Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Anger function
Special function

In mathematics, the Anger function, introduced by C. T. Anger (1855), is a function defined as

J ν ( z ) = 1 π ∫ 0 π cos ⁡ ( ν θ − z sin ⁡ θ ) d θ {\displaystyle \mathbf {J} _{\nu }(z)={\frac {1}{\pi }}\int _{0}^{\pi }\cos(\nu \theta -z\sin \theta )\,d\theta }

with complex parameter ν {\displaystyle \nu } and complex variable z {\displaystyle {\textit {z}}} . It is closely related to the Bessel functions.

The Weber function (also known as Lommel–Weber function), introduced by H. F. Weber (1879), is a closely related function defined by

E ν ( z ) = 1 π ∫ 0 π sin ⁡ ( ν θ − z sin ⁡ θ ) d θ {\displaystyle \mathbf {E} _{\nu }(z)={\frac {1}{\pi }}\int _{0}^{\pi }\sin(\nu \theta -z\sin \theta )\,d\theta }

and is closely related to Bessel functions of the second kind.

We don't have any images related to Anger function yet.
We don't have any YouTube videos related to Anger function yet.
We don't have any PDF documents related to Anger function yet.
We don't have any Books related to Anger function yet.
We don't have any archived web articles related to Anger function yet.

Relation between Weber and Anger functions

The Anger and Weber functions are related by

sin ⁡ ( π ν ) J ν ( z ) = cos ⁡ ( π ν ) E ν ( z ) − E − ν ( z ) , − sin ⁡ ( π ν ) E ν ( z ) = cos ⁡ ( π ν ) J ν ( z ) − J − ν ( z ) , {\displaystyle {\begin{aligned}\sin(\pi \nu )\mathbf {J} _{\nu }(z)&=\cos(\pi \nu )\mathbf {E} _{\nu }(z)-\mathbf {E} _{-\nu }(z),\\-\sin(\pi \nu )\mathbf {E} _{\nu }(z)&=\cos(\pi \nu )\mathbf {J} _{\nu }(z)-\mathbf {J} _{-\nu }(z),\end{aligned}}}

so in particular if ν is not an integer they can be expressed as linear combinations of each other. If ν is an integer then Anger functions Jν are the same as Bessel functions Jν, and Weber functions can be expressed as finite linear combinations of Struve functions.

Power series expansion

The Anger function has the power series expansion2

J ν ( z ) = cos ⁡ π ν 2 ∑ k = 0 ∞ ( − 1 ) k z 2 k 4 k Γ ( k + ν 2 + 1 ) Γ ( k − ν 2 + 1 ) + sin ⁡ π ν 2 ∑ k = 0 ∞ ( − 1 ) k z 2 k + 1 2 2 k + 1 Γ ( k + ν 2 + 3 2 ) Γ ( k − ν 2 + 3 2 ) . {\displaystyle \mathbf {J} _{\nu }(z)=\cos {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{4^{k}\Gamma \left(k+{\frac {\nu }{2}}+1\right)\Gamma \left(k-{\frac {\nu }{2}}+1\right)}}+\sin {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2^{2k+1}\Gamma \left(k+{\frac {\nu }{2}}+{\frac {3}{2}}\right)\Gamma \left(k-{\frac {\nu }{2}}+{\frac {3}{2}}\right)}}.}

While the Weber function has the power series expansion3

E ν ( z ) = sin ⁡ π ν 2 ∑ k = 0 ∞ ( − 1 ) k z 2 k 4 k Γ ( k + ν 2 + 1 ) Γ ( k − ν 2 + 1 ) − cos ⁡ π ν 2 ∑ k = 0 ∞ ( − 1 ) k z 2 k + 1 2 2 k + 1 Γ ( k + ν 2 + 3 2 ) Γ ( k − ν 2 + 3 2 ) . {\displaystyle \mathbf {E} _{\nu }(z)=\sin {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{4^{k}\Gamma \left(k+{\frac {\nu }{2}}+1\right)\Gamma \left(k-{\frac {\nu }{2}}+1\right)}}-\cos {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2^{2k+1}\Gamma \left(k+{\frac {\nu }{2}}+{\frac {3}{2}}\right)\Gamma \left(k-{\frac {\nu }{2}}+{\frac {3}{2}}\right)}}.}

