Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of thallium
Isotopes of thallium

Thallium (81Tl) has 42 isotopes with atomic masses that range from 176 to 217. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a half-life of 3.78 years. 207Tl, with a half-life of 4.77 minutes, has the longest half-life of naturally occurring Tl radioisotopes. All isotopes of thallium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Thallium-202 (half-life 12.23 days) can be made in a cyclotron while thallium-204 (half-life 3.78 years) is made by the neutron activation of stable thallium in a nuclear reactor.

In the fully ionized state, the isotope 205Tl81+ becomes beta-radioactive, undergoing bound-state β− decay to 205Pb81+ with a half-life of 291+33−27 days, but 203Tl remains stable.

205Tl is the decay product of bismuth-209, an isotope that was once thought to be stable but is now known to undergo alpha decay with an extremely long half-life of 2.01×1019 y. 205Tl is at the end of the neptunium series decay chain.

Related Image Collections Add Image
We don't have any YouTube videos related to Isotopes of thallium yet.
We don't have any PDF documents related to Isotopes of thallium yet.
We don't have any Books related to Isotopes of thallium yet.
We don't have any archived web articles related to Isotopes of thallium yet.

List of isotopes

Nuclide6HistoricnameZNIsotopic mass (Da)789Half-life1011Decaymode1213Daughterisotope14Spin andparity151617Natural abundance (mole fraction)
Excitation energy18Normal proportion19Range of variation
176Tl208195176.000628(89)2.4+1.6−0.7 msp (50%)175Hg(3−,4−)
α (50%)172Au
176mTl671 keV290+200−80 μsp (50%)175Hg
α (50%)172mAu
177Tl8196176.996414(23)18(5) msα (73%)173Au(1/2+)
p (27%)176Hg
177mTl807(18) keV230(40) μsp (51%)176Hg(11/2−)
α (49%)173Au
178Tl8197177.99505(11)#255(9) msα (62%)174Au(4-,5-)
β+ (38%)178Hg
β+, SF (0.15%)(various)
179Tl8198178.991122(41)437(9) msα (60%)175Au1/2+
β+ (40%)179Hg
179m1Tl825(10)# keV1.41(2) msα175Au(11/2−)
179m2Tl904.5(9) keV119(14) nsIT179Tl(9/2−)
180Tl8199179.989919(75)1.09(1) sβ+ (93%)180Hg(4-)
α (7%)176Au
β+, SF (0.0032%)100Ru, 80Kr21
181Tl81100180.9862600(98)2.9(1) sβ+ (91.4%)181Hg1/2+
α (8.6%)177Au
181mTl835.9(4) keV1.40(3) msIT (99.60%)181Tl(9/2−)
α (0.40%)177Au
182Tl81101181.985693(13)1.9(1) sβ+ (<99.41%)182Hg(4−)
α (>0.49%)178Au
β+, SF (<3.4×10−6%)182Hg
182mTl2250(50)# keV3.1(10) sβ+ (97.5%)182Hg(7+)
α (2.5%)178Au
183Tl81102182.982193(10)6.9(7) sβ+ (?%)183Hg1/2+
α (?%)179Au
183m1Tl628.7(5) keV53.3(3) msIT (?%)183Tl(9/2−)
α (1.5%)179Au
β+ (?%)183Hg
183m2Tl975.3(6) keV1.48(10) μsIT183Tl(13/2+)
184Tl81103183.981875(11)9.5(2) sβ+ (98.78%)184Hg2−
α (1.22%)180Au
184m1Tl23−50(30) keV10.6(5) sβ+ (99.53%)184Hg(7+)
α (0.47%)180Au
184m2Tl450(30) keV47.1(7) msIT (99.91%)(10−)
α (0.089%)180Au
185Tl81104184.978789(22)19.5(5) sβ+185Hg1/2+
185mTl454.8(15) keV1.93(8) sIT185Tl9/2−
α (?%)181Au
186Tl81105185.978655(22)3.5(5) sβ+ (?%)186Hg(2−)
α (?%)182Au
186m1Tl2420(40) keV27.5(10) sβ+ (99.99%)186Hg7+
α (0.006%)182Au
186m2Tl390(40) keV3.40(9) sIT (<94.1%)186Tl10−
β+ (>5.9%)186Hg
187Tl81106186.9759047(86)~51 sβ+187Hg1/2+
187m1Tl334(3) keV15.60(12) sβ+ (?%)187Hg9/2−
IT (?%)187Tl
α (0.15%)183Au
187m2Tl1875(50)# keV1.11(7) μsIT187Tl
187m3Tl2582.5(3) keV693(38) nsIT187Tl29/2+#
