Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Zassenhaus algorithm
Algorithm

In mathematics, the Zassenhaus algorithm is a method to calculate a basis for the intersection and sum of two subspaces of a vector space. It is named after Hans Zassenhaus, but no publication of this algorithm by him is known. It is used in computer algebra systems.

We don't have any images related to Zassenhaus algorithm yet.
We don't have any YouTube videos related to Zassenhaus algorithm yet.
We don't have any PDF documents related to Zassenhaus algorithm yet.
We don't have any Books related to Zassenhaus algorithm yet.
We don't have any archived web articles related to Zassenhaus algorithm yet.

Algorithm

Input

Let V be a vector space and U, W two finite-dimensional subspaces of V with the following spanning sets:

U = ⟨ u 1 , … , u n ⟩ {\displaystyle U=\langle u_{1},\ldots ,u_{n}\rangle }

and

W = ⟨ w 1 , … , w k ⟩ . {\displaystyle W=\langle w_{1},\ldots ,w_{k}\rangle .}

Finally, let B 1 , … , B m {\displaystyle B_{1},\ldots ,B_{m}} be linearly independent vectors so that u i {\displaystyle u_{i}} and w i {\displaystyle w_{i}} can be written as

u i = ∑ j = 1 m a i , j B j {\displaystyle u_{i}=\sum _{j=1}^{m}a_{i,j}B_{j}}

and

w i = ∑ j = 1 m b i , j B j . {\displaystyle w_{i}=\sum _{j=1}^{m}b_{i,j}B_{j}.}

Output

The algorithm computes the base of the sum U + W {\displaystyle U+W} and a base of the intersection U ∩ W {\displaystyle U\cap W} .

Algorithm

The algorithm creates the following block matrix of size ( ( n + k ) × ( 2 m ) ) {\displaystyle ((n+k)\times (2m))} :

( a 1 , 1 a 1 , 2 ⋯ a 1 , m a 1 , 1 a 1 , 2 ⋯ a 1 , m ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ a n , 1 a n , 2 ⋯ a n , m a n , 1 a n , 2 ⋯ a n , m b 1 , 1 b 1 , 2 ⋯ b 1 , m 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ b k , 1 b k , 2 ⋯ b k , m 0 0 ⋯ 0 ) {\displaystyle {\begin{pmatrix}a_{1,1}&a_{1,2}&\cdots &a_{1,m}&a_{1,1}&a_{1,2}&\cdots &a_{1,m}\\\vdots &\vdots &&\vdots &\vdots &\vdots &&\vdots \\a_{n,1}&a_{n,2}&\cdots &a_{n,m}&a_{n,1}&a_{n,2}&\cdots &a_{n,m}\\b_{1,1}&b_{1,2}&\cdots &b_{1,m}&0&0&\cdots &0\\\vdots &\vdots &&\vdots &\vdots &\vdots &&\vdots \\b_{k,1}&b_{k,2}&\cdots &b_{k,m}&0&0&\cdots &0\end{pmatrix}}}

Using elementary row operations, this matrix is transformed to the row echelon form. Then, it has the following shape:

( c 1 , 1 c 1 , 2 ⋯ c 1 , m ∙ ∙ ⋯ ∙ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ c q , 1 c q , 2 ⋯ c q , m ∙ ∙ ⋯ ∙ 0 0 ⋯ 0 d 1 , 1 d 1 , 2 ⋯ d 1 , m ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 d ℓ , 1 d ℓ , 2 ⋯ d ℓ , m 0 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 0 0 ⋯ 0 ) {\displaystyle {\begin{pmatrix}c_{1,1}&c_{1,2}&\cdots &c_{1,m}&\bullet &\bullet &\cdots &\bullet \\\vdots &\vdots &&\vdots &\vdots &\vdots &&\vdots \\c_{q,1}&c_{q,2}&\cdots &c_{q,m}&\bullet &\bullet &\cdots &\bullet \\0&0&\cdots &0&d_{1,1}&d_{1,2}&\cdots &d_{1,m}\\\vdots &\vdots &&\vdots &\vdots &\vdots &&\vdots \\0&0&\cdots &0&d_{\ell ,1}&d_{\ell ,2}&\cdots &d_{\ell ,m}\\0&0&\cdots &0&0&0&\cdots &0\\\vdots &\vdots &&\vdots &\vdots &\vdots &&\vdots \\0&0&\cdots &0&0&0&\cdots &0\end{pmatrix}}}

Here, ∙ {\displaystyle \bullet } stands for arbitrary numbers, and the vectors ( c p , 1 , c p , 2 , … , c p , m ) {\displaystyle (c_{p,1},c_{p,2},\ldots ,c_{p,m})} for every p ∈ { 1 , … , q } {\displaystyle p\in \{1,\ldots ,q\}} and ( d p , 1 , … , d p , m ) {\displaystyle (d_{p,1},\ldots ,d_{p,m})} for every p ∈ { 1 , … , ℓ } {\displaystyle p\in \{1,\ldots ,\ell \}} are nonzero.

Then ( y 1 , … , y q ) {\displaystyle (y_{1},\ldots ,y_{q})} with

y i := ∑ j = 1 m c i , j B j {\displaystyle y_{i}:=\sum _{j=1}^{m}c_{i,j}B_{j}}

is a basis of U + W {\displaystyle U+W} and ( z 1 , … , z ℓ ) {\displaystyle (z_{1},\ldots ,z_{\ell })} with

z i := ∑ j = 1 m d i , j B j {\displaystyle z_{i}:=\sum _{j=1}^{m}d_{i,j}B_{j}}

is a basis of U ∩ W {\displaystyle U\cap W} .

