal of the American Chemical Society. 81 (23): 6338–6339. doi:10.1021/ja01532a066. https://doi.org/10.1021%2Fja01532a066

  29. Emeléus & Sharpe 1974, p. 111. - Emeléus, H. J.; Sharpe, A. G. (1974). Advances in Inorganic Chemistry and Radiochemistry. Vol. 16. New York: Academic Press. ISBN 978-0-08-057865-1.

  30. Wiberg, Wiberg & Holleman 2001, p. 457. - Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 978-0-12-352651-9.

  31. Brantley 1949, p. 26. - Brantley, L. R. (1949). Squires, Roy; Clarke, Arthur C. (eds.). "Fluorine". Pacific Rockets: Journal of the Pacific Rocket Society. 3 (1). South Pasadena: Sawyer Publishing/Pacific Rocket Society Historical Library: 11–18. ISBN 978-0-9794418-5-1.

  32. Jaccaud et al. 2000, p. 383. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  33. Pitzer 1975. - Pitzer, K. S. (1975). "Fluorides of Radon and Element 118". Journal of the Chemical Society, Chemical Communications (18): 760b–761. doi:10.1039/C3975000760B. https://escholarship.org/uc/item/8xz4g1ff

  34. Khriachtchev et al. 2000. - Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. (2000). "A Stable Argon Compound". Nature. 406 (6798): 874–876. Bibcode:2000Natur.406..874K. doi:10.1038/35022551. PMID 10972285. S2CID 4382128. http://www.nature.com/nature/journal/v406/n6798/abs/406874a0.html

  35. Jaccaud et al. 2000, p. 382. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  36. Burdon, Emson & Edwards 1987. - Burdon, J.; Emson, B.; Edwards, A. J. (1987). "Is Fluorine Gas Really Yellow?". Journal of Fluorine Chemistry. 34 (3–4): 471–474. Bibcode:1987JFluC..34..471B. doi:10.1016/S0022-1139(00)85188-X. https://ui.adsabs.harvard.edu/abs/1987JFluC..34..471B

  37. Lide 2004, p. 4.12. - Lide, David R. (2004). Handbook of Chemistry and Physics (84th ed.). Boca Raton: CRC Press. ISBN 0-8493-0566-7. https://archive.org/details/crchandbookofche81lide

  38. Dean 1999, p. 523. - Dean, John A. (1999). Lange's Handbook of Chemistry (15th ed.). New York: McGraw-Hill. ISBN 0-07-016190-9.

  39. Dean 1999, p. 523. - Dean, John A. (1999). Lange's Handbook of Chemistry (15th ed.). New York: McGraw-Hill. ISBN 0-07-016190-9.

  40. α-Fluorine has a regular pattern of molecules and is a crystalline solid, but its molecules do not have a specific orientation. β-Fluorine's molecules have fixed locations and minimal rotational uncertainty.[46]

  41. Young 1975, p. 10. - Young, David A. (1975). Phase Diagrams of the Elements (Report). Lawrence Livermore Laboratory. Retrieved 10 June 2011. https://www.osti.gov/bridge/servlets/purl/4010212-0BbwUC/4010212.pdfaccess

  42. Barrett, Meyer & Wasserman 1967. - Barrett, C. S.; Meyer, L.; Wasserman, J. (1967). "Argon—Fluorine Phase Diagram". The Journal of Chemical Physics. 47 (2): 740–743. Bibcode:1967JChPh..47..740B. doi:10.1063/1.1711946. https://ui.adsabs.harvard.edu/abs/1967JChPh..47..740B

  43. Young 1975, p. 10. - Young, David A. (1975). Phase Diagrams of the Elements (Report). Lawrence Livermore Laboratory. Retrieved 10 June 2011. https://www.osti.gov/bridge/servlets/purl/4010212-0BbwUC/4010212.pdfaccess

  44. Barrett, Meyer & Wasserman 1967. - Barrett, C. S.; Meyer, L.; Wasserman, J. (1967). "Argon—Fluorine Phase Diagram". The Journal of Chemical Physics. 47 (2): 740–743. Bibcode:1967JChPh..47..740B. doi:10.1063/1.1711946. https://ui.adsabs.harvard.edu/abs/1967JChPh..47..740B

  45. National Nuclear Data Center & NuDat 2.1, Fluorine-19. - National Nuclear Data Center. "NuDat 2.1 Database". Brookhaven National Laboratory. Retrieved 25 October 2013. http://www.nndc.bnl.gov/nudat2/

  46. The ratio of the angular momentum to magnetic moment is called the gyromagnetic ratio. "Certain nuclei can for many purposes be thought of as spinning round an axis like the Earth or like a top. In general the spin endows them with angular momentum and with a magnetic moment; the first because of their mass, the second because all or part of their electric charge may be rotating with the mass."[50]

  47. Meusinger, Chippendale & Fairhurst 2012, pp. 752, 754. - Meusinger, Reinhard; Chippendale, A. Margaret; Fairhurst, Shirley A. (2012). "Nuclear Magnetic Resonance and Electron Spin Resonance Spectroscopy". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 609–660. doi:10.1002/14356007.b05_471. ISBN 978-3-527-30673-2. https://doi.org/10.1002%2F14356007.b05_471

  48. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  49. Kahlbow, J.; et al. (SAMURAI21-NeuLAND Collaboration) (23 August 2024). "Magicity versus Superfluidity around 28O viewed from the Study of 30F". Physical Review Letters. 133 (8): 082501. arXiv:2407.19303. doi:10.1103/PhysRevLett.133.082501. ISSN 0031-9007. https://doi.org/10.1103%2FPhysRevLett.133.082501

  50. SCOPE 50 - Radioecology after Chernobyl Archived 2014-05-13 at the Wayback Machine, the Scientific Committee on Problems of the Environment (SCOPE), 1993. See table 1.9 in Section 1.4.5.2. http://www.scopenvironment.org/downloadpubs/scope50

  51. National Nuclear Data Center & NuDat 2.1. - National Nuclear Data Center. "NuDat 2.1 Database". Brookhaven National Laboratory. Retrieved 25 October 2013. http://www.nndc.bnl.gov/nudat2/

  52. National Nuclear Data Center & NuDat 2.1. - National Nuclear Data Center. "NuDat 2.1 Database". Brookhaven National Laboratory. Retrieved 25 October 2013. http://www.nndc.bnl.gov/nudat2/

  53. NUBASE 2016, pp. 030001-23–030001-27. - Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001. https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf

  54. NUBASE 2016, pp. 030001–24. - Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001. https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf

  55. Cameron 1973. - Cameron, A. G. W. (1973). "Abundance of the Elements in the Solar System" (PDF). Space Science Reviews. 15 (1): 121–146. Bibcode:1973SSRv...15..121C. doi:10.1007/BF00172440. S2CID 120201972. Archived from the original (PDF) on 21 October 2011. https://web.archive.org/web/20111021030549/http://pubs.giss.nasa.gov/docs/1973/1973_Cameron_1.pdf

  56. Croswell 2003. - Croswell, Ken (September 2003). "Fluorine: An element–ary Mystery". Sky and Telescope. Retrieved 17 October 2013. http://kencroswell.com/fluorine.html

  57. Croswell 2003. - Croswell, Ken (September 2003). "Fluorine: An element–ary Mystery". Sky and Telescope. Retrieved 17 October 2013. http://kencroswell.com/fluorine.html

  58. Clayton 2003, pp. 101–104. - Clayton, Donald (2003). Handbook of Isotopes in the Cosmos: Hydrogen to Gallium. New York: Cambridge University Press. ISBN 978-0-521-82381-4.

  59. Croswell 2003. - Croswell, Ken (September 2003). "Fluorine: An element–ary Mystery". Sky and Telescope. Retrieved 17 October 2013. http://kencroswell.com/fluorine.html

  60. Renda et al. 2004. - Renda, Agostino; Fenner, Yeshe; Gibson, Brad K.; Karakas, Amanda I.; Lattanzio, John C.; Campbell, Simon; Chieffi, Alessandro; Cunha, Katia; Smith, Verne V. (2004). "On the origin of fluorine in the Milky Way". Monthly Notices of the Royal Astronomical Society. 354 (2): 575–580. arXiv:astro-ph/0410580. Bibcode:2004MNRAS.354..575R. doi:10.1111/j.1365-2966.2004.08215.x. S2CID 12330666. https://doi.org/10.1111%2Fj.1365-2966.2004.08215.x

  61. Jaccaud et al. 2000, p. 384. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  62. Schmedt, Mangstl & Kraus 2012. - Schmedt Auf Der Günne, Jörn; Mangstl, Martin; Kraus, Florian (2012). "Occurrence of Difluorine F2 in Nature-In Situ Proof and Quantification by NMR Spectroscopy". Angewandte Chemie International Edition. 51 (31): 7847–7849. doi:10.1002/anie.201203515. ISSN 1521-3773. PMID 22763992. https://doi.org/10.1002%2Fanie.201203515

  63. Jaccaud et al. 2000, p. 384. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  64. Greenwood & Earnshaw 1998, p. 795. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  65. Greenwood & Earnshaw 1998, p. 795. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  66. Norwood & Fohs 1907, p. 52. - Norwood, Charles J.; Fohs, F. Julius (1907). Kentucky Geological Survey, Bulletin No. 9: Fluorspar Deposits of Kentucky. Kentucky Geological Survey. https://archive.org/details/bulletin01kentgoog

  67. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  68. Kelly & Miller 2005. - Kelly, T. D.; Miller, M. M. (2005). "Historical Fluorspar Statistics". U.S. Geological Service. Retrieved 10 February 2014. https://minerals.usgs.gov/ds/2005/140/ds140-fluor.xlsx

  69. Lusty et al. 2008. - Lusty, P. A. J.; Brown, T. J.; Ward, J.; Bloomfield, S. (2008). "The Need for Indigenous Fluorspar Production in England". British Geological Survey. Retrieved 13 October 2013. http://www.bgs.ac.uk/downloads/start.cfm?id=1328

  70. Greenwood & Earnshaw 1998, p. 795. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  71. Greenwood & Earnshaw 1998, p. 795. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  72. Greenwood & Earnshaw 1998, p. 795. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  73. Gribble 2002. - Gribble, G. W. (2002). "Naturally Occurring Organofluorines". In Neison, A. H. (ed.). Organofluorines. The Handbook of Environmental Chemistry. Vol. 3N. Berlin: Springer. pp. 121–136. doi:10.1007/10721878_5. ISBN 3-540-42064-9. https://doi.org/10.1007%2F10721878_5

  74. Richter, Hahn & Fuchs 2001, p. 3. - Richter, M.; Hahn, O.; Fuchs, R. (2001). "Purple Fluorite: A Little Known Artists' Pigment and Its Use in Late Gothic and Early Renaissance Painting in Northern Europe". Studies in Conservation. 46 (1): 1–13. doi:10.1179/sic.2001.46.1.1. JSTOR 1506878. S2CID 191611885. https://doi.org/10.1179%2Fsic.2001.46.1.1

  75. Schmedt, Mangstl & Kraus 2012. - Schmedt Auf Der Günne, Jörn; Mangstl, Martin; Kraus, Florian (2012). "Occurrence of Difluorine F2 in Nature-In Situ Proof and Quantification by NMR Spectroscopy". Angewandte Chemie International Edition. 51 (31): 7847–7849. doi:10.1002/anie.201203515. ISSN 1521-3773. PMID 22763992. https://doi.org/10.1002%2Fanie.201203515

  76. Schmedt, Mangstl & Kraus 2012. - Schmedt Auf Der Günne, Jörn; Mangstl, Martin; Kraus, Florian (2012). "Occurrence of Difluorine F2 in Nature-In Situ Proof and Quantification by NMR Spectroscopy". Angewandte Chemie International Edition. 51 (31): 7847–7849. doi:10.1002/anie.201203515. ISSN 1521-3773. PMID 22763992. https://doi.org/10.1002%2Fanie.201203515

  77. Greenwood & Earnshaw 1998, p. 790. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  78. Senning 2007, p. 149. - Senning, A. (2007). Elsevier's Dictionary of Chemoetymology: The Whies and Whences of Chemical Nomenclature and Terminology. Amsterdam and Oxford: Elsevier. ISBN 978-0-444-52239-9.