188Tl81107187.976021(32)71(2) sβ+188Hg2−#
188m1Tl2530(30) keV71.5(15) sβ+188Hg7+
188m2Tl299(30) keV41(4) msIT188Tl9−
189Tl81108188.9735735(90)2.3(2) minβ+189Hg1/2+
189mTl285(6) keV1.4(1) minβ+189Hg9/2−
190Tl81109189.9738418(78)2.6(3) minβ+190Hg2−
190m1Tl70(7) keV3.6(3) minβ+190Hg7+
190m2Tl306(10) keV60# msIT190Tl(9−)
191Tl81110190.9717841(79)20# minβ+191Hg1/2+
191mTl297(7) keV5.22(16) minβ+191Hg9/2−
192Tl81111191.972225(34)9.6(4) minβ+192Hg2−
192m1Tl196(7) keV10.8(2) minβ+192Hg7+
192m2Tl447(7) keV296(5) nsIT192Tl(8−)
192m3Tl180(40) keVα188Au(3+)
193Tl81112192.9705020(72)21.6(8) minβ+193Hg1/2+
193mTl372(4) keV2.11(15) minIT (~75%)193Tl9/2−
β+ (~25%)193Hg
194Tl81113193.971081(15)33.0(5) minβ+194Hg2−
194mTl260(14) keV32.8(2) minβ+194Hg7+
195Tl81114194.969774(12)1.16(5) hβ+195Hg1/2+
195mTl482.63(17) keV3.6(4) sIT195Tl9/2−
196Tl81115195.970481(13)1.84(3) hβ+196Hg2−
196mTl394.2(5) keV1.41(2) hβ+ (96.2%)196Hg7+
IT (3.8%)196Tl
197Tl81116196.969560(15)2.84(4) hβ+197Hg1/2+
197mTl608.22(8) keV540(10) msIT197Tl9/2−
198Tl81117197.9704467(81)5.3(5) hβ+198Hg2−
198m1Tl543.6(4) keV1.87(3) hβ+ (55.9%)198Hg7+
IT (44.1%)198Tl
198m2Tl686.8(5) keV150(40) nsIT198Tl(5)+
198m3Tl742.4(4) keV32.1(10) msIT198Tl10−
199Tl81118198.969877(30)7.42(8) hβ+199Hg1/2+
199mTl748.87(6) keV28.4(2) msIT199Tl9/2−
200Tl81119199.9709636(62)26.1(1) hβ+200Hg2−
200m1Tl753.60(24) keV34.0(9) msIT200Tl7+
200m2Tl762.00(24) keV397(17) nsIT200Tl5+
201Tl2681120200.970820(15)3.0421(8) dEC201Hg1/2+
201mTl919.16(21) keV2.01(7) msIT201Tl9/2−
202Tl81121201.9721089(20)12.31(8) dEC202Hg2−
202mTl950.19(10) keV591(3) μsIT202Tl7+
203Tl81122202.9723441(13)Observationally Stable271/2+0.29515(44)
203m1Tl1483.7(9) keV<1 μsIT203Tl(9/2−)
203m2Tl3565(50)# keV7.7(5) μsIT203Tl(25/2+)
204Tl81123203.9738634(12)3.783(12) yβ− (97.08%)204Pb2−
EC (2.92%)204Hg
204m1Tl1104.1(2) keV61.7(10) μsIT204Tl7+
204m2Tl2319.0(3) keV2.6(2) μsIT204Tl12−
204m3Tl4391.6(5) keV420(30) nsIT204Tl18+
204m4Tl6239.4(5) keV90(3) nsIT204Tl22−
205Tl2881124204.9744273(13)Observationally Stable29301/2+0.70485(44)
205m1Tl3290.61(17) keV2.6(2) μsIT205Tl25/2+
205m2Tl4835.6(15) keV235(10) nsIT205Tl(35/2–)
206TlRadium E81125205.9761101(14)4.202(11) minβ−206Pb0−Trace31
206mTl2643.10(18) keV3.74(3) minIT206Tl(12)–
207TlActinium C81126206.9774186(58)4.77(2) minβ−207Pb1/2+Trace32
207mTl1348.18(16) keV1.33(11) sIT207Tl11/2–
208TlThorium C"81127207.9820180(20)3.053(4) minβ−208Pb5+Trace33
208mTl1807(1) keV1.3(1) μsIT208Tl(0–)
209Tl81128208.9853517(66)2.162(7) minβ−209Pb1/2+Trace34
209mTl1228.1(20) keV146(10) nsIT209Tl17/2+
210TlRadium C″81129209.990073(12)1.30(3) minβ− (99.99%)210Pb5+#Trace35
β−, n (0.009%)209Pb
210mTl1200(200)# keV1# min[>3 μs](9+,10+)
211Tl81130210.993475(45)81(16) sβ− (97.8%)211Pb1/2+
β−, n (2.2%)210Pb
211mTl1244(100)# keV580(80) nsIT211Tl17/2+#
212Tl81131211.99834(22)#31(8) sβ− (98.2%)212Pb(5+)
β−, n (1.8%)211Pb
213Tl81132213.001915(29)23.8(44) sβ− (92.4%)213Pb1/2+#
β−, n (7.6%)212Pb
213m1Tl680(300)# keV4.1(5) μsIT213Tl
213m2Tl1250(100)# keV0.6(3) μsIT213Tl17/2+#
214Tl81133214.00694(21)#11.0(24) sβ− (66%)214Pb5+#
β−, n (34%)213Pb
215Tl81134215.01077(32)#9.7(38) sβ− (95.4%)215Pb1/2+#
β−, n (4.6%)214Pb
216Tl81135216.01596(32)#5.9(33) sβ− (>88.5%)216Pb5+#
β−, n (<11.5%)215Pb
217Tl81136217.02003(43)#2# s[>300 ns]1/2+#
This table header & footer:
  • view

