Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Xuong tree

In graph theory, a Xuong tree is a spanning tree T {\displaystyle T} of a given graph G {\displaystyle G} with the property that, in the remaining graph G − T {\displaystyle G-T} , the number of connected components with an odd number of edges is as small as possible. They are named after Nguyen Huy Xuong, who used them to characterize the cellular embeddings of a given graph having the largest possible genus.

According to Xuong's results, if T {\displaystyle T} is a Xuong tree and the numbers of edges in the components of G − T {\displaystyle G-T} are m 1 , m 2 , … , m k {\displaystyle m_{1},m_{2},\dots ,m_{k}} , then the maximum genus of an embedding of G {\displaystyle G} is ∑ i = 1 k ⌊ m i / 2 ⌋ {\displaystyle \textstyle \sum _{i=1}^{k}\lfloor m_{i}/2\rfloor } . Any one of these components, having m i {\displaystyle m_{i}} edges, can be partitioned into ⌊ m i / 2 ⌋ {\displaystyle \lfloor m_{i}/2\rfloor } edge-disjoint two-edge paths, with possibly one additional left-over edge. An embedding of maximum genus may be obtained from a planar embedding of the Xuong tree by adding each two-edge path to the embedding in such a way that it increases the genus by one.

A Xuong tree, and a maximum-genus embedding derived from it, may be found in any graph in polynomial time, by a transformation to a more general computational problem on matroids, the matroid parity problem for linear matroids.

Related Image Collections Add Image
We don't have any YouTube videos related to Xuong tree yet.
We don't have any PDF documents related to Xuong tree yet.
We don't have any Books related to Xuong tree yet.
We don't have any archived web articles related to Xuong tree yet.

References

  1. Beineke, Lowell W.; Wilson, Robin J. (2009), Topics in topological graph theory, Encyclopedia of Mathematics and its Applications, vol. 128, Cambridge University Press, Cambridge, p. 36, doi:10.1017/CBO9781139087223, ISBN 978-0-521-80230-7, MR 2581536 978-0-521-80230-7

  2. Xuong, Nguyen Huy (1979), "How to determine the maximum genus of a graph", Journal of Combinatorial Theory, Series B, 26 (2): 217–225, doi:10.1016/0095-8956(79)90058-3, MR 0532589 /wiki/Doi_(identifier)

  3. Beineke, Lowell W.; Wilson, Robin J. (2009), Topics in topological graph theory, Encyclopedia of Mathematics and its Applications, vol. 128, Cambridge University Press, Cambridge, p. 36, doi:10.1017/CBO9781139087223, ISBN 978-0-521-80230-7, MR 2581536 978-0-521-80230-7

  4. Xuong, Nguyen Huy (1979), "How to determine the maximum genus of a graph", Journal of Combinatorial Theory, Series B, 26 (2): 217–225, doi:10.1016/0095-8956(79)90058-3, MR 0532589 /wiki/Doi_(identifier)

  5. Sumner, David P. (1974), "Graphs with 1-factors", Proceedings of the American Mathematical Society, 42 (1), American Mathematical Society: 8–12, doi:10.2307/2039666, JSTOR 2039666, MR 0323648 /wiki/David_Sumner

  6. Beineke, Lowell W.; Wilson, Robin J. (2009), Topics in topological graph theory, Encyclopedia of Mathematics and its Applications, vol. 128, Cambridge University Press, Cambridge, p. 36, doi:10.1017/CBO9781139087223, ISBN 978-0-521-80230-7, MR 2581536 978-0-521-80230-7

  7. Xuong, Nguyen Huy (1979), "How to determine the maximum genus of a graph", Journal of Combinatorial Theory, Series B, 26 (2): 217–225, doi:10.1016/0095-8956(79)90058-3, MR 0532589 /wiki/Doi_(identifier)

  8. Beineke, Lowell W.; Wilson, Robin J. (2009), Topics in topological graph theory, Encyclopedia of Mathematics and its Applications, vol. 128, Cambridge University Press, Cambridge, p. 36, doi:10.1017/CBO9781139087223, ISBN 978-0-521-80230-7, MR 2581536 978-0-521-80230-7

  9. Furst, Merrick L.; Gross, Jonathan L.; McGeoch, Lyle A. (1988), "Finding a maximum-genus graph imbedding", Journal of the ACM, 35 (3): 523–534, doi:10.1145/44483.44485, MR 0963159, S2CID 17991210 /wiki/Journal_of_the_ACM