  79. Basilius Valentinus supposedly described fluorite in the late 15th century, but because his writings were uncovered 200 years later, this work's veracity is doubtful.[73][74][75] /wiki/Basilius_Valentinus

  80. Norwood & Fohs 1907, p. 52. - Norwood, Charles J.; Fohs, F. Julius (1907). Kentucky Geological Survey, Bulletin No. 9: Fluorspar Deposits of Kentucky. Kentucky Geological Survey. https://archive.org/details/bulletin01kentgoog

  81. Greenwood & Earnshaw 1998, p. 109. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  82. Agricola, Hoover & Hoover 1912, preface, pp. 380–381. - Agricola, Georgius; Hoover, Herbert Clark; Hoover, Lou Henry (1912). De Re Metallica. London: The Mining Magazine. https://archive.org/stream/georgiusagricola00agririch#page/n5/mode/2up

  83. Weeks 1932. - Weeks, M. E. (1932). "The Discovery of the Elements. XVII. The Halogen Family". Journal of Chemical Education. 9 (11): 1915–1939. Bibcode:1932JChEd...9.1915W. doi:10.1021/ed009p1915. https://ui.adsabs.harvard.edu/abs/1932JChEd...9.1915W

  84. Or perhaps from as early as 1670 onwards; Partington[79] and Weeks[78] give differing accounts.

  85. Marggraf 1770. - Marggraf, Andreas Sigismun (1770). "Observation concernant une volatilisation remarquable d'une partie de l'espece de pierre, à laquelle on donne les noms de flosse, flüsse, flus-spaht, et aussi celui d'hesperos; laquelle volatilisation a été effectuée au moyen des acides" [Observation of a remarkable volatilization of part of a type of stone to which one gives the name flosse, flüsse, flus-spaht, as well as that of hesperos; which volatilization was effected by means of acids]. Mémoires de l'Académie royale des sciences et belles-lettres (in French). XXIV: 3–11. https://books.google.com/books?id=f28pAXS5SGIC&pg=PA3

  86. Kirsch 2004, pp. 3–10. - Kirsch, Peer (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH. ISBN 978-3-527-30691-6.

  87. Kirsch 2004, pp. 3–10. - Kirsch, Peer (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH. ISBN 978-3-527-30691-6.

  88. Scheele 1771. - Scheele, Carl Wilhelm (1771). "Undersŏkning om fluss-spat och dess syra" [Investigation of Fluorite and Its Acid]. Kungliga Svenska Vetenskapsademiens Handlingar [Proceedings of the Royal Swedish Academy of Science] (in Swedish). 32: 129–138. https://books.google.com/books?id=d984AAAAMAAJ&pg=PA120

  89. Ampère 1816. - Ampère, André-Marie (1816). "Suite d'une classification naturelle pour les corps simples". Annales de chimie et de physique (in French). 2: 1–5. https://books.google.com/books?id=4jEFAAAAQAAJ&pg=RA1-PA5

  90. Tressaud, Alain (6 October 2018). Fluorine: A Paradoxical Element. Academic Press. ISBN 9780128129913. 9780128129913

  91. Davy 1813, p. 278. - Davy, Humphry (1813). "Some experiments and observations on the substances produced in different chemical processes on fluor spar". Philosophical Transactions of the Royal Society. 103: 263–279. doi:10.1098/rstl.1813.0034. S2CID 186214745. https://doi.org/10.1098%2Frstl.1813.0034

  92. Banks 1986, p. 11. - Banks, R. E. (1986). "Isolation of fluorine by Moissan: Setting the scene". Journal of Fluorine Chemistry. 33 (1–4): 3–26. Bibcode:1986JFluC..33....3B. doi:10.1016/S0022-1139(00)85269-0. https://ui.adsabs.harvard.edu/abs/1986JFluC..33....3B

  93. Storer 1864, pp. 278–280. - Storer, Frank H. (1864). First Outlines of a Dictionary of Solubilities of Chemical Substances. Cambridge: Sever and Francis. https://archive.org/details/b21901053

  94. Fl, since 2012, is used for flerovium. /wiki/Flerovium

  95. Davy, Gay-Lussac, Thénard, and the Irish chemists Thomas and George Knox were injured. Belgian chemist Paulin Louyet and French chemist Jérôme Nicklès [de] died. Moissan also experienced serious hydrogen fluoride poisoning.[78][88] /wiki/Humphry_Davy

  96. Weeks 1932. - Weeks, M. E. (1932). "The Discovery of the Elements. XVII. The Halogen Family". Journal of Chemical Education. 9 (11): 1915–1939. Bibcode:1932JChEd...9.1915W. doi:10.1021/ed009p1915. https://ui.adsabs.harvard.edu/abs/1932JChEd...9.1915W

  97. Toon 2011. - Toon, Richard (1 September 2011). "The discovery of fluorine". Education in Chemistry. Vol. 48, no. 5. Royal Society of Chemistry. pp. 148–151. ISSN 0013-1350. https://eic.rsc.org/feature/the-discovery-of-fluorine/2020249.article

  98. Weeks 1932. - Weeks, M. E. (1932). "The Discovery of the Elements. XVII. The Halogen Family". Journal of Chemical Education. 9 (11): 1915–1939. Bibcode:1932JChEd...9.1915W. doi:10.1021/ed009p1915. https://ui.adsabs.harvard.edu/abs/1932JChEd...9.1915W

  99. Toon 2011. - Toon, Richard (1 September 2011). "The discovery of fluorine". Education in Chemistry. Vol. 48, no. 5. Royal Society of Chemistry. pp. 148–151. ISSN 0013-1350. https://eic.rsc.org/feature/the-discovery-of-fluorine/2020249.article

  100. Asimov 1966, p. 162. - Asimov, Isaac (1966). The Noble Gases. New York: Basic Books. ISBN 978-0-465-05129-8.

  101. Toon 2011. - Toon, Richard (1 September 2011). "The discovery of fluorine". Education in Chemistry. Vol. 48, no. 5. Royal Society of Chemistry. pp. 148–151. ISSN 0013-1350. https://eic.rsc.org/feature/the-discovery-of-fluorine/2020249.article

  102. Greenwood & Earnshaw 1998, pp. 789–791. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  103. Asimov 1966, p. 162. - Asimov, Isaac (1966). The Noble Gases. New York: Basic Books. ISBN 978-0-465-05129-8.

  104. Moissan 1886. - Moissan, Henri (1886). "Action d'un courant électrique sur l'acide fluorhydrique anhydre". Comptes rendus hebdomadaires des séances de l'Académie des sciences (in French). 102: 1543–1544. Retrieved 9 October 2013. http://gallica.bnf.fr/ark:/12148/bpt6k3058f/f1541.chemindefer

  105. Viel & Goldwhite 1993, p. 35. - Viel, Claude; Goldwhite, Harold (1993). "1906 Nobel Laureate: Henri Moissan, 1852–1907". In Laylin, K. James (ed.). Nobel Laureates in Chemistry, 1901–1992. Washington: American Chemical Society; Chemical Heritage Foundation. pp. 35–41. ISBN 978-0-8412-2690-6. https://archive.org/details/isbn_9780841226906/page/35

  106. Toon 2011. - Toon, Richard (1 September 2011). "The discovery of fluorine". Education in Chemistry. Vol. 48, no. 5. Royal Society of Chemistry. pp. 148–151. ISSN 0013-1350. https://eic.rsc.org/feature/the-discovery-of-fluorine/2020249.article

  107. Also honored was his invention of the electric arc furnace. /wiki/Electric_arc_furnace

  108. Kirsch 2004, pp. 3–10. - Kirsch, Peer (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH. ISBN 978-3-527-30691-6.

  109. Okazoe 2009. - Okazoe, T. (2009). "Overview on the History of Organofluorine Chemistry from the Viewpoint of Material Industry". Proceedings of the Japan Academy, Series B. 85 (8): 276–289. Bibcode:2009PJAB...85..276O. doi:10.2183/pjab.85.276. PMC 3621566. PMID 19838009. http://www.jstage.jst.go.jp/article/pjab/85/8/85_8_276/_pdf

  110. Hounshell & Smith 1988, pp. 156–157. - Hounshell, David A.; Smith, John Kelly (1988). Science and Corporate Strategy: DuPont R & D, 1902–1980. Cambridge: Cambridge University Press. ISBN 0-521-32767-9. https://archive.org/details/sciencecorporate0008houn

  111. DuPont 2013a. - DuPont (2013a). "Freon". Archived from the original on 21 February 2015. Retrieved 17 October 2013. https://web.archive.org/web/20150221134854/http://www2.dupont.com/Phoenix_Heritage/en_US/1930_d_detail.html

  112. Kirsch 2004, pp. 3–10. - Kirsch, Peer (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH. ISBN 978-3-527-30691-6.

  113. Okazoe 2009. - Okazoe, T. (2009). "Overview on the History of Organofluorine Chemistry from the Viewpoint of Material Industry". Proceedings of the Japan Academy, Series B. 85 (8): 276–289. Bibcode:2009PJAB...85..276O. doi:10.2183/pjab.85.276. PMC 3621566. PMID 19838009. http://www.jstage.jst.go.jp/article/pjab/85/8/85_8_276/_pdf

  114. Hounshell & Smith 1988, pp. 156–157. - Hounshell, David A.; Smith, John Kelly (1988). Science and Corporate Strategy: DuPont R & D, 1902–1980. Cambridge: Cambridge University Press. ISBN 0-521-32767-9. https://archive.org/details/sciencecorporate0008houn

  115. Meyer 1977, p. 111. - Meyer, Eugene (1977). Chemistry of Hazardous Materials. Englewood Cliffs: Prentice Hall. ISBN 978-0-13-129239-0. https://archive.org/details/chemistryofhazar00meye

  116. Kirsch 2004, pp. 60–66. - Kirsch, Peer (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH. ISBN 978-3-527-30691-6.

  117. Riedel & Kaupp 2009. - Riedel, Sebastian; Kaupp, Martin (2009). "The highest oxidation states of the transition metal elements". Coordination Chemistry Reviews. 253 (5–6): 606–624. doi:10.1016/j.ccr.2008.07.014. https://doi.org/10.1016%2Fj.ccr.2008.07.014

  118. Harbison 2002. - Harbison, G. S. (2002). "The Electric Dipole Polarity of the Ground and Low-lying Metastable Excited States of NF". Journal of the American Chemical Society. 124 (3): 366–367. doi:10.1021/ja0159261. PMID 11792193. https://doi.org/10.1021%2Fja0159261

  119. Edwards 1994, p. 515. - Edwards, Philip Neil (1994). "Use of Fluorine in Chemotherapy". In Banks, R. E.; Smart, B. E.; Tatlow, J. C. (eds.). Organofluorine Chemistry: Principles and Commercial Applications. New York: Plenum Press. pp. 501–542. ISBN 978-0-306-44610-8.