Differential equations

The Anger and Weber functions are solutions of inhomogeneous forms of Bessel's equation

z 2 y ′ ′ + z y ′ + ( z 2 − ν 2 ) y = 0. {\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y=0.}

More precisely, the Anger functions satisfy the equation4

z 2 y ′ ′ + z y ′ + ( z 2 − ν 2 ) y = ( z − ν ) sin ⁡ ( π ν ) π , {\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y={\frac {(z-\nu )\sin(\pi \nu )}{\pi }},}

and the Weber functions satisfy the equation5

z 2 y ′ ′ + z y ′ + ( z 2 − ν 2 ) y = − z + ν + ( z − ν ) cos ⁡ ( π ν ) π . {\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y=-{\frac {z+\nu +(z-\nu )\cos(\pi \nu )}{\pi }}.}

Recurrence relations

The Anger function satisfies this inhomogeneous form of recurrence relation6

z J ν − 1 ( z ) + z J ν + 1 ( z ) = 2 ν J ν ( z ) − 2 sin ⁡ π ν π . {\displaystyle z\mathbf {J} _{\nu -1}(z)+z\mathbf {J} _{\nu +1}(z)=2\nu \mathbf {J} _{\nu }(z)-{\frac {2\sin \pi \nu }{\pi }}.}

While the Weber function satisfies this inhomogeneous form of recurrence relation7

z E ν − 1 ( z ) + z E ν + 1 ( z ) = 2 ν E ν ( z ) − 2 ( 1 − cos ⁡ π ν ) π . {\displaystyle z\mathbf {E} _{\nu -1}(z)+z\mathbf {E} _{\nu +1}(z)=2\nu \mathbf {E} _{\nu }(z)-{\frac {2(1-\cos \pi \nu )}{\pi }}.}

Delay differential equations

The Anger and Weber functions satisfy these homogeneous forms of delay differential equations8

J ν − 1 ( z ) − J ν + 1 ( z ) = 2 ∂ ∂ z J ν ( z ) , {\displaystyle \mathbf {J} _{\nu -1}(z)-\mathbf {J} _{\nu +1}(z)=2{\dfrac {\partial }{\partial z}}\mathbf {J} _{\nu }(z),} E ν − 1 ( z ) − E ν + 1 ( z ) = 2 ∂ ∂ z E ν ( z ) . {\displaystyle \mathbf {E} _{\nu -1}(z)-\mathbf {E} _{\nu +1}(z)=2{\dfrac {\partial }{\partial z}}\mathbf {E} _{\nu }(z).}

The Anger and Weber functions also satisfy these inhomogeneous forms of delay differential equations9

z ∂ ∂ z J ν ( z ) ± ν J ν ( z ) = ± z J ν ∓ 1 ( z ) ± sin ⁡ π ν π , {\displaystyle z{\dfrac {\partial }{\partial z}}\mathbf {J} _{\nu }(z)\pm \nu \mathbf {J} _{\nu }(z)=\pm z\mathbf {J} _{\nu \mp 1}(z)\pm {\frac {\sin \pi \nu }{\pi }},} z ∂ ∂ z E ν ( z ) ± ν E ν ( z ) = ± z E ν ∓ 1 ( z ) ± 1 − cos ⁡ π ν π . {\displaystyle z{\dfrac {\partial }{\partial z}}\mathbf {E} _{\nu }(z)\pm \nu \mathbf {E} _{\nu }(z)=\pm z\mathbf {E} _{\nu \mp 1}(z)\pm {\frac {1-\cos \pi \nu }{\pi }}.}

References

  1. Prudnikov, A.P. (2001) [1994], "Anger function", Encyclopedia of Mathematics, EMS Press /wiki/Anatolii_Platonovich_Prudnikov

  2. Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5

  3. Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5

  4. Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5

  5. Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5

  6. Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5

  7. Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5

  8. Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5

  9. Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5