Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Extranatural transformation
Generalization of natural transformations

In mathematics, specifically in category theory, an extranatural transformation is a generalization of the notion of natural transformation.

We don't have any images related to Extranatural transformation yet.
We don't have any YouTube videos related to Extranatural transformation yet.
We don't have any PDF documents related to Extranatural transformation yet.
We don't have any Books related to Extranatural transformation yet.
We don't have any archived web articles related to Extranatural transformation yet.

Definition

Let F : A × B o p × B → D {\displaystyle F:A\times B^{\mathrm {op} }\times B\rightarrow D} and G : A × C o p × C → D {\displaystyle G:A\times C^{\mathrm {op} }\times C\rightarrow D} be two functors of categories. A family η ( a , b , c ) : F ( a , b , b ) → G ( a , c , c ) {\displaystyle \eta (a,b,c):F(a,b,b)\rightarrow G(a,c,c)} is said to be natural in a and extranatural in b and c if the following holds:

  • η ( − , b , c ) {\displaystyle \eta (-,b,c)} is a natural transformation (in the usual sense).
  • (extranaturality in b) ∀ ( g : b → b ′ ) ∈ M o r B {\displaystyle \forall (g:b\rightarrow b^{\prime })\in \mathrm {Mor} \,B} , ∀ a ∈ A {\displaystyle \forall a\in A} , ∀ c ∈ C {\displaystyle \forall c\in C} the following diagram commutes
F ( a , b ′ , b ) → F ( 1 , 1 , g ) F ( a , b ′ , b ′ ) F ( 1 , g , 1 ) ↓ η ( a , b ′ , c ) ↓ F ( a , b , b ) → η ( a , b , c ) G ( a , c , c ) {\displaystyle {\begin{matrix}F(a,b',b)&\xrightarrow {F(1,1,g)} &F(a,b',b')\\_{F(1,g,1)}\downarrow \qquad &&_{\eta (a,b',c)}\downarrow \qquad \\F(a,b,b)&\xrightarrow {\eta (a,b,c)} &G(a,c,c)\end{matrix}}}
  • (extranaturality in c) ∀ ( h : c → c ′ ) ∈ M o r C {\displaystyle \forall (h:c\rightarrow c^{\prime })\in \mathrm {Mor} \,C} , ∀ a ∈ A {\displaystyle \forall a\in A} , ∀ b ∈ B {\displaystyle \forall b\in B} the following diagram commutes
F ( a , b , b ) → η ( a , b , c ′ ) G ( a , c ′ , c ′ ) η ( a , b , c ) ↓ G ( 1 , h , 1 ) ↓ G ( a , c , c ) → G ( 1 , 1 , h ) G ( a , c , c ′ ) {\displaystyle {\begin{matrix}F(a,b,b)&\xrightarrow {\eta (a,b,c')} &G(a,c',c')\\_{\eta (a,b,c)}\downarrow \qquad &&_{G(1,h,1)}\downarrow \qquad \\G(a,c,c)&\xrightarrow {G(1,1,h)} &G(a,c,c')\end{matrix}}}

Properties

Extranatural transformations can be used to define wedges and thereby ends2 (dually co-wedges and co-ends), by setting F {\displaystyle F} (dually G {\displaystyle G} ) constant.

Extranatural transformations can be defined in terms of dinatural transformations, of which they are a special case.3

See also

References

  1. Eilenberg and Kelly, A generalization of the functorial calculus, J. Algebra 3 366–375 (1966) /wiki/Samuel_Eilenberg

  2. Fosco Loregian, This is the (co)end, my only (co)friend, arXiv preprint [1] https://arxiv.org/abs/1501.02503

  3. Fosco Loregian, This is the (co)end, my only (co)friend, arXiv preprint [1] https://arxiv.org/abs/1501.02503