  120. The metastable boron and nitrogen monofluoride have higher-order fluorine bonds, and some metal complexes use it as a bridging ligand. Hydrogen bonding is another possibility. /wiki/Boron_monofluoride

  121. Wiberg, Wiberg & Holleman 2001, p. 422. - Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 978-0-12-352651-9.

  122. Schlöder & Riedel 2012. - Schlöder, T.; Riedel, S. (2012). "Investigation of Heterodimeric and Homodimeric Radical Cations of the Series: [F2O2]+, [F2Cl2]+, [Cl2O2]+, [F4]+, and [Cl4]+". RSC Advances. 2 (3). Royal Society of Chemistry: 876–881. Bibcode:2012RSCAd...2..876S. doi:10.1039/C1RA00804H. https://ui.adsabs.harvard.edu/abs/2012RSCAd...2..876S

  123. Katakuse et al. 1999, p. 267. - Katakuse, Itsuo; Ichihara, Toshio; Ito, Hiroyuki; Sakurai, Tohru; Matsuo, Takekiyo (1999). "SIMS Experiment". In Arai, T.; Mihama, K.; Yamamoto, K.; Sugano, S. (eds.). Mesoscopic Materials and Clusters: Their Physical and Chemical Properties. Tokyo: Kodansha. pp. 259–273. ISBN 4-06-208635-2.

  124. Aigueperse et al. 2000, pp. 420–422. - Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R. E.; Cue, J. P. (2000). "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 397–441. doi:10.1002/14356007. ISBN 3527306730. https://doi.org/10.1002%2F14356007

  125. Storer 1864, pp. 278–280. - Storer, Frank H. (1864). First Outlines of a Dictionary of Solubilities of Chemical Substances. Cambridge: Sever and Francis. https://archive.org/details/b21901053

  126. Walsh 2009, pp. 99–102, 118–119. - Walsh, Kenneth A. (2009). Beryllium Chemistry and Processing. Materials Park: ASM International. ISBN 978-0-87170-721-5.

  127. Emeléus & Sharpe 1983, pp. 89–97. - Emeléus, H. J.; Sharpe, A. G. (1983). Advances in Inorganic Chemistry and Radiochemistry. Vol. 27. Academic Press. ISBN 0-12-023627-3.

  128. Babel & Tressaud 1985, pp. 91–96. - Babel, Dietrich; Tressaud, Alain (1985). "Crystal Chemistry of Fluorides". In Hagenmuller, Paul (ed.). Inorganic Solid Fluorides: Chemistry And Physics. Orlando: Academic Press. pp. 78–203. ISBN 978-0-12-412490-5.

  129. Einstein et al. 1967. - Einstein, F. W. B.; Rao, P. R.; Trotter, J.; Bartlett, N. (1967). "The Crystal Structure of Gold Trifluoride". Journal of the Chemical Society A: Inorganic, Physical, Theoretical. 4: 478–482. doi:10.1039/J19670000478. https://doi.org/10.1039%2FJ19670000478

  130. Brown et al. 2005, p. 144. - Brown, Paul L.; Mompean, Federico J.; Perrone, Jane; Illemassène, Myriam (2005). Chemical Thermodynamics of Zirconium. Amsterdam: Elsevier B. V. ISBN 978-0-444-51803-3.

  131. Perry 2011, p. 193. - Perry, Dale L. (2011). Handbook of Inorganic Compounds (2nd ed.). Boca Raton: CRC Press. ISBN 978-1-4398-1461-1.

  132. Kern et al. 1994. - Kern, S.; Hayward, J.; Roberts, S.; Richardson, J. W.; Rotella, F. J.; Soderholm, L.; Cort, B.; Tinkle, M.; West, M.; Hoisington, D.; Lander, G. A. (1994). "Temperature Variation of the Structural Parameters in Actinide Tetrafluorides". The Journal of Chemical Physics. 101 (11): 9333–9337. Bibcode:1994JChPh.101.9333K. doi:10.1063/1.467963. https://zenodo.org/record/1232099

  133. Lide 2004, pp. 4.60, 4.76, 4.92, 4.96. - Lide, David R. (2004). Handbook of Chemistry and Physics (84th ed.). Boca Raton: CRC Press. ISBN 0-8493-0566-7. https://archive.org/details/crchandbookofche81lide

  134. ZrF4 melts at 932 °C (1,710 °F),[113] HfF4 sublimes at 968 °C (1,774 °F),[110] and UF4 melts at 1,036 °C (1,897 °F).[114]

  135. Greenwood & Earnshaw 1998, p. 964. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  136. Becker & Müller 1990. - Becker, S.; Müller, B. G. (1990). "Vanadium Tetrafluoride". Angewandte Chemie International Edition in English. 29 (4): 406–407. doi:10.1002/anie.199004061. https://doi.org/10.1002%2Fanie.199004061

  137. Greenwood & Earnshaw 1998, p. 990. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  138. Lide 2004, pp. 4.72, 4.91, 4.93. - Lide, David R. (2004). Handbook of Chemistry and Physics (84th ed.). Boca Raton: CRC Press. ISBN 0-8493-0566-7. https://archive.org/details/crchandbookofche81lide

  139. Greenwood & Earnshaw 1998, pp. 561–563. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  140. Emeléus & Sharpe 1983, pp. 256–277. - Emeléus, H. J.; Sharpe, A. G. (1983). Advances in Inorganic Chemistry and Radiochemistry. Vol. 27. Academic Press. ISBN 0-12-023627-3.

  141. Mackay, Mackay & Henderson 2002, pp. 355–356. - Mackay, Kenneth Malcolm; Mackay, Rosemary Ann; Henderson, W. (2002). Introduction to Modern Inorganic Chemistry (6th ed.). Cheltenham: Nelson Thornes. ISBN 0-7487-6420-8.

  142. These thirteen are those of molybdenum, technetium, ruthenium, rhodium, tungsten, rhenium, osmium, iridium, platinum, polonium, uranium, neptunium, and plutonium.

  143. Greenwood & Earnshaw 1998, (various pages, by metal in respective chapters). - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  144. Lide 2004, pp. 4.71, 4.78, 4.92. - Lide, David R. (2004). Handbook of Chemistry and Physics (84th ed.). Boca Raton: CRC Press. ISBN 0-8493-0566-7. https://archive.org/details/crchandbookofche81lide

  145. Drews et al. 2006. - Drews, T.; Supeł, J.; Hagenbach, A.; Seppelt, K. (2006). "Solid State Molecular Structures of Transition Metal Hexafluorides". Inorganic Chemistry. 45 (9): 3782–3788. doi:10.1021/ic052029f. PMID 16634614. https://doi.org/10.1021%2Fic052029f

  146. Greenwood & Earnshaw 1998, p. 819. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  147. Himmel, Daniel; Riedel, Sebastian (31 May 2007). "After 20 Years, Theoretical Evidence That "AuF7" Is Actually AuF5·F2". Inorganic Chemistry. 46 (13): 5338–5342. doi:10.1021/ic700431s. PMID 17511450. /wiki/Doi_(identifier)

  148. Bartlett 1962. - Bartlett, N. (1962). "Xenon Hexafluoroplatinate (V) Xe+[PtF6]−". Proceedings of the Chemical Society (6): 218. doi:10.1039/PS9620000197. https://doi.org/10.1039%2FPS9620000197

  149. Pauling 1960, pp. 454–464. - Pauling, Linus (1960). The Nature of the Chemical Bond (3rd ed.). Ithaca: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul

  150. Atkins & Jones 2007, pp. 184–185. - Atkins, Peter; Jones, Loretta (2007). Chemical Principles: The Quest for Insight (4th ed.). New York: W. H. Freeman. ISBN 978-1-4292-0965-6. https://archive.org/details/chemicalprincipl0004unse

  151. Emsley 1981. - Emsley, John (1981). "The Hidden Strength of Hydrogen". New Scientist. 91 (1264): 291–292. Archived from the original on 22 July 2023. Retrieved 7 July 2014. https://web.archive.org/web/20230722094703/https://books.google.com/books?id=ZbthaZCUXy4C&pg=PA292

  152. Greenwood & Earnshaw 1998, pp. 812–816. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  153. Wiberg, Wiberg & Holleman 2001, p. 425. - Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 978-0-12-352651-9.

  154. Clark 2002. - Clark, Jim (2002). "The Acidity of the Hydrogen Halides". chemguide.co.uk. Retrieved 15 October 2013. http://www.chemguide.co.uk/inorganic/group7/acidityhx.html

  155. Noury, Silvi & Gillespie 2002. - Noury, S.; Silvi, B.; Gillespie, R. J. (2002). "Chemical Bonding in Hypervalent Molecules: Is the Octet Rule Relevant?" (PDF). Inorganic Chemistry. 41 (8): 2164–2172. doi:10.1021/ic011003v. PMID 11952370. Retrieved 23 May 2012. http://alpha.chem.umb.edu/chemistry/Seminar/06-09%20WQE/InorgI.Carter.pdf

  156. Chang & Goldsby 2013, p. 706. - Chang, Raymond; Goldsby, Kenneth A. (2013). Chemistry (11th ed.). New York: McGraw-Hill. ISBN 978-0-07-131787-0.

  157. Carbon tetrafluoride is formally organic, but is included here rather than in the organofluorine chemistry section – where more complex carbon-fluorine compounds are discussed – for comparison with SiF4 and GeF4.

  158. Ellis 2001, p. 69. - Ellis, Brian (2001). Scientific Essentialism. Cambridge: Cambridge University Press. ISBN 978-0-521-80094-5.

  159. Aigueperse et al. 2000, p. 423. - Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R. E.; Cue, J. P. (2000). "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 397–441. doi:10.1002/14356007. ISBN 3527306730. https://doi.org/10.1002%2F14356007

  160. Wiberg, Wiberg & Holleman 2001, p. 897. - Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 978-0-12-352651-9.

  161. Raghavan 1998, pp. 164–165. - Raghavan, P. S. (1998). Concepts and Problems in Inorganic Chemistry. Delhi: Discovery Publishing House. ISBN 978-81-7141-418-5.

  162. Greenwood & Earnshaw 1998, pp. 561–563. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  163. Godfrey et al. 1998, p. 98. - Godfrey, S. M.; McAuliffe, C. A.; Mackie, A. G.; Pritchard, R. G. (1998). "Inorganic Derivatives of the Elements". In Norman, Nicholas C. (ed.). Chemistry of Arsenic, Antimony and Bismuth. London: Blackie Academic & Professional. pp. 67–158. ISBN 978-0-7514-0389-3.

  164. Aigueperse et al. 2000, p. 432. - Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R. E.; Cue, J. P. (2000). "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 397–441. doi:10.1002/14356007. ISBN 3527306730. https://doi.org/10.1002%2F14356007

  165. Murthy, Mehdi Ali & Ashok 1995, pp. 180–182, 206–208. - Murthy, C. Parameshwara; Mehdi Ali, S. F.; Ashok, D. (1995). University Chemistry. Vol. I. New Delhi: New Age International. ISBN 978-81-224-0742-6.

  166. Greenwood & Earnshaw 1998, pp. 638–640, 683–689, 767–778. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  167. Wiberg, Wiberg & Holleman 2001, pp. 435–436. - Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 978-0-12-352651-9.

  168. Greenwood & Earnshaw 1998, pp. 828–830. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  169. Patnaik 2007, pp. 478–479. - Patnaik, Pradyot (2007). A Comprehensive Guide to the Hazardous Properties of Chemical Substances (3rd ed.). Hoboken: John Wiley & Sons. ISBN 978-0-471-71458-3.

  170. Wiberg, Wiberg & Holleman 2001, pp. 392–393. - Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 978-0-12-352651-9.

  171. Wiberg, Wiberg & Holleman 2001, p. 395–397, 400. - Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 978-0-12-352651-9.