Thallium-201

Thallium-201 (201Tl) is a synthetic radioisotope of thallium. It has a half-life of 73 hours and decays by electron capture, emitting X-rays (~70–80 keV), and photons of 135 and 167 keV in 10% total abundance.36 Thallium-201 is synthesized by the neutron activation of stable thallium in a nuclear reactor,3738 or by the 203Tl(p, 3n)201Pb nuclear reaction in cyclotrons, as 201Pb naturally decays to 201Tl afterwards.39 It is a radiopharmaceutical, as it has good imaging characteristics without excessive patient radiation dose. It is the most popular isotope used for thallium nuclear cardiac stress tests.40

References

  1. "Thallium Research". doe.gov. Department of Energy. Archived from the original on 2006-12-09. Retrieved 23 March 2018. https://web.archive.org/web/20061209165017/http://www.eh.doe.gov/ohre/roadmap/histories/0472/0472d.html

  2. Manual for reactor produced radioisotopes from the International Atomic Energy Agency http://www-pub.iaea.org/MTCD/publications/PDF/te_1340_web.pdf

  3. "Bound-state beta decay of highly ionized atoms" (PDF). Archived from the original (PDF) on October 29, 2013. Retrieved June 9, 2013. https://web.archive.org/web/20131029205727/http://www.ca.infn.it/~oldeman/resneu/p1522_1.pdf

  4. Bai, M.; Blaum, K.; Boev, B.; Bosch, F.; Brandau, C.; Cvetković, V.; Dickel, T.; Dillmann, I.; Dmytriiev, D.; Faestermann, T.; Forstner, O.; Franczak, B.; Geissel, H.; Gernhäuser, R.; Glorius, J.; Griffin, C. J.; Gumberidze, A.; Haettner, E.; Hillenbrand, P.-M.; Kienle, P.; Korten, W.; Kozhuharov, Ch.; Kuzminchuk, N.; Langanke, K.; Litvinov, S.; Menz, E.; Morgenroth, T.; Nociforo, C.; Nolden, F.; Pavićević, M. K.; Petridis, N.; Popp, U.; Purushothaman, S.; Reifarth, R.; Sanjari, M. S.; Scheidenberger, C.; Spillmann, U.; Steck, M.; Stöhlker, Th.; Tanaka, Y. K.; Trassinelli, M.; Trotsenko, S.; Varga, L.; Wang, M.; Weick, H.; Woods, P. J.; Yamaguchi, T.; Zhang, Y. H.; Zhao, J.; Zuber, K.; et al. (E121 Collaboration and LOREX Collaboration) (2 December 2024). "Bound-State Beta Decay of 205Tl81+ Ions and the LOREX Project". Physical Review Letters. 133 (23). American Physical Society: 232701. arXiv:2501.06029. doi:10.1103/PhysRevLett.133.232701. https://link.aps.org/doi/10.1103/PhysRevLett.133.232701

  5. Marcillac, P.; Coron, N.; Dambier, G.; et al. (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582. /wiki/Bibcode_(identifier)

  6. mTl – Excited nuclear isomer. /wiki/Nuclear_isomer

  7. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  8. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  9. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  10. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  11. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. Modes of decay: α:Alpha decayβ+:Positron emissionEC:Electron captureβ−:Beta decayIT:Isomeric transitionSF:Spontaneous fissionn:Neutron emissionp:Proton emission /wiki/Alpha_decay

  14. Bