Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Fibonacci polynomials
Polynomial sequence considered as a generalization of Fibbonacci numbers

In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials.

We don't have any images related to Fibonacci polynomials yet.
We don't have any YouTube videos related to Fibonacci polynomials yet.
We don't have any PDF documents related to Fibonacci polynomials yet.
We don't have any Books related to Fibonacci polynomials yet.
We don't have any archived web articles related to Fibonacci polynomials yet.

Definition

These Fibonacci polynomials are defined by a recurrence relation:1

F n ( x ) = { 0 , if  n = 0 1 , if  n = 1 x F n − 1 ( x ) + F n − 2 ( x ) , if  n ≥ 2 {\displaystyle F_{n}(x)={\begin{cases}0,&{\mbox{if }}n=0\\1,&{\mbox{if }}n=1\\xF_{n-1}(x)+F_{n-2}(x),&{\mbox{if }}n\geq 2\end{cases}}}

The Lucas polynomials use the same recurrence with different starting values:2

L n ( x ) = { 2 , if  n = 0 x , if  n = 1 x L n − 1 ( x ) + L n − 2 ( x ) , if  n ≥ 2. {\displaystyle L_{n}(x)={\begin{cases}2,&{\mbox{if }}n=0\\x,&{\mbox{if }}n=1\\xL_{n-1}(x)+L_{n-2}(x),&{\mbox{if }}n\geq 2.\end{cases}}}

They can be defined for negative indices by3

F − n ( x ) = ( − 1 ) n − 1 F n ( x ) , {\displaystyle F_{-n}(x)=(-1)^{n-1}F_{n}(x),} L − n ( x ) = ( − 1 ) n L n ( x ) . {\displaystyle L_{-n}(x)=(-1)^{n}L_{n}(x).}

The Fibonacci polynomials form a sequence of orthogonal polynomials with A n = C n = 1 {\displaystyle A_{n}=C_{n}=1} and B n = 0 {\displaystyle B_{n}=0} .

Examples

The first few Fibonacci polynomials are:

F 0 ( x ) = 0 {\displaystyle F_{0}(x)=0\,} F 1 ( x ) = 1 {\displaystyle F_{1}(x)=1\,} F 2 ( x ) = x {\displaystyle F_{2}(x)=x\,} F 3 ( x ) = x 2 + 1 {\displaystyle F_{3}(x)=x^{2}+1\,} F 4 ( x ) = x 3 + 2 x {\displaystyle F_{4}(x)=x^{3}+2x\,} F 5 ( x ) = x 4 + 3 x 2 + 1 {\displaystyle F_{5}(x)=x^{4}+3x^{2}+1\,} F 6 ( x ) = x 5 + 4 x 3 + 3 x {\displaystyle F_{6}(x)=x^{5}+4x^{3}+3x\,}

The first few Lucas polynomials are:

L 0 ( x ) = 2 {\displaystyle L_{0}(x)=2\,} L 1 ( x ) = x {\displaystyle L_{1}(x)=x\,} L 2 ( x ) = x 2 + 2 {\displaystyle L_{2}(x)=x^{2}+2\,} L 3 ( x ) = x 3 + 3 x {\displaystyle L_{3}(x)=x^{3}+3x\,} L 4 ( x ) = x 4 + 4 x 2 + 2 {\displaystyle L_{4}(x)=x^{4}+4x^{2}+2\,} L 5 ( x ) = x 5 + 5 x 3 + 5 x {\displaystyle L_{5}(x)=x^{5}+5x^{3}+5x\,} L 6 ( x ) = x 6 + 6 x 4 + 9 x 2 + 2. {\displaystyle L_{6}(x)=x^{6}+6x^{4}+9x^{2}+2.\,}

Properties

  • The degree of Fn is n − 1 and the degree of Ln is n.
  • The Fibonacci and Lucas numbers are recovered by evaluating the polynomials at x = 1; Pell numbers are recovered by evaluating Fn at x = 2.
  • The ordinary generating functions for the sequences are:4 ∑ n = 0 ∞ F n ( x ) t n = t 1 − x t − t 2 {\displaystyle \sum _{n=0}^{\infty }F_{n}(x)t^{n}={\frac {t}{1-xt-t^{2}}}} ∑ n = 0 ∞ L n ( x ) t n = 2 − x t 1 − x t − t 2 . {\displaystyle \sum _{n=0}^{\infty }L_{n}(x)t^{n}={\frac {2-xt}{1-xt-t^{2}}}.}
  • The polynomials can be expressed in terms of Lucas sequences as F n ( x ) = U n ( x , − 1 ) , {\displaystyle F_{n}(x)=U_{n}(x,-1),\,} L n ( x ) = V n ( x , − 1 ) . {\displaystyle L_{n}(x)=V_{n}(x,-1).\,}
  • They can also be expressed in terms of Chebyshev polynomials T n ( x ) {\displaystyle {\mathcal {T}}_{n}(x)} and U n ( x ) {\displaystyle {\mathcal {U}}_{n}(x)} as F n ( x ) = i n − 1 ⋅ U n − 1 ( − i x 2 ) , {\displaystyle F_{n}(x)=i^{n-1}\cdot {\mathcal {U}}_{n-1}({\tfrac {-ix}{2}}),\,} L n ( x ) = 2 ⋅ i n ⋅ T n ( − i x 2 ) , {\displaystyle L_{n}(x)=2\cdot i^{n}\cdot {\mathcal {T}}_{n}({\tfrac {-ix}{2}}),\,}
where i {\displaystyle i} is the imaginary unit.

Identities

Main article: Lucas sequence

As particular cases of Lucas sequences, Fibonacci polynomials satisfy a number of identities, such as5

F m + n ( x ) = F m + 1 ( x ) F n ( x ) + F m ( x ) F n − 1 ( x ) {\displaystyle F_{m+n}(x)=F_{m+1}(x)F_{n}(x)+F_{m}(x)F_{n-1}(x)\,} L m + n ( x ) = L m ( x ) L n ( x ) − ( − 1 ) n L m − n ( x ) {\displaystyle L_{m+n}(x)=L_{m}(x)L_{n}(x)-(-1)^{n}L_{m-n}(x)\,} F n + 1 ( x ) F n − 1 ( x ) − F n ( x ) 2 = ( − 1 ) n {\displaystyle F_{n+1}(x)F_{n-1}(x)-F_{n}(x)^{2}=(-1)^{n}\,} F 2 n ( x ) = F n ( x ) L n ( x ) . {\displaystyle F_{2n}(x)=F_{n}(x)L_{n}(x).\,}

Closed form expressions, similar to Binet's formula are:6

F n ( x ) = α ( x ) n − β ( x ) n α ( x ) − β ( x ) , L n ( x ) = α ( x ) n + β ( x ) n , {\displaystyle F_{n}(x)={\frac {\alpha (x)^{n}-\beta (x)^{n}}{\alpha (x)-\beta (x)}},\,L_{n}(x)=\alpha (x)^{n}+\beta (x)^{n},}

where

α ( x ) = x + x 2 + 4 2 , β ( x ) = x − x 2 + 4 2 {\displaystyle \alpha (x)={\frac {x+{\sqrt {x^{2}+4}}}{2}},\,\beta (x)={\frac {x-{\sqrt {x^{2}+4}}}{2}}}

are the solutions (in t) of

t 2 − x t − 1 = 0. {\displaystyle t^{2}-xt-1=0.\,}

For Lucas Polynomials n > 0, we have

L n ( x ) = ∑ k = 0 ⌊ n / 2 ⌋ n n − k ( n − k k ) x n − 2 k . {\displaystyle L_{n}(x)=\sum _{k=0}^{\lfloor n/2\rfloor }{\frac {n}{n-k}}{\binom {n-k}{k}}x^{n-2k}.}