Proof of correctness

First, we define π 1 : V × V → V , ( a , b ) ↦ a {\displaystyle \pi _{1}:V\times V\to V,(a,b)\mapsto a} to be the projection to the first component.

Let H := { ( u , u ) ∣ u ∈ U } + { ( w , 0 ) ∣ w ∈ W } ⊆ V × V . {\displaystyle H:=\{(u,u)\mid u\in U\}+\{(w,0)\mid w\in W\}\subseteq V\times V.} Then π 1 ( H ) = U + W {\displaystyle \pi _{1}(H)=U+W} and H ∩ ( 0 × V ) = 0 × ( U ∩ W ) {\displaystyle H\cap (0\times V)=0\times (U\cap W)} .

Also, H ∩ ( 0 × V ) {\displaystyle H\cap (0\times V)} is the kernel of π 1 | H {\displaystyle {\pi _{1}|}_{H}} , the projection restricted to H. Therefore, dim ⁡ ( H ) = dim ⁡ ( U + W ) + dim ⁡ ( U ∩ W ) {\displaystyle \dim(H)=\dim(U+W)+\dim(U\cap W)} .

The Zassenhaus algorithm calculates a basis of H. In the first m columns of this matrix, there is a basis y i {\displaystyle y_{i}} of U + W {\displaystyle U+W} .

The rows of the form ( 0 , z i ) {\displaystyle (0,z_{i})} (with z i ≠ 0 {\displaystyle z_{i}\neq 0} ) are obviously in H ∩ ( 0 × V ) {\displaystyle H\cap (0\times V)} . Because the matrix is in row echelon form, they are also linearly independent. All rows which are different from zero ( ( y i , ∙ ) {\displaystyle (y_{i},\bullet )} and ( 0 , z i ) {\displaystyle (0,z_{i})} ) are a basis of H, so there are dim ⁡ ( U ∩ W ) {\displaystyle \dim(U\cap W)} such z i {\displaystyle z_{i}} s. Therefore, the z i {\displaystyle z_{i}} s form a basis of U ∩ W {\displaystyle U\cap W} .

Example

Consider the two subspaces U = ⟨ ( 1 − 1 0 1 ) , ( 0 0 1 − 1 ) ⟩ {\displaystyle U=\left\langle \left({\begin{array}{r}1\\-1\\0\\1\end{array}}\right),\left({\begin{array}{r}0\\0\\1\\-1\end{array}}\right)\right\rangle } and W = ⟨ ( 5 0 − 3 3 ) , ( 0 5 − 3 − 2 ) ⟩ {\displaystyle W=\left\langle \left({\begin{array}{r}5\\0\\-3\\3\end{array}}\right),\left({\begin{array}{r}0\\5\\-3\\-2\end{array}}\right)\right\rangle } of the vector space R 4 {\displaystyle \mathbb {R} ^{4}} .

Using the standard basis, we create the following matrix of dimension ( 2 + 2 ) × ( 2 ⋅ 4 ) {\displaystyle (2+2)\times (2\cdot 4)} :

( 1 − 1 0 1 1 − 1 0 1 0 0 1 − 1 0 0 1 − 1 5 0 − 3 3 0 0 0 0 0 5 − 3 − 2 0 0 0 0 ) . {\displaystyle \left({\begin{array}{rrrrrrrr}1&-1&0&1&&1&-1&0&1\\0&0&1&-1&&0&0&1&-1\\\\5&0&-3&3&&0&0&0&0\\0&5&-3&-2&&0&0&0&0\end{array}}\right).}

Using elementary row operations, we transform this matrix into the following matrix:

( 1 0 0 0 ∙ ∙ ∙ ∙ 0 1 0 − 1 ∙ ∙ ∙ ∙ 0 0 1 − 1 ∙ ∙ ∙ ∙ 0 0 0 0 1 − 1 0 1 ) {\displaystyle \left({\begin{array}{rrrrrrrrr}1&0&0&0&&\bullet &\bullet &\bullet &\bullet \\0&1&0&-1&&\bullet &\bullet &\bullet &\bullet \\0&0&1&-1&&\bullet &\bullet &\bullet &\bullet \\\\0&0&0&0&&1&-1&0&1\end{array}}\right)} (Some entries have been replaced by " ∙ {\displaystyle \bullet } " because they are irrelevant to the result.)

Therefore ( ( 1 0 0 0 ) , ( 0 1 0 − 1 ) , ( 0 0 1 − 1 ) ) {\displaystyle \left(\left({\begin{array}{r}1\\0\\0\\0\end{array}}\right),\left({\begin{array}{r}0\\1\\0\\-1\end{array}}\right),\left({\begin{array}{r}0\\0\\1\\-1\end{array}}\right)\right)} is a basis of U + W {\displaystyle U+W} , and ( ( 1 − 1 0 1 ) ) {\displaystyle \left(\left({\begin{array}{r}1\\-1\\0\\1\end{array}}\right)\right)} is a basis of U ∩ W {\displaystyle U\cap W} .

See also

References

  1. Luks, Eugene M.; Rákóczi, Ferenc; Wright, Charles R. B. (April 1997), "Some algorithms for nilpotent permutation groups", Journal of Symbolic Computation, 23 (4): 335–354, doi:10.1006/jsco.1996.0092. /wiki/Eugene_M._Luks

  2. Fischer, Gerd (2012), Lernbuch Lineare Algebra und Analytische Geometrie (in German), Vieweg+Teubner, pp. 207–210, doi:10.1007/978-3-8348-2379-3, ISBN 978-3-8348-2378-6 978-3-8348-2378-6

  3. The GAP Group (February 13, 2015), "24 Matrices", GAP Reference Manual, Release 4.7, retrieved 2015-06-11 http://www.gap-system.org/Manuals/doc/ref/chap24.html