Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of zinc

Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant (48.6% natural abundance). Twenty-eight radioisotopes have been characterised with the most stable being 65Zn with a half-life of 244.26 days, and then 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10 meta states.

Zinc has been proposed as a "salting" material for nuclear weapons. A jacket of isotopically enriched 64Zn, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 65Zn with a half-life of 244 days and produce approximately 1.115 MeV of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several years. Such a weapon is not known to have ever been built, tested, or used.

We don't have any images related to Isotopes of zinc yet.
We don't have any YouTube videos related to Isotopes of zinc yet.
We don't have any PDF documents related to Isotopes of zinc yet.
We don't have any Books related to Isotopes of zinc yet.
We don't have any archived web articles related to Isotopes of zinc yet.

List of isotopes

Nuclide3ZNIsotopic mass (Da)456Half-life78Decaymode910Daughterisotope11Spin andparity121314Natural abundance (mole fraction)
Excitation energyNormal proportion15Range of variation
54Zn302453.99388(23)#1.8(5) ms2p52Ni0+
55Zn302554.98468(43)#19.8(13) msβ+, p (91.0%)54Ni5/2−#
β+ (9.0%)55Cu
56Zn302655.97274(43)#32.4(7) msβ+, p (88.0%)55Ni0+
β+ (12.0%)56Cu
57Zn302756.96506(22)#45.7(6) msβ+, p (87%)56Ni7/2−#
β+ (13%)57Cu
58Zn302857.954590(54)86.0(19) msβ+ (99.3%)58Cu0+
β+, p (0.7%)57Ni
59Zn302958.94931189(81)178.7(13) msβ+ (99.90%)59Cu3/2−
β+, p (0.10%)58Ni
60Zn303059.94184132(59)2.38(5) minβ+60Cu0+
61Zn303160.939507(17)89.1(2) sβ+61Cu3/2−
62Zn303261.93433336(66)9.193(15) hβ+62Cu0+
63Zn303362.9332111(17)38.47(5) minβ+63Cu3/2−
64Zn303463.92914178(69)Observationally Stable160+0.4917(75)
65Zn303564.92924053(69)243.94(4) dEC (98.579(7)%)65Cu5/2−
β+ (1.421(7)%)17
65mZn53.928(10) keV1.6(6) μsIT65Zn1/2−
66Zn303665.92603364(80)Stable0+0.2773(98)
67Zn303766.92712742(81)Stable5/2−0.0404(16)
67m1Zn93.312(5) keV9.15(7) μsIT67Zn1/2−
67m2Zn604.48(5) keV333(14) nsIT67Zn9/2+
68Zn303867.92484423(84)Stable0+0.1845(63)
69Zn303968.92655036(85)56.4(9) minβ−69Ga1/2−
69mZn438.636(18) keV13.747(11) hIT (99.97%)69Zn9/2+
β− (0.033%)69Ga
70Zn304069.9253192(21)Observationally Stable180+0.0061(10)
71Zn304170.9277196(28)2.40(5) minβ−71Ga1/2−
71mZn157.7(13) keV4.148(12) hβ−71Ga9/2+
IT?71Zn
72Zn304271.9268428(23)46.5(1) hβ−72Ga0+
73Zn304372.9295826(20)24.5(2) sβ−73Ga1/2−
73mZn195.5(2) keV13.0(2) msIT73Zn5/2+
74Zn304473.9294073(27)95.6(12) sβ−74Ga0+
75Zn304574.9328402(21)10.2(2) sβ−75Ga7/2+
75mZn126.94(9) keV5# sβ−?75Ga1/2−
IT?75Zn
76Zn304675.9331150(16)5.7(3) sβ−76Ga0+
77Zn304776.9368872(21)2.08(5) sβ−77Ga7/2+
77mZn772.440(15) keV1.05(10) sβ− (66%)77Ga1/2−
IT (34%)77Zn
78Zn304877.9382892(21)1.47(15) sβ−78Ga0+
β−, n?77Ga
78mZn2673.7(6) keV320(6) nsIT78Zn(8+)
79Zn304978.9426381(24)746(42) msβ− (98.3%)79Ga9/2+
β−, n (1.7%)78Ga
79mZn942(10) keV19>200 msβ−?79Ga1/2+
IT?79Zn
80Zn305079.9445529(28)562.2(30) msβ− (98.64%)80Ga0+
β−, n (1.36%)79Ga
81Zn305180.9504026(54)299.4(21) msβ− (77%)81Ga(1/2+, 5/2+)
β−, n (23%)80Ga
β−, 2n?79Ga
82Zn305281.9545741(33)177.9(25) msβ−, n (69%)81Ga0+
β− (31%)82Ga
β−, 2n?80Ga
83Zn305382.96104(32)#100(3) msβ−, n (71%)82Ga3/2+#
β− (29%)83Ga
β−, 2n?81Ga
84Zn305483.96583(43)#54(8) msβ−, n (73%)83Ga0+
β− (27%)84Ga
β−, 2n?82Ga
85Zn305584.97305(54)#40# ms [>400 ns]β−?85Ga5/2+#
β−, n?84Ga
β−, 2n?83Ga
86Zn20305685.97846(54)#β−?86Ga0+
β−, n?85Ga
87Zn213057
This table header & footer:
  • view

References

  1. Roost, E.; Funck, E.; Spernol, A.; Vaninbroukx, R. (1972). "The decay of 65Zn". Zeitschrift für Physik. 250 (5): 395–412. Bibcode:1972ZPhy..250..395D. doi:10.1007/BF01379752. S2CID 124728537. /wiki/Bibcode_(identifier)

  2. D. T. Win, M. Al Masum (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. 6 (4): 199–219. http://www.journal.au.edu/au_techno/2003/apr2003/aujt6-4_article07.pdf

  3. mZn – Excited nuclear isomer. /wiki/Nuclear_isomer

  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  5. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  6. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  7. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  10. Modes of decay: IT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Isomeric_transition

  11. Bold symbol as daughter – Daughter product is stable.

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. ( ) spin value – Indicates spin with weak assignment arguments.

  14. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  15. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  16. Believed to undergo β+β+ decay to 64Ni with a half-life over 6.0×1016 y /wiki/Double_beta_decay

  17. "65Zn ε decay" (PDF). NNDC Chart of Nuclides. https://www.nndc.bnl.gov/ensnds/65/Cu/ec_decay.pdf

  18. Believed to undergo β−β− decay to 70Ge with a half-life over 3.8×1018 y

  19. Nies, L.; Canete, L.; Dao, D. D.; Giraud, S.; Kankainen, A.; Lunney, D.; Nowacki, F.; Bastin, B.; Stryjczyk, M.; Ascher, P.; Blaum, K.; Cakirli, R. B.; Eronen, T.; Fischer, P.; Flayol, M.; Girard Alcindor, V.; Herlert, A.; Jokinen, A.; Khanam, A.; Köster, U.; Lange, D.; Moore, I. D.; Müller, M.; Mougeot, M.; Nesterenko, D. A.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; de Roubin, A.; Rubchenya, V.; Schweiger, Ch.; Schweikhard, L.; Vilen, M.; Äystö, J. (30 November 2023). "Further Evidence for Shape Coexistence in Zn 79 m near Doubly Magic Ni 78". Physical Review Letters. 131 (22). arXiv:2310.16915. doi:10.1103/PhysRevLett.131.222503. /wiki/ArXiv_(identifier)

  20. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313. /wiki/Doi_(identifier)

  21. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313. /wiki/Doi_(identifier)