Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Concept class

In computational learning theory in mathematics, a concept over a domain X is a total Boolean function over X. A concept class is a class of concepts. Concept classes are a subject of computational learning theory.

Concept class terminology frequently appears in model theory associated with probably approximately correct (PAC) learning. In this setting, if one takes a set Y as a set of (classifier output) labels, and X is a set of examples, the map c : X → Y {\displaystyle c:X\to Y} , i.e. from examples to classifier labels (where Y = { 0 , 1 } {\displaystyle Y=\{0,1\}} and where c is a subset of X), c is then said to be a concept. A concept class C {\displaystyle C} is then a collection of such concepts.

Given a class of concepts C, a subclass D is reachable if there exists a sample s such that D contains exactly those concepts in C that are extensions to s. Not every subclass is reachable.[why?]

We don't have any images related to Concept class yet.
We don't have any YouTube videos related to Concept class yet.
We don't have any PDF documents related to Concept class yet.
We don't have any Books related to Concept class yet.
We don't have any archived web articles related to Concept class yet.

Background

A sample s {\displaystyle s} is a partial function from X {\displaystyle X} to { 0 , 1 } {\displaystyle \{0,1\}} .4 Identifying a concept with its characteristic function mapping X {\displaystyle X} to { 0 , 1 } {\displaystyle \{0,1\}} , it is a special case of a sample.5

Two samples are consistent if they agree on the intersection of their domains.6 A sample s ′ {\displaystyle s'} extends another sample s {\displaystyle s} if the two are consistent and the domain of s {\displaystyle s} is contained in the domain of s ′ {\displaystyle s'} .7

Examples

Suppose that C = S + ( X ) {\displaystyle C=S^{+}(X)} . Then:

  • the subclass { { x } } {\displaystyle \{\{x\}\}} is reachable with the sample s = { ( x , 1 ) } {\displaystyle s=\{(x,1)\}} ;8[why?]
  • the subclass S + ( Y ) {\displaystyle S^{+}(Y)} for Y ⊆ X {\displaystyle Y\subseteq X} are reachable with a sample that maps the elements of X − Y {\displaystyle X-Y} to zero;9[why?]
  • the subclass S ( X ) {\displaystyle S(X)} , which consists of the singleton sets, is not reachable.10[why?]

Applications

Let C {\displaystyle C} be some concept class. For any concept c ∈ C {\displaystyle c\in C} , we call this concept 1 / d {\displaystyle 1/d} -good for a positive integer d {\displaystyle d} if, for all x ∈ X {\displaystyle x\in X} , at least 1 / d {\displaystyle 1/d} of the concepts in C {\displaystyle C} agree with c {\displaystyle c} on the classification of x {\displaystyle x} .11 The fingerprint dimension F D ( C ) {\displaystyle FD(C)} of the entire concept class C {\displaystyle C} is the least positive integer d {\displaystyle d} such that every reachable subclass C ′ ⊆ C {\displaystyle C'\subseteq C} contains a concept that is 1 / d {\displaystyle 1/d} -good for it.12 This quantity can be used to bound the minimum number of equivalence queries needed to learn a class of concepts according to the following inequality: F D ( C ) − 1 ≤ # E Q ( C ) ≤ ⌈ F D ( C ) ln ⁡ ( | C | ) ⌉ {\textstyle FD(C)-1\leq \#EQ(C)\leq \lceil FD(C)\ln(|C|)\rceil } .13

References

  1. Chase, H., & Freitag, J. (2018). Model Theory and Machine Learning. arXiv preprint arXiv:1801.06566. https://arxiv.org/abs/1801.06566

  2. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf

  3. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf

  4. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf

  5. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf

  6. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf

  7. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf

  8. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf

  9. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf

  10. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf

  11. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf

  12. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf

  13. Angluin, D. (2004). "Queries revisited" (PDF). Theoretical Computer Science. 313 (2): 188–191. doi:10.1016/j.tcs.2003.11.004. https://www.sciencedirect.com/science/article/pii/S030439750300608X/pdf?md5=c06f6d6f5b10d73c3e05a1321128a67e&pid=1-s2.0-S030439750300608X-main.pdf