  172. Lewars 2008, p. 68. - Lewars, Errol G. (2008). Modeling Marvels: Computational Anticipation of Novel Molecules. Dordrecht: Springer. ISBN 978-1-4020-6972-7. https://books.google.com/books?id=IoFzgBSSCwEC&pg=PA70

  173. Pitzer 1993, p. 111. - Pitzer, Kenneth S., ed. (1993). Molecular Structure and Statistical Thermodynamics: Selected Papers of Kenneth S. Pitzer. Singapore: World Scientific Publishing. ISBN 978-981-02-1439-5.

  174. Lewars 2008, p. 67. - Lewars, Errol G. (2008). Modeling Marvels: Computational Anticipation of Novel Molecules. Dordrecht: Springer. ISBN 978-1-4020-6972-7. https://books.google.com/books?id=IoFzgBSSCwEC&pg=PA70

  175. Khriachtchev et al. 2000. - Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. (2000). "A Stable Argon Compound". Nature. 406 (6798): 874–876. Bibcode:2000Natur.406..874K. doi:10.1038/35022551. PMID 10972285. S2CID 4382128. http://www.nature.com/nature/journal/v406/n6798/abs/406874a0.html

  176. Bihary, Chaban & Gerber 2002. - Bihary, Z.; Chaban, G. M.; Gerber, R. B. (2002). "Stability of a Chemically Bound Helium Compound in High-pressure Solid Helium". The Journal of Chemical Physics. 117 (11): 5105–5108. Bibcode:2002JChPh.117.5105B. doi:10.1063/1.1506150. https://ui.adsabs.harvard.edu/abs/2002JChPh.117.5105B

  177. Lewars 2008, p. 71. - Lewars, Errol G. (2008). Modeling Marvels: Computational Anticipation of Novel Molecules. Dordrecht: Springer. ISBN 978-1-4020-6972-7. https://books.google.com/books?id=IoFzgBSSCwEC&pg=PA70

  178. Bihary, Chaban & Gerber 2002. - Bihary, Z.; Chaban, G. M.; Gerber, R. B. (2002). "Stability of a Chemically Bound Helium Compound in High-pressure Solid Helium". The Journal of Chemical Physics. 117 (11): 5105–5108. Bibcode:2002JChPh.117.5105B. doi:10.1063/1.1506150. https://ui.adsabs.harvard.edu/abs/2002JChPh.117.5105B

  179. O'Hagan 2008. - O'Hagan, D. (2008). "Understanding Organofluorine Chemistry. An Introduction to the C–F Bond". Chemical Society Reviews. 37 (2): 308–319. doi:10.1039/b711844a. PMID 18197347. https://doi.org/10.1039%2Fb711844a

  180. Siegemund et al. 2005, p. 444. - Siegemund, G. N.; Schwertfeger, W.; Feiring, A.; Smart, B.; Behr, F.; Vogel, H.; McKusick, B. (2000). "Fluorine Compounds, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Vol. 15. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_349. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_349

  181. Sandford 2000, p. 455. - Sandford, Graham (2000). "Organofluorine Chemistry". Philosophical Transactions. 358 (1766): 455–471. Bibcode:2000RSPTA.358..455S. doi:10.1098/rsta.2000.0541. S2CID 202574641. https://ui.adsabs.harvard.edu/abs/2000RSPTA.358..455S

  182. Okazoe 2009. - Okazoe, T. (2009). "Overview on the History of Organofluorine Chemistry from the Viewpoint of Material Industry". Proceedings of the Japan Academy, Series B. 85 (8): 276–289. Bibcode:2009PJAB...85..276O. doi:10.2183/pjab.85.276. PMC 3621566. PMID 19838009. http://www.jstage.jst.go.jp/article/pjab/85/8/85_8_276/_pdf

  183. Perfluorocarbon and fluorocarbon are IUPAC synonyms for molecules containing carbon and fluorine only, but in colloquial and commercial contexts the latter term may refer to any carbon- and fluorine-containing molecule, possibly with other elements. /wiki/IUPAC

  184. Siegemund et al. 2005, pp. 451–452. - Siegemund, G. N.; Schwertfeger, W.; Feiring, A.; Smart, B.; Behr, F.; Vogel, H.; McKusick, B. (2000). "Fluorine Compounds, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Vol. 15. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_349. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_349

  185. Barbee, McCormack & Vartanian 2000, p. 116. - Barbee, K.; McCormack, K.; Vartanian, V. (2000). "EHS Concerns with Ozonated Water Spray Processing". In Mendicino, L. (ed.). Environmental Issues in the Electronics and Semiconductor Industries. Pennington, NJ: The Electrochemical Society. pp. 108–121. ISBN 978-1-56677-230-3.

  186. This terminology is imprecise, and perfluorinated substance is also used.[163]

  187. Posner 2011, p. 27. - Posner, Stefan (2011). "Perfluorinated Compounds: Occurrence and Uses in Products". In Knepper, Thomas P.; Large, Frank T. (eds.). Polyfluorinated Chemicals and Transformation Products. Heidelberg: Springer Science+Business Media. pp. 25–40. ISBN 978-3-642-21871-2.

  188. Salager 2002, p. 45. - Salager, Jean-Louis (2002). Surfactants: Types and Uses (PDF). FIRP Booklet # 300-A. Laboratory of Formulation, Interfaces, Rheology, and Processes, Universidad de los Andes. Retrieved 13 October 2013. http://nanoparticles.org/pdf/Salager-E300A.pdf

  189. Posner 2011, p. 27. - Posner, Stefan (2011). "Perfluorinated Compounds: Occurrence and Uses in Products". In Knepper, Thomas P.; Large, Frank T. (eds.). Polyfluorinated Chemicals and Transformation Products. Heidelberg: Springer Science+Business Media. pp. 25–40. ISBN 978-3-642-21871-2.

  190. Carlson & Schmiegel 2000, p. 3. - Carlson, D. P.; Schmiegel, W. (2000). "Fluoropolymers, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 495–533. doi:10.1002/14356007.a11_393. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_393

  191. Carlson & Schmiegel 2000, pp. 3–4. - Carlson, D. P.; Schmiegel, W. (2000). "Fluoropolymers, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 495–533. doi:10.1002/14356007.a11_393. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_393

  192. Carlson & Schmiegel 2000, pp. 3–4. - Carlson, D. P.; Schmiegel, W. (2000). "Fluoropolymers, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 495–533. doi:10.1002/14356007.a11_393. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_393

  193. Rhoades 2008, p. 2. - Rhoades, David Walter (2008). Broadband Dielectric Spectroscopy Studies of Nafion (PhD dissertation). Ann Arbor: University of Southern Mississippi, MS. ISBN 978-0-549-78540-8.

  194. Okada et al. 1998. - Okada, T.; Xie, G.; Gorseth, O.; Kjelstrup, S.; Nakamura, N.; Arimura, T. (1998). "Ion and Water Transport Characteristics of Nafion Membranes as Electrolytes". Electrochimica Acta. 43 (24): 3741–3747. doi:10.1016/S0013-4686(98)00132-7. https://doi.org/10.1016%2FS0013-4686%2898%2900132-7

  195. Carlson & Schmiegel 2000, p. 4. - Carlson, D. P.; Schmiegel, W. (2000). "Fluoropolymers, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 495–533. doi:10.1002/14356007.a11_393. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_393

  196. Aigueperse et al. 2000. - Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R. E.; Cue, J. P. (2000). "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 397–441. doi:10.1002/14356007. ISBN 3527306730. https://doi.org/10.1002%2F14356007

  197. Norris Shreve; Joseph Brink, Jr. (1977). Chemical Process Industries (4 ed.). McGraw-Hill. p. 321. ISBN 0070571457. 0070571457

  198. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  199. Jaccaud et al. 2000, p. 386. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  200. Kirsch 2004, pp. 3–10. - Kirsch, Peer (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH. ISBN 978-3-527-30691-6.

  201. Jaccaud et al. 2000, pp. 384–285. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  202. Greenwood & Earnshaw 1998, pp. 796–797. - Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4.

  203. Kirsch 2004, pp. 3–10. - Kirsch, Peer (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH. ISBN 978-3-527-30691-6.

  204. Jaccaud et al. 2000, pp. 384–385. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  205. Jaccaud et al. 2000, pp. 390–391. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  206. Jaccaud et al. 2000, pp. 390–391. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  207. Shriver & Atkins 2010, p. 427. - Shriver, Duward; Atkins, Peter (2010). Solutions Manual for Inorganic Chemistry. New York: W. H. Freeman. ISBN 978-1-4292-5255-3.

  208. Christe 1986. - Christe, Karl O. (1986). "Chemical Synthesis of Elemental Fluorine". Inorganic Chemistry. 25 (21): 3721–3722. doi:10.1021/ic00241a001. https://doi.org/10.1021%2Fic00241a001

  209. Christe Research Group n.d. - Christe Research Group (n.d.). "Chemical Synthesis of Elemental Fluorine". Archived from the original on 4 March 2016. Retrieved 12 January 2013. https://web.archive.org/web/20160304051646/http://www-bcf.usc.edu/~kchriste/research.html

  210. Carey 2008, p. 173. - Carey, Charles W. (2008). African Americans in Science. Santa Barbara: ABC-CLIO. ISBN 978-1-85109-998-6.

  211. Kirsch 2004, pp. 3–10. - Kirsch, Peer (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH. ISBN 978-3-527-30691-6.

  212. Miller 2003b. - Miller, M. Michael (2003b). "Mineral Resource of the Month, Fluorspar" (PDF). U.S. Geological Survey. Retrieved 24 October 2013. https://minerals.usgs.gov/mineralofthemonth/fluorspar.pdf

  213. PRWeb 2012. - PRWeb (23 February 2012). "Global Fluorspar Market to Reach 5.94 Million Metric Tons by 2017, According to New Report by Global Industry Analysts, Inc". PRWeb. Archived from the original on 31 July 2020. Retrieved 24 October 2013. https://web.archive.org/web/20200731183955/http://www.prweb.com/releases/fluorspar_fluorite/fluorocarbons/prweb9221596.htm

  214. Bombourg 2012. - Bombourg, Nicolas (4 July 2012). "World Fluorochemicals Market, Freedonia". Reporterlinker. Retrieved 20 October 2013. http://www.prnewswire.com/news-releases/world-fluorochemicals-market-freedonia-161338935.html

  215. TMR 2013. - Transparency Market Research (17 May 2013). "Fluorochemicals Market is Expected to Reach USD 21.5 Billion Globally by 2018: Transparency Market Research". Transparency Market Research Blog. Archived from the original on 22 February 2014. Retrieved 15 October 2013. https://web.archive.org/web/20140222155737/http://www.tmrblog.com/2013/05/fluorochemicals-market-is-expected-to.html

  216. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  217. Kirsch 2004, pp. 3–10. - Kirsch, Peer (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH. ISBN 978-3-527-30691-6.

  218. Fulton & Miller 2006, p. 471. - Fulton, Robert B.; Miller, M. Michael (2006). "Fluorspar". In Kogel, Jessica Elzea; Trivedi, Nikhil C.; Barker, James M.; Krukowski, Stanley T. (eds.). Industrial Minerals & Rocks: Commodities, Markets, and Uses. Littleton: Society for Mining, Metallurgy, and Exploration (U.S.). pp. 461–473. ISBN 978-0-87335-233-8.

  219. Jaccaud et al. 2000, p. 392. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  220. Jaccaud et al. 2000, p. 392. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  221. Jaccaud et al. 2000, p. 382. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  222. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  223. Aigueperse et al. 2000, p. 430. - Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R. E.; Cue, J. P. (2000). "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 397–441. doi:10.1002/14356007. ISBN 3527306730. https://doi.org/10.1002%2F14356007

  224. Jaccaud et al. 2000, pp. 391–392. - Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 381–395. doi:10.1002/14356007.a11_293. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_293

  225. El-Kareh 1994, p. 317. - El-Kareh, Badih (1994). Fundamentals of Semiconductor Processing Technology. Norwell and Dordrecht: Kluwer Academic Publishers. ISBN 978-0-7923-9534-8.

  226. Arana et al. 2007. - Arana, L. R.; Mas, N.; Schmidt, R.; Franz, A. J.; Schmidt, M. A.; Jensen, K. F. (2007). "Isotropic Etching of Silicon in Fluorine Gas for MEMS Micromachining". Journal of Micromechanics and Microengineering. 17 (2): 384–392. Bibcode:2007JMiMi..17..384A. doi:10.1088/0960-1317/17/2/026. S2CID 135708022. https://ui.adsabs.harvard.edu/abs/2007JMiMi..17..384A

  227. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  228. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  229. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  230. Miller 2003a. - Miller, M. Michael (2003a). "Fluorspar" (PDF). U.S. Geological Survey Minerals Yearbook. U.S. Geological Survey. pp. 27.1 – 27.12. https://minerals.usgs.gov/minerals/pubs/commodity/fluorspar/fluormyb03.pdf

  231. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  232. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  233. Energetics, Inc. 1997, pp. 41, 50. - Energetics, Inc. (1997). Energy and Environmental Profile of the U.S. Aluminum Industry (PDF) (Report). Retrieved 15 October 2013. http://www1.eere.energy.gov/manufacturing/resources/aluminum/pdfs/aluminum.pdf

  234. Aigueperse et al. 2000, p. 428. - Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R. E.; Cue, J. P. (2000). "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 397–441. doi:10.1002/14356007. ISBN 3527306730. https://doi.org/10.1002%2F14356007

  235. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  236. Aigueperse et al. 2000, pp. 420–422. - Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R. E.; Cue, J. P. (2000). "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 397–441. doi:10.1002/14356007. ISBN 3527306730. https://doi.org/10.1002%2F14356007

  237. Willey 2007, p. 113. - Willey, Ronald R. (2007). Practical Equipment, Materials, and Processes for Optical Thin Films. Charlevoix: Willey Optical. ISBN 978-0-615-14397-2.

  238. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  239. PRWeb 2010. - PRWeb (28 October 2010). "Global Fluorochemicals Market to Exceed 2.6 Million Tons by 2015, According to a New Report by Global Industry Analysts, Inc". PRWeb. Archived from the original on 31 July 2020. Retrieved 24 October 2013. https://web.archive.org/web/20200731224109/http://www.prweb.com/releases/fluorochemicals/organic_inorganic/prweb4708534.htm

  240. Renner 2006. - Renner, R. (2006). "The Long and the Short of Perfluorinated Replacements". Environmental Science & Technology. 40 (1): 12–13. Bibcode:2006EnST...40...12R. doi:10.1021/es062612a. PMID 16433328. https://doi.org/10.1021%2Fes062612a

  241. Okazoe 2009. - Okazoe, T. (2009). "Overview on the History of Organofluorine Chemistry from the Viewpoint of Material Industry". Proceedings of the Japan Academy, Series B. 85 (8): 276–289. Bibcode:2009PJAB...85..276O. doi:10.2183/pjab.85.276. PMC 3621566. PMID 19838009. http://www.jstage.jst.go.jp/article/pjab/85/8/85_8_276/_pdf

  242. Green et al. 1994, pp. 91–93. - Green, S. W.; Slinn, D. S. L.; Simpson, R. N. F.; Woytek, A. J. (1994). "Perfluorocarbon Fluids". In Banks, R. E.; Smart, B. E.; Tatlow, J. C. (eds.). Organofluorine Chemistry: Principles and Applications. New York: Plenum Press. pp. 89–119. ISBN 978-0-306-44610-8.

  243. This DuPont trademark is sometimes further misused for CFCs, HFCs, or HCFCs.

  244. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  245. DuPont 2013b. - DuPont (2013b). "Understanding the Refrigerant 'R' Nomenclature". Archived from the original on 10 June 2015. Retrieved 17 October 2013. https://web.archive.org/web/20150610201350/http://www2.dupont.com/Refrigerants/en_CA/products/understanding.html

  246. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  247. Villalba, Ayres & Schroder 2008. - Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85–101. doi:10.1162/jiec.2007.1075. S2CID 153740615. https://doi.org/10.1162%2Fjiec.2007.1075

  248. Walter 2013. - Walter, P. (2013). "Honeywell Invests $300m in Green Refrigerant". Chemistry World. http://www.rsc.org/chemistryworld/2013/12/honeywell-air-conditioning-green-refrigerant

  249. Buznik 2009. - Buznik, V. M. (2009). "Fluoropolymer Chemistry in Russia: Current Situation and Prospects". Russian Journal of General Chemistry. 79 (3): 520–526. doi:10.1134/S1070363209030335. S2CID 97518401. https://doi.org/10.1134%2FS1070363209030335

  250. PRWeb 2013. - PRWeb (7 April 2013). "Fluoropolymers Market is Poised to Grow at a CAGR of 6.5% & to Reach $9,446.0 Million by 2016 – New report by MarketsandMarkets". PRWeb. Archived from the original on 3 April 2023. Retrieved 24 October 2013. https://web.archive.org/web/20230403124312/http://www.prweb.com/releases/fluoropolymers/market/prweb10608563.htm

  251. Carlson & Schmiegel 2000, p. 3. - Carlson, D. P.; Schmiegel, W. (2000). "Fluoropolymers, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 495–533. doi:10.1002/14356007.a11_393. ISBN 3527306730. https://doi.org/10.1002%2F14356007.a11_393

  252. Martin 2007, pp. 187–194. - Martin, John W., ed. (2007). Concise Encyclopedia of the Structure of Materials. Oxford and Amsterdam: Elsevier. ISBN 978-0-08-045127-5.

  253. Buznik 2009. - Buznik, V. M. (2009). "Fluoropolymer Chemistry in Russia: Current Situation and Prospects". Russian Journal of General Chemistry. 79 (3): 520–526. doi:10.1134/S1070363209030335. S2CID 97518401. https://doi.org/10.1134%2FS1070363209030335

  254. Martin 2007, pp. 187–194. - Martin, John W., ed. (2007). Concise Encyclopedia of the Structure of Materials. Oxford and Amsterdam: Elsevier. ISBN 978-0-08-045127-5.

  255. Martin 2007, pp. 187–194. - Martin, John W., ed. (2007). Concise Encyclopedia of the Structure of Materials. Oxford and Amsterdam: Elsevier. ISBN 978-0-08-045127-5.

  256. Martin 2007, pp. 187–194. - Martin, John W., ed. (2007). Concise Encyclopedia of the Structure of Materials. Oxford and Amsterdam: Elsevier. ISBN 978-0-08-045127-5.

  257. DeBergalis 2004. - DeBergalis, Michael (2004). "Fluoropolymer films in the photovoltaic industry". Journal of Fluorine Chemistry. 125 (8): 1255–1257. Bibcode:2004JFluC.125.1255D. doi:10.1016/j.jfluchem.2004.05.013. https://ui.adsabs.harvard.edu/abs/2004JFluC.125.1255D

  258. Grot 2011, pp. 1–10. - Grot, Walter (2011). Fluorinated Ionomers (2nd ed.). Oxford and Waltham: Elsevier. ISBN 978-1-4377-4457-6.

  259. Ramkumar 2012, p. 567. - Ramkumar, Jayshree (2012). "Nafion Perfluorosulphonate Membrane: Unique Properties and Various Applications". In Banerjee, S.; Tyagi, A. K. (eds.). Functional Materials: Preparation, Processing and Applications. London and Waltham: Elsevier. pp. 549–578. ISBN 978-0-12-385142-0.

  260. Burney 1999, p. 111. - Burney, H. (1999). "Past, Present and Future of the Chlor-Alkali Industry". In Burney, H. S.; Furuya, N.; Hine, F.; Ota, K.-I. (eds.). Chlor-Alkali and Chlorate Technology: R. B. MacMullin Memorial Symposium. Pennington: The Electrochemical Society. pp. 105–126. ISBN 1-56677-244-3.

  261. Martin 2007, pp. 187–194. - Martin, John W., ed. (2007). Concise Encyclopedia of the Structure of Materials. Oxford and Amsterdam: Elsevier. ISBN 978-0-08-045127-5.

  262. Slye 2012, p. 10. - Slye, Orville M. (2012). "Fire Extinguishing Agents". In Ullmann, Franz (ed.). Ullmann's Encyclopedia of Industrial Chemistry. Vol. 15. Weinheim: Wiley-VCH. pp. 1–11. doi:10.1002/14356007.a11_113.pub2. ISBN 978-3527306732. https://doi.org/10.1002%2F14356007.a11_113.pub2

  263. Renner 2006. - Renner, R. (2006). "The Long and the Short of Perfluorinated Replacements". Environmental Science & Technology. 40 (1): 12–13. Bibcode:2006EnST...40...12R. doi:10.1021/es062612a. PMID 16433328. https://doi.org/10.1021%2Fes062612a

  264. Kissa 2001, pp. 516–551. - Kissa, Erik (2001). Fluorinated Surfactants and Repellents (2nd ed.). New York: Marcel Dekker. ISBN 978-0-8247-0472-8.

  265. Ullmann 2008, pp. 538, 543–547. - Ullmann, Fritz (2008). Ullmann's Fibers (2 volumes). Weinheim: Wiley-VCH. ISBN 978-3-527-31772-1.

  266. Renner 2006. - Renner, R. (2006). "The Long and the Short of Perfluorinated Replacements". Environmental Science & Technology. 40 (1): 12–13. Bibcode:2006EnST...40...12R. doi:10.1021/es062612a. PMID 16433328. https://doi.org/10.1021%2Fes062612a

  267. ICIS 2006. - ICIS (2 October 2006). "Fluorine's Treasure Trove". Reed Business Information. Retrieved 24 October 2013. http://www.icis.com/Articles/2006/09/30/2016413/fluorines-treasure-trove.html

  268. Theodoridis 2006. - Theodoridis, George (2006). "Fluorine-Containing Agrochemicals: An Overview of Recent Developments". In Tressaud, Alain (ed.). Fluorine and the Environment: Agrochemicals, Archaeology, Green Chemistry & Water. Amsterdam and Oxford: Elsevier. pp. 121–176. ISBN 978-0-444-52672-4.

  269. Theodoridis 2006. - Theodoridis, George (2006). "Fluorine-Containing Agrochemicals: An Overview of Recent Developments". In Tressaud, Alain (ed.). Fluorine and the Environment: Agrochemicals, Archaeology, Green Chemistry & Water. Amsterdam and Oxford: Elsevier. pp. 121–176. ISBN 978-0-444-52672-4.

  270. EPA 1996. - United States Environmental Protection Agency (1996). "R.E.D. Facts: Trifluralin" (PDF). Archived from the original (PDF) on 18 October 2013. Retrieved 17 October 2013. https://web.archive.org/web/20131018001622/http://www.epa.gov/oppsrrd1/REDs/factsheets/0179fact.pdf

  271. DG Environment 2007. - Directorate-General for the Environment (European Commission) (2007). Trifluralin (PDF) (Report). European Commission. Retrieved 14 October 2013. http://www.unece.org/fileadmin/DAM/env/lrtap/TaskForce/popsxg/2008/Trifluralin_RA%20dossier_proposal%20for%20submission%20to%20the%20UNECE%20POP%20Protocol.pdf

  272. Beasley 2002. - Beasley, Michael (August 2002). Guidelines for the safe use of sodium fluoroacetate (1080) (PDF). Wellington: Occupational Safety & Health Service, Department of Labour (New Zealand). ISBN 0-477-03664-3. Archived from the original (PDF) on 11 November 2013. Retrieved 11 November 2013. https://web.archive.org/web/20131111104912/http://www.business.govt.nz/healthandsafetygroup/information-guidance/all-guidance-items/sodium-fluoroacetate-1080-guidelines-for-the-safe-use-of/1080guidelines.pdf

  273. Proudfoot, Bradberry & Vale 2006. - Proudfoot, A. T.; Bradberry, S. M.; Vale, J. A. (2006). "Sodium Fluoroacetate Poisoning". Toxicological Reviews. 25 (4): 213–219. doi:10.2165/00139709-200625040-00002. PMID 17288493. S2CID 29189551. https://doi.org/10.2165%2F00139709-200625040-00002

  274. Eisler 1995. - Eisler, Ronald (1995). Sodium Monofluoroacetate (1080) Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review (PDF) (Report). Patuxent Environmental Science Center (U.S. National Biological Service). Retrieved 5 June 2011. https://www.pwrc.usgs.gov/eisler/CHR_30_Sodium_monofluoroacetate.pdf

  275. American sheep and cattle collars may use 1080 against predators like coyotes.

  276. Pizzo et al. 2007. - Pizzo, G.; Piscopo, M. R.; Pizzo, I.; Giuliana, G. (2007). "Community Water Fluoridation and Caries Prevention: A Critical Review" (PDF). Clinical Oral Investigations. 11 (3): 189–193. doi:10.1007/s00784-007-0111-6. PMID 17333303. S2CID 13189520. http://www.newmediaexplorer.org/chris/Pizzo-2007.pdf

  277. CDC 2001. - Centers for Disease Control and Prevention (2001). "Recommendations for Using Fluoride to Prevent and Control Dental Caries in the United States". MMWR Recommendations and Reports. 50 (RR–14): 1–42. PMID 11521913. Retrieved 14 October 2013. https://cdc.gov/mmwr/preview/mmwrhtml/rr5014a1.htm

  278. Ripa 1993. - Ripa, L. W. (1993). "A Half-century of Community Water Fluoridation in the United States: Review and Commentary" (PDF). Journal of Public Health Dentistry. 53 (1): 17–44. doi:10.1111/j.1752-7325.1993.tb02666.x. PMID 8474047. Archived from the original (PDF) on 4 March 2009. https://web.archive.org/web/20090304021822/http://aaphd.org/docs/position%20papers/A%20Half-Century%20of%20Community%20Water1993.pdf

  279. Cheng, Chalmers & Sheldon 2007. - Cheng, K. K.; Chalmers, I.; Sheldon, T. A. (2007). "Adding Fluoride to Water Supplies" (PDF). BMJ. 335 (7622): 699–702. doi:10.1136/bmj.39318.562951.BE. PMC 2001050. PMID 17916854. Archived from the original (PDF) on 3 March 2016. Retrieved 26 March 2012. https://web.archive.org/web/20160303202219/http://www.appgaf.org.uk/data/433-water-fluoridation.pdf

  280. NHMRC 2007; see Yeung 2008 for a summary. - National Health and Medical Research Council (2007). A Systematic Review of the Efficacy and Safety of Fluoridation, Part A: Review of Methodology and Results (PDF). Canberra: Australian Government. ISBN 978-1-86496-421-9. Archived from the original (PDF) on 13 January 2012. Retrieved 8 October 2013. https://web.archive.org/web/20120113043215/http://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/eh41_1.pdf

  281. Marya 2011, p. 343. - Marya, C. M. (2011). A Textbook of Public Health Dentistry. New Delhi: Jaypee Brothers Medical Publishers. ISBN 978-93-5025-216-1.

  282. Cheng, Chalmers & Sheldon 2007. - Cheng, K. K.; Chalmers, I.; Sheldon, T. A. (2007). "Adding Fluoride to Water Supplies" (PDF). BMJ. 335 (7622): 699–702. doi:10.1136/bmj.39318.562951.BE. PMC 2001050. PMID 17916854. Archived from the original (PDF) on 3 March 2016. Retrieved 26 March 2012. https://web.archive.org/web/20160303202219/http://www.appgaf.org.uk/data/433-water-fluoridation.pdf

  283. Armfield 2007. - Armfield, J. M. (2007). "When Public Action Undermines Public Health: A Critical Examination of Antifluoridationist Literature". Australia and New Zealand Health Policy. 4: 25. doi:10.1186/1743-8462-4-25. PMC 2222595. PMID 18067684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2222595

  284. Baelum, Sheiham & Burt 2008, p. 518. - Baelum, Vibeke; Sheiham, Aubrey; Burt, Brian (2008). "Caries Control for Populations". In Fejerskov, Ole; Kidd, Edwina (eds.). Dental Caries: The Disease and Its Clinical Management (2nd ed.). Oxford: Blackwell Munksgaard. pp. 505–526. ISBN 978-1-4051-3889-5.

  285. Baelum, Sheiham & Burt 2008, p. 518. - Baelum, Vibeke; Sheiham, Aubrey; Burt, Brian (2008). "Caries Control for Populations". In Fejerskov, Ole; Kidd, Edwina (eds.). Dental Caries: The Disease and Its Clinical Management (2nd ed.). Oxford: Blackwell Munksgaard. pp. 505–526. ISBN 978-1-4051-3889-5.

  286. Cracher 2012, p. 12. - Cracher, Connie M. (2012). "Current Concepts in Preventive Dentistry" (PDF). dentalcare.com. Archived from the original (PDF) on 14 October 2013. Retrieved 14 October 2013. https://web.archive.org/web/20131014172105/http://www.dentalcare.com/media/en-US/education/ce334/ce334.pdf

  287. Emsley 2011, p. 178. - Emsley, John (2011). Nature's Building Blocks: An A–Z Guide to the Elements (2nd ed.). Oxford: Oxford University Press. ISBN 978-0-19-960563-7.

  288. Johnson 2011. - Johnson, Linda A. (28 December 2011). "Against Odds, Lipitor Became World's Top Seller". The Boston Globe. Retrieved 24 October 2013. http://www.boston.com/business/articles/2011/12/28/against_odds_lipitor_became_worlds_top_seller/

  289. Swinson 2005. - Swinson, Joel (June 2005). "Fluorine – A Vital Element in the Medicine Chest" (PDF). PharmaChem. Pharmaceutical Chemistry: 26–27. Archived from the original (PDF) on 8 February 2012. Retrieved 9 October 2013. https://web.archive.org/web/20120208080640/http://www.halocarbon.com/halocarbon_media/swinson_109.pdf

  290. Hagmann 2008. - Hagmann, W. K. (2008). "The Many Roles for Fluorine in Medicinal Chemistry". Journal of Medicinal Chemistry. 51 (15): 4359–4369. doi:10.1021/jm800219f. PMID 18570365. https://doi.org/10.1021%2Fjm800219f

  291. Swinson 2005. - Swinson, Joel (June 2005). "Fluorine – A Vital Element in the Medicine Chest" (PDF). PharmaChem. Pharmaceutical Chemistry: 26–27. Archived from the original (PDF) on 8 February 2012. Retrieved 9 October 2013. https://web.archive.org/web/20120208080640/http://www.halocarbon.com/halocarbon_media/swinson_109.pdf

  292. Mitchell 2004, pp. 37–39. - Mitchell, E. Siobhan (2004). Antidepressants. New York: Chelsea House Publishers. ISBN 978-1-4381-0192-7. https://archive.org/details/antidepressants0000mitc

  293. Preskorn 1996, chap. 2. - Preskorn, Sheldon H. (1996). Clinical Pharmacology of Selective Serotonin Reuptake Inhibitors. Caddo: Professional Communications. ISBN 978-1-884735-08-0.

  294. Werner et al. 2011. - Werner, N. L.; Hecker, M. T.; Sethi, A. K.; Donskey, C. J. (2011). "Unnecessary use of Fluoroquinolone Antibiotics in Hospitalized Patients". BMC Infectious Diseases. 11: 187–193. doi:10.1186/1471-2334-11-187. PMC 3145580. PMID 21729289. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145580

  295. Brody 2012. - Brody, Jane E. (10 September 2012). "Popular Antibiotics May Carry Serious Side Effects". The New York Times Well Blog. Retrieved 18 October 2013. https://well.blogs.nytimes.com/2012/09/10/popular-antibiotics-may-carry-serious-side-effects/

  296. Nelson et al. 2007. - Nelson, J. M.; Chiller, T. M.; Powers, J. H.; Angulo, F. J. (2007). "Food Safety: Fluoroquinolone-ResistantCampylobacterSpecies and the Withdrawal of Fluoroquinolones from Use in Poultry: A Public Health Success Story" (PDF). Clinical Infectious Diseases. 44 (7): 977–980. doi:10.1086/512369. PMID 17342653. https://www.cdc.gov/narms/pdf/JNelson_FluoroquinoloneRCampy_CID.pdf

  297. King, Malone & Lilley 2000. - King, D. E.; Malone, R.; Lilley, S. H. (2000). "New Classification and Update on the Quinolone Antibiotics". American Family Physician. 61 (9): 2741–2748. PMID 10821154. Retrieved 8 October 2013. http://www.aafp.org/afp/2000/0501/p2741.html

  298. Parente 2001, p. 40. - Parente, Luca (2001). "The Development of Synthetic Glucocorticoids". In Goulding, Nicolas J.; Flower, Rod J. (eds.). Glucocorticoids. Basel: Birkhäuser. pp. 35–53. ISBN 978-3-7643-6059-7.

  299. Raj & Erdine 2012, p. 58. - Raj, P. Prithvi; Erdine, Serdar (2012). Pain-Relieving Procedures: The Illustrated Guide. Chichester: John Wiley & Sons. ISBN 978-0-470-67038-5.

  300. Filler & Saha 2009. - Filler, R.; Saha, R. (2009). "Fluorine in Medicinal Chemistry: A Century of Progress and a 60-year Retrospective of Selected Highlights" (PDF). Future Medicinal Chemistry. 1 (5): 777–791. doi:10.4155/fmc.09.65. PMID 21426080. Archived from the original (PDF) on 22 October 2013. https://web.archive.org/web/20131022021207/http://www.future-science-group.com/_img/pics/fluorine_in_medicinal_chemistry.....pdf

  301. Bégué & Bonnet-Delpon 2008, pp. 335–336. - Bégué, Jean-Pierre; Bonnet-Delpon, Danièle (2008). Bioorganic and Medicinal Chemistry of Fluorine. Hoboken: John Wiley & Sons. ISBN 978-0-470-27830-7.

  302. Schmitz et al. 2000. - Schmitz, A.; Kälicke, T.; Willkomm, P.; Grünwald, F.; Kandyba, J.; Schmitt, O. (2000). "Use of Fluorine-18 Fluoro-2-deoxy-D-glucose Positron Emission Tomography in Assessing the Process of Tuberculous Spondylitis" (PDF). Journal of Spinal Disorders. 13 (6): 541–544. doi:10.1097/00002517-200012000-00016. PMID 11132989. Retrieved 8 October 2013. http://www.ecios.org/Synapse/Data/PDFData/0157CIOS/cios-2-167.pdf

  303. Schmitz et al. 2000. - Schmitz, A.; Kälicke, T.; Willkomm, P.; Grünwald, F.; Kandyba, J.; Schmitt, O. (2000). "Use of Fluorine-18 Fluoro-2-deoxy-D-glucose Positron Emission Tomography in Assessing the Process of Tuberculous Spondylitis" (PDF). Journal of Spinal Disorders. 13 (6): 541–544. doi:10.1097/00002517-200012000-00016. PMID 11132989. Retrieved 8 October 2013. http://www.ecios.org/Synapse/Data/PDFData/0157CIOS/cios-2-167.pdf

  304. Bustamante & Pedersen 1977. - Bustamante, E.; Pedersen, P. L. (1977). "High Aerobic Glycolysis of Rat Hepatoma Cells in Culture: Role of Mitochondrial Hexokinase". Proceedings of the National Academy of Sciences. 74 (9): 3735–3739. Bibcode:1977PNAS...74.3735B. doi:10.1073/pnas.74.9.3735. PMC 431708. PMID 198801. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC431708

  305. Alavi & Huang 2007, p. 41. - Alavi, Abbas; Huang, Steve S. (2007). "Positron Emission Tomography in Medicine: An Overview". In Hayat, M. A. (ed.). Cancer Imaging, Volume 1: Lung and Breast Carcinomas. Burlington: Academic Press. pp. 39–44. ISBN 978-0-12-370468-9.

  306. Gabriel et al. 1996. - Gabriel, J. L.; Miller, T. F. Jr.; Wolfson, M. R.; Shaffer, T. H. (1996). "Quantitative Structure-Activity Relationships of Perfluorinated Hetero-Hydrocarbons as Potential Respiratory Media". ASAIO Journal. 42 (6): 968–973. doi:10.1097/00002480-199642060-00009. PMID 8959271. S2CID 31161098. https://doi.org/10.1097%2F00002480-199642060-00009

  307. Sarkar 2008. - Sarkar, S. (2008). "Artificial Blood". Indian Journal of Critical Care Medicine. 12 (3): 140–144. doi:10.4103/0972-5229.43685. PMC 2738310. PMID 19742251. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738310

  308. Schimmeyer 2002. - Schimmeyer, S. (2002). "The Search for a Blood Substitute". Illumin. 15 (1). Columbia: University of Southern Carolina. Archived from the original on 2 October 2011. Retrieved 15 October 2013. https://web.archive.org/web/20111002044847/http://illumin.usc.edu/article.php/?articleID=62

  309. Davis 2006. - Davis, Nicole (November 2006). "Better than blood". Popular Science. Archived from the original on 4 June 2011. Retrieved 20 October 2013. https://web.archive.org/web/20110604181554/http://www.popsci.com/scitech/article/2006-11/better-blood

  310. Gains 1998. - Gains, Paul (18 October 1998). "A New Threat in Blood Doping". The New York Times. Retrieved 18 October 2013. https://www.nytimes.com/1998/10/18/sports/a-new-threat-in-blood-doping.html

  311. Taber 1999. - Taber, Andrew (22 April 1999). "Dying to ride". Salon. Retrieved 18 October 2013. http://www.salon.com/1999/04/21/cycling/

  312. Shaffer, Wolfson & Clark 1992, p. 102. - Shaffer, T. H.; Wolfson, M. R.; Clark, L. C. Jr. (1992). "Liquid Ventilation". Pediatric Pulmonology. 14 (2): 102–109. doi:10.1002/ppul.1950140208. PMID 1437347. S2CID 222167378. https://doi.org/10.1002%2Fppul.1950140208

  313. Kacmarek et al. 2006. - Kacmarek, Robert M.; Wiedemann, Herbert P.; Lavin, Philip T.; Wedel, Mark K.; Tütüncü, Ahmet S.; Slutsky, Arthur S. (2006). "Partial Liquid Ventilation in Adult Patients with Acute Respiratory Distress Syndrome". American Journal of Respiratory and Critical Care Medicine. 173 (8): 882–9. doi:10.1164/rccm.200508-1196OC. PMID 16254269. https://doi.org/10.1164%2Frccm.200508-1196OC

  314. Nielsen 2009. - Nielsen, Forrest H. (2009). "Micronutrients in Parenteral Nutrition: Boron, Silicon, and Fluoride". Gastroenterology. 137 (5): S55–60. doi:10.1053/j.gastro.2009.07.072. PMID 19874950. https://doi.org/10.1053%2Fj.gastro.2009.07.072

  315. Olivares & Uauy 2004. - Olivares, M.; Uauy, R. (2004). Essential Nutrients in Drinking Water (Draft) (PDF) (Report). World Health Organization (WHO). Archived from the original (PDF) on 19 October 2012. Retrieved 14 October 2013. https://web.archive.org/web/20121019174633/http://www.who.int/water_sanitation_health/dwq/en/nutoverview.pdf

  316. Food and Nutrition Board. - Food and Nutrition Board. "Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Elements" (PDF). Institute of Medicine, National Academies. Archived from the original (PDF) on 13 November 2018. Retrieved 2 January 2019. https://web.archive.org/web/20181113060244/http://www.nationalacademies.org/hmd/~/media/Files/Activity%20Files/Nutrition/DRI-Tables/2_%20RDA%20and%20AI%20Values_Vitamin%20and%20Elements.pdf?la=en

  317. Gribble 2002. - Gribble, G. W. (2002). "Naturally Occurring Organofluorines". In Neison, A. H. (ed.). Organofluorines. The Handbook of Environmental Chemistry. Vol. 3N. Berlin: Springer. pp. 121–136. doi:10.1007/10721878_5. ISBN 3-540-42064-9. https://doi.org/10.1007%2F10721878_5

  318. Xiao-Hua, Xu; Guang-Min, Yao; Yan-Ming, Li; Jian-Hua, Lu; Chang-Jiang, Lin; Xin, Wang; Chui-Hua, Kong (4 January 2003). "5-Fluorouracil Derivatives from the Sponge Phakellia fusca". J. Nat. Prod. 2 (66): 285–288. doi:10.1021/np020034f. PMID 12608868. /wiki/Doi_(identifier)

  319. Proudfoot, Bradberry & Vale 2006. - Proudfoot, A. T.; Bradberry, S. M.; Vale, J. A. (2006). "Sodium Fluoroacetate Poisoning". Toxicological Reviews. 25 (4): 213–219. doi:10.2165/00139709-200625040-00002. PMID 17288493. S2CID 29189551. https://doi.org/10.2165%2F00139709-200625040-00002

  320. Murphy, Schaffrath & O'Hagan 2003 - Murphy, C. D.; Schaffrath, C.; O'Hagan, D. (2003). "Fluorinated Natural Products: The Biosynthesis of Fluoroacetate and 4-Fluorothreonine in Streptomyces cattleya". Chemosphere. 52 (2): 455–461. Bibcode:2003Chmsp..52..455M. doi:10.1016/S0045-6535(03)00191-7. PMID 12738270. https://ui.adsabs.harvard.edu/abs/2003Chmsp..52..455M

  321. O'Hagan et al. 2002. - O'Hagan, D.; Schaffrath, C.; Cobb, S. L.; Hamilton, J. T. G.; Murphy, C. D. (2002). "Biochemistry: Biosynthesis of an Organofluorine Molecule". Nature. 416 (6878): 279. Bibcode:2002Natur.416..279O. doi:10.1038/416279a. PMID 11907567. S2CID 4415511. https://doi.org/10.1038%2F416279a

  322. The National Institute for Occupational Safety and Health 1994a. - The National Institute for Occupational Safety and Health (1994). "Fluorine". Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs). Retrieved 15 January 2014. https://www.cdc.gov/niosh/idlh/7782414.html

  323. The National Institute for Occupational Safety and Health 1994b. - The National Institute for Occupational Safety and Health (1994). "Chlorine". Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs). Retrieved 13 July 2014. https://www.cdc.gov/niosh/idlh/7782505.html

  324. Keplinger & Suissa 1968. - Keplinger, M. L.; Suissa, L. W. (1968). "Toxicity of Fluorine Short-Term Inhalation". American Industrial Hygiene Association Journal. 29 (1): 10–18. doi:10.1080/00028896809342975. PMID 5667185. https://doi.org/10.1080%2F00028896809342975

  325. Keplinger & Suissa 1968. - Keplinger, M. L.; Suissa, L. W. (1968). "Toxicity of Fluorine Short-Term Inhalation". American Industrial Hygiene Association Journal. 29 (1): 10–18. doi:10.1080/00028896809342975. PMID 5667185. https://doi.org/10.1080%2F00028896809342975

  326. Emsley 2011, p. 179. - Emsley, John (2011). Nature's Building Blocks: An A–Z Guide to the Elements (2nd ed.). Oxford: Oxford University Press. ISBN 978-0-19-960563-7.

  327. Biller 2007, p. 939. - Biller, José (2007). Interface of Neurology and Internal Medicine (illustrated ed.). Philadelphia: Lippincott Williams & Wilkins. ISBN 978-0-7817-7906-7. https://books.google.com/books?id=SRIvmTVcYBwC

  328. "Inorganic Chemistry" by Gary L. Miessler and Donald A. Tarr, 4th edition, Pearson

  329. "Inorganic Chemistry" by Shriver, Weller, Overton, Rourke and Armstrong, 6th edition, Freeman

  330. Blodgett, Suruda & Crouch 2001. - Blodgett, D. W.; Suruda, A. J.; Crouch, B. I. (2001). "Fatal Unintentional Occupational Poisonings by Hydrofluoric Acid in the U.S" (PDF). American Journal of Industrial Medicine. 40 (2): 215–220. doi:10.1002/ajim.1090. PMID 11494350. Archived from the original (PDF) on 17 July 2012. https://web.archive.org/web/20120717015515/http://www.chem.purdue.edu/chemsafety/Equip/HFfacts12.pdf

  331. Hoffman et al. 2007, p. 1333. - Hoffman, Robert; Nelson, Lewis; Howland, Mary; Lewin, Neal; Flomenbaum, Neal; Goldfrank, Lewis (2007). Goldfrank's Manual of Toxicologic Emergencies. New York: McGraw-Hill Professional. ISBN 978-0-07-144310-4.

  332. HSM 2006. - Honeywell (2006). Recommended medical treatment for hydrofluoric acid exposure (PDF). Morristown: Honeywell International. Archived from the original (PDF) on 8 October 2013. Retrieved 9 January 2014. https://web.archive.org/web/20131008080825/http://www.colorado.edu/ehs/pdf/HWMedHFExpo.pdf

  333. Fischman 2001, pp. 458–459. - Fischman, Michael L. (2001). "Semiconductor Manufacturing Hazards". In Sullivan, John B.; Krieger, Gary R. (eds.). Clinical Environmental Health and Toxic Exposures (2nd ed.). Philadelphia: Lippincott Williams & Wilkins. pp. 431–465. ISBN 978-0-683-08027-8.

  334. El Saadi et al. 1989. - El Saadi, M. S.; Hall, A. H.; Hall, P. K.; Riggs, B. S.; Augenstein, W. L.; Rumack, B. H. (1989). "Hydrofluoric Acid Dermal Exposure". Veterinary and Human Toxicology. 31 (3): 243–247. PMID 2741315. https://pubmed.ncbi.nlm.nih.gov/2741315

  335. Roblin et al. 2006. - Roblin, I.; Urban, M.; Flicoteau, D.; Martin, C.; Pradeau, D. (2006). "Topical Treatment of Experimental Hydrofluoric Acid Skin Burns by 2.5% Calcium Gluconate". Journal of Burn Care & Research. 27 (6): 889–894. doi:10.1097/01.BCR.0000245767.54278.09. PMID 17091088. S2CID 3691306. https://doi.org/10.1097%2F01.BCR.0000245767.54278.09

  336. Hultén et al. 2004. - Hultén, P.; Höjer, J.; Ludwigs, U.; Janson, A. (2004). "Hexafluorine vs. Standard Decontamination to Reduce Systemic Toxicity After Dermal Exposure to Hydrofluoric Acid". Clinical Toxicology. 42 (4): 355–361. doi:10.1081/CLT-120039541. PMID 15461243. S2CID 27090208. https://doi.org/10.1081%2FCLT-120039541

  337. HSM 2006. - Honeywell (2006). Recommended medical treatment for hydrofluoric acid exposure (PDF). Morristown: Honeywell International. Archived from the original (PDF) on 8 October 2013. Retrieved 9 January 2014. https://web.archive.org/web/20131008080825/http://www.colorado.edu/ehs/pdf/HWMedHFExpo.pdf

  338. Zorich 1991, pp. 182–183. - Zorich, Robert (1991). Handbook of Quality Integrated Circuit Manufacturing. San Diego: Academic Press. ISBN 978-0-323-14055-3.

  339. Liteplo et al. 2002, p. 100. - Liteplo, R.; Gomes, R.; Howe, P.; Malcolm, H. (2002). Environmental Health Criteria 227 (Fluoride). Geneva: United Nations Environment Programme; International Labour Organization; World Health Organization. ISBN 92-4-157227-2. Retrieved 14 October 2013. http://www.inchem.org/documents/ehc/ehc/ehc227.htm

  340. Shin & Silverberg 2013. - Shin, Richard D.; Silverberg, Mark A. (2013). "Fluoride Toxicity". Medscape. Retrieved 15 October 2013. http://emedicine.medscape.com/article/814774-overview

  341. Shin & Silverberg 2013. - Shin, Richard D.; Silverberg, Mark A. (2013). "Fluoride Toxicity". Medscape. Retrieved 15 October 2013. http://emedicine.medscape.com/article/814774-overview

  342. Reddy 2009. - Reddy, D. (2009). "Neurology of Endemic Skeletal Fluorosis". Neurology India. 57 (1): 7–12. doi:10.4103/0028-3886.48793. hdl:1807/56250. PMID 19305069. http://www.bioline.org.br/abstract?id=ni09004

  343. Shin & Silverberg 2013. - Shin, Richard D.; Silverberg, Mark A. (2013). "Fluoride Toxicity". Medscape. Retrieved 15 October 2013. http://emedicine.medscape.com/article/814774-overview

  344. Baez, Baez & Marthaler 2000. - Baez, Ramon J.; Baez, Martha X.; Marthaler, Thomas M. (2000). "Urinary Fluoride Excretion by Children 4–6 Years Old in a South Texas Community". Revista Panamericana de Salud Pública. 7 (4): 242–248. doi:10.1590/S1020-49892000000400005. PMID 10846927. https://doi.org/10.1590%2FS1020-49892000000400005

  345. Augenstein et al. 1991. - Augenstein, W. L.; et al. (1991). "Fluoride Ingestion in Children: A Review of 87 cases". Pediatrics. 88 (5): 907–912. doi:10.1542/peds.88.5.907. PMID 1945630. S2CID 22106466. http://pediatrics.aappublications.org/cgi/content/abstract/88/5/907

  346. Shin & Silverberg 2013. - Shin, Richard D.; Silverberg, Mark A. (2013). "Fluoride Toxicity". Medscape. Retrieved 15 October 2013. http://emedicine.medscape.com/article/814774-overview

  347. Gessner et al. 1994. - Gessner, B. D.; Beller, M.; Middaugh, J. P.; Whitford, G. M. (1994). "Acute Fluoride Poisoning from a Public Water System". New England Journal of Medicine. 330 (2): 95–99. doi:10.1056/NEJM199401133300203. PMID 8259189. https://doi.org/10.1056%2FNEJM199401133300203

  348. CDC 2013. - Centers for Disease for Control and Prevention (10 July 2013). "Community Water Fluoridation". Retrieved 25 October 2013. https://www.cdc.gov/fluoridation/faqs/

  349. Augenstein et al. 1991. - Augenstein, W. L.; et al. (1991). "Fluoride Ingestion in Children: A Review of 87 cases". Pediatrics. 88 (5): 907–912. doi:10.1542/peds.88.5.907. PMID 1945630. S2CID 22106466. http://pediatrics.aappublications.org/cgi/content/abstract/88/5/907

  350. Shulman & Wells 1997. - Shulman, J. D.; Wells, L. M. (1997). "Acute Fluoride Toxicity from Ingesting Home-use Dental Products in Children, Birth to 6 Years of Age". Journal of Public Health Dentistry. 57 (3): 150–158. doi:10.1111/j.1752-7325.1997.tb02966.x. PMID 9383753. https://doi.org/10.1111%2Fj.1752-7325.1997.tb02966.x

  351. Aucamp & Björn 2010, pp. 4–6, 41, 46–47. - Aucamp, Pieter J.; Björn, Lars Olof (2010). "Questions and Answers about the Environmental Effects of the Ozone Layer Depletion and Climate Change: 2010 Update" (PDF). United Nations Environmental Programme. Archived from the original (PDF) on 3 September 2013. Retrieved 14 October 2013. https://web.archive.org/web/20130903160920/http://ozone.unep.org/Assessment_Panels/EEAP/eeap-report2010-FAQ.pdf

  352. Mitchell Crow 2011. - Mitchell Crow, James (2011). "First signs of ozone-hole recovery spotted". Nature. doi:10.1038/news.2011.293. https://doi.org/10.1038%2Fnews.2011.293

  353. Barry & Phillips 2006. - Barry, Patrick L.; Phillips, Tony (26 May 2006). "Good News and a Puzzle". National Aeronautics and Space Administration. Archived from the original on 27 May 2010. Retrieved 6 January 2012. https://web.archive.org/web/20100527062059/https://science.nasa.gov/science-news/science-at-nasa/2006/26may_ozone/

  354. EPA 2013a. - United States Environmental Protection Agency (2013a). "Class I Ozone-depleting Substances". Archived from the original on 10 December 2010. Retrieved 15 October 2013. https://web.archive.org/web/20101210101528/http://www.epa.gov/ozone/science/ods/classone.html

  355. EPA 2013b. - United States Environmental Protection Agency (2013b). "Phaseout of HCFCs (Class II Ozone-Depleting Substances)". Retrieved 15 October 2013. http://www.epa.gov/ozone/title6/phaseout/classtwo.html

  356. McCoy 2007. - McCoy, M. (2007). "SURVEY Market Challenges Dim the Confidence of the World's Chemical CEOs". Chemical & Engineering News. 85 (23): 11. doi:10.1021/cen-v085n023.p011a. https://doi.org/10.1021%2Fcen-v085n023.p011a

  357. EPA 2013b. - United States Environmental Protection Agency (2013b). "Phaseout of HCFCs (Class II Ozone-Depleting Substances)". Retrieved 15 October 2013. http://www.epa.gov/ozone/title6/phaseout/classtwo.html

  358. Forster et al. 2007, pp. 212–213. - Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D. W.; Haywood, J.; Lean, J.; Lowe, D. C.; Myhr e, G.; Nganga, J.; Prinn, R.; Raga, G.; Schulz, M.; Van Dorland, R. (2007). "Changes in Atmospheric Constituents and in Radiative Forcing". In Solomon, S.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Tignor, M.; Miller, H. L. (eds.). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University. pp. 129–234. ISBN 978-0-521-70596-7.

  359. Walter 2013. - Walter, P. (2013). "Honeywell Invests $300m in Green Refrigerant". Chemistry World. http://www.rsc.org/chemistryworld/2013/12/honeywell-air-conditioning-green-refrigerant

  360. Giesy & Kannan 2002. - Giesy, J. P.; Kannan, K. (2002). "Perfluorochemical Surfactants in the Environment". Environmental Science & Technology. 36 (7): 146A – 152A. Bibcode:2002EnST...36..146G. doi:10.1021/es022253t. PMID 11999053. https://doi.org/10.1021%2Fes022253t

  361. Steenland, Fletcher & Savitz 2010. - Steenland, K.; Fletcher, T.; Savitz, D. A. (2010). "Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA)". Environmental Health Perspectives. 118 (8): 1100–1108. Bibcode:2010EnvHP.118.1100S. doi:10.1289/ehp.0901827. PMC 2920088. PMID 20423814. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920088

  362. Betts 2007. - Betts, K. S. (2007). "Perfluoroalkyl Acids: What is the Evidence Telling Us?". Environmental Health Perspectives. 115 (5): A250 – A256. doi:10.1289/ehp.115-a250. PMC 1867999. PMID 17520044. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867999

  363. EPA 2012. - United States Environmental Protection Agency (2012). "Emerging Contaminants – Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA)" (PDF). Archived from the original (PDF) on 29 October 2013. Retrieved 4 November 2013. https://web.archive.org/web/20131029202537/http://www.epa.gov/fedfac/pdf/emerging_contaminants_pfos_pfoa.pdf

  364. Steenland, Fletcher & Savitz 2010. - Steenland, K.; Fletcher, T.; Savitz, D. A. (2010). "Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA)". Environmental Health Perspectives. 118 (8): 1100–1108. Bibcode:2010EnvHP.118.1100S. doi:10.1289/ehp.0901827. PMC 2920088. PMID 20423814. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920088

  365. Betts 2007. - Betts, K. S. (2007). "Perfluoroalkyl Acids: What is the Evidence Telling Us?". Environmental Health Perspectives. 115 (5): A250 – A256. doi:10.1289/ehp.115-a250. PMC 1867999. PMID 17520044. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867999

  366. Zareitalabad et al. 2013. - Zareitalabad, P.; Siemens, J.; Hamer, M.; Amelung, W. (2013). "Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater – A review on concentrations and distribution coefficients". Chemosphere. 91 (6): 725–32. Bibcode:2013Chmsp..91..725Z. doi:10.1016/j.chemosphere.2013.02.024. PMID 23498059. https://ui.adsabs.harvard.edu/abs/2013Chmsp..91..725Z

  367. Steenland, Fletcher & Savitz 2010. - Steenland, K.; Fletcher, T.; Savitz, D. A. (2010). "Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA)". Environmental Health Perspectives. 118 (8): 1100–1108. Bibcode:2010EnvHP.118.1100S. doi:10.1289/ehp.0901827. PMC 2920088. PMID 20423814. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920088

  368. Betts 2007. - Betts, K. S. (2007). "Perfluoroalkyl Acids: What is the Evidence Telling Us?". Environmental Health Perspectives. 115 (5): A250 – A256. doi:10.1289/ehp.115-a250. PMC 1867999. PMID 17520044. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867999

  369. Lau et al. 2007. - Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. (2007). "Perfluoroalkyl Acids: A Review of Monitoring and Toxicological Findings". Toxicological Sciences. 99 (2): 366–394. doi:10.1093/toxsci/kfm128. PMID 17519394. https://doi.org/10.1093%2Ftoxsci%2Fkfm128

  370. Steenland, Fletcher & Savitz 2010. - Steenland, K.; Fletcher, T.; Savitz, D. A. (2010). "Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA)". Environmental Health Perspectives. 118 (8): 1100–1108. Bibcode:2010EnvHP.118.1100S. doi:10.1289/ehp.0901827. PMC 2920088. PMID 20423814. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920088

  371. Betts 2007. - Betts, K. S. (2007). "Perfluoroalkyl Acids: What is the Evidence Telling Us?". Environmental Health Perspectives. 115 (5): A250 – A256. doi:10.1289/ehp.115-a250. PMC 1867999. PMID 17520044. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867999

  372. Lau et al. 2007. - Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. (2007). "Perfluoroalkyl Acids: A Review of Monitoring and Toxicological Findings". Toxicological Sciences. 99 (2): 366–394. doi:10.1093/toxsci/kfm128. PMID 17519394. https://doi.org/10.1093%2Ftoxsci%2Fkfm128