A relationship between the Fibonacci polynomials and the standard basis polynomials is given by7

x n = F n + 1 ( x ) + ∑ k = 1 ⌊ n / 2 ⌋ ( − 1 ) k [ ( n k ) − ( n k − 1 ) ] F n + 1 − 2 k ( x ) . {\displaystyle x^{n}=F_{n+1}(x)+\sum _{k=1}^{\lfloor n/2\rfloor }(-1)^{k}\left[{\binom {n}{k}}-{\binom {n}{k-1}}\right]F_{n+1-2k}(x).}

For example,

x 4 = F 5 ( x ) − 3 F 3 ( x ) + 2 F 1 ( x ) {\displaystyle x^{4}=F_{5}(x)-3F_{3}(x)+2F_{1}(x)\,} x 5 = F 6 ( x ) − 4 F 4 ( x ) + 5 F 2 ( x ) {\displaystyle x^{5}=F_{6}(x)-4F_{4}(x)+5F_{2}(x)\,} x 6 = F 7 ( x ) − 5 F 5 ( x ) + 9 F 3 ( x ) − 5 F 1 ( x ) {\displaystyle x^{6}=F_{7}(x)-5F_{5}(x)+9F_{3}(x)-5F_{1}(x)\,} x 7 = F 8 ( x ) − 6 F 6 ( x ) + 14 F 4 ( x ) − 14 F 2 ( x ) {\displaystyle x^{7}=F_{8}(x)-6F_{6}(x)+14F_{4}(x)-14F_{2}(x)\,}

Combinatorial interpretation

If F(n,k) is the coefficient of xk in Fn(x), namely

F n ( x ) = ∑ k = 0 n F ( n , k ) x k , {\displaystyle F_{n}(x)=\sum _{k=0}^{n}F(n,k)x^{k},\,}

then F(n,k) is the number of ways an n−1 by 1 rectangle can be tiled with 2 by 1 dominoes and 1 by 1 squares so that exactly k squares are used.8 Equivalently, F(n,k) is the number of ways of writing n−1 as an ordered sum involving only 1 and 2, so that 1 is used exactly k times. For example F(6,3)=4 and 5 can be written in 4 ways, 1+1+1+2, 1+1+2+1, 1+2+1+1, 2+1+1+1, as a sum involving only 1 and 2 with 1 used 3 times. By counting the number of times 1 and 2 are both used in such a sum, it is evident that F ( n , k ) = { ( 1 2 ( n + k − 1 ) k ) if  n ≢ k ( mod 2 ) , 0 else . {\displaystyle F(n,k)={\begin{cases}\displaystyle {\binom {{\frac {1}{2}}(n+k-1)}{k}}&{\text{if }}n\not \equiv k{\pmod {2}},\\[12pt]0&{\text{else}}.\end{cases}}}

This gives a way of reading the coefficients from Pascal's triangle as shown on the right.

Further reading

  • Hoggatt, V. E.; Bicknell, Marjorie (1973). "Roots of Fibonacci polynomials". Fibonacci Quarterly. 11: 271–274. ISSN 0015-0517. MR 0332645.
  • Hoggatt, V. E.; Long, Calvin T. (1974). "Divisibility properties of generalized Fibonacci Polynomials". Fibonacci Quarterly. 12: 113. MR 0352034.
  • Ricci, Paolo Emilio (1995). "Generalized Lucas polynomials and Fibonacci polynomials". Rivista di Matematica della Università di Parma. V. Ser. 4: 137–146. MR 1395332.
  • Yuan, Yi; Zhang, Wenpeng (2002). "Some identities involving the Fibonacci Polynomials". Fibonacci Quarterly. 40 (4): 314. MR 1920571.
  • Cigler, Johann (2003). "q-Fibonacci polynomials". Fibonacci Quarterly (41): 31–40. MR 1962279.

References

  1. Benjamin & Quinn p. 141

  2. Benjamin & Quinn p. 142

  3. Springer

  4. Weisstein, Eric W. "Fibonacci Polynomial". MathWorld. /wiki/Eric_W._Weisstein

  5. Springer

  6. Springer

  7. A proof starts from page 5 in Algebra Solutions Packet (no author). https://web.archive.org/web/20170202051159/http://cmimc.org/Documents/Archive/AlgebraSolutions_2016.pdf

  8. Benjamin & Quinn p. 141