Truncated tetrapentagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 4.8.10 |
Schläfli symbol | tr{5,4} or t { 5 4 } {\displaystyle t{\begin{Bmatrix}5\\4\end{Bmatrix}}} |
Wythoff symbol | 2 5 4 | |
Coxeter diagram | or |
Symmetry group | [5,4], (*542) |
Dual | Order-4-5 kisrhombille tiling |
Properties | Vertex-transitive |
In geometry, the truncated tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1,2{4,5} or tr{4,5}.
Related Image Collections
Add Image
We don't have any YouTube videos related to Truncated tetrapentagonal tiling yet.
You can add one yourself here.
We don't have any PDF documents related to Truncated tetrapentagonal tiling yet.
You can add one yourself here.
We don't have any Books related to Truncated tetrapentagonal tiling yet.
You can add one yourself here.
We don't have any archived web articles related to Truncated tetrapentagonal tiling yet.
Symmetry
There are four small index subgroup constructed from [5,4] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.
A radical subgroup is constructed [5*,4], index 10, as [5+,4], (5*2) with gyration points removed, becoming orbifold (*22222), and its direct subgroup [5*,4]+, index 20, becomes orbifold (22222).
Small index subgroups of [5,4] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Index | 1 | 2 | 10 | ||||||||
Diagram | |||||||||||
Coxeter(orbifold) | [5,4] = (*542) | [5,4,1+] = = (*552) | [5+,4] = (5*2) | [5*,4] = (*22222) | |||||||
Direct subgroups | |||||||||||
Index | 2 | 4 | 20 | ||||||||
Diagram | |||||||||||
Coxeter(orbifold) | [5,4]+ = (542) | [5+,4]+ = = (552) | [5*,4]+ = (22222) |
Related polyhedra and tiling
*n42 symmetry mutation of omnitruncated tilings: 4.8.2n
| ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry*n42[n,4] | Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
*242[2,4] | *342[3,4] | *442[4,4] | *542[5,4] | *642[6,4] | *742[7,4] | *842[8,4]... | *∞42[∞,4] | |
Omnitruncatedfigure | 4.8.4 | 4.8.6 | 4.8.8 | 4.8.10 | 4.8.12 | 4.8.14 | 4.8.16 | 4.8.∞ |
Omnitruncatedduals | V4.8.4 | V4.8.6 | V4.8.8 | V4.8.10 | V4.8.12 | V4.8.14 | V4.8.16 | V4.8.∞ |
*nn2 symmetry mutations of omnitruncated tilings: 4.2n.2n
| ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry*nn2[n,n] | Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||||||||
*222[2,2] | *332[3,3] | *442[4,4] | *552[5,5] | *662[6,6] | *772[7,7] | *882[8,8]... | *∞∞2[∞,∞] | |||||||
Figure | ||||||||||||||
Config. | 4.4.4 | 4.6.6 | 4.8.8 | 4.10.10 | 4.12.12 | 4.14.14 | 4.16.16 | 4.∞.∞ | ||||||
Dual | ||||||||||||||
Config. | V4.4.4 | V4.6.6 | V4.8.8 | V4.10.10 | V4.12.12 | V4.14.14 | V4.16.16 | V4.∞.∞ |
Uniform pentagonal/square tilings
| |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [5,4], (*542) | [5,4]+, (542) | [5+,4], (5*2) | [5,4,1+], (*552) | ||||||||
{5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | ||
Uniform duals | |||||||||||
V54 | V4.10.10 | V4.5.4.5 | V5.8.8 | V45 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V55 |
See also
Wikimedia Commons has media related to Uniform tiling 4-8-10.- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- Coxeter, H. S. M. (1999). "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. ISBN 0-486-40919-8. LCCN 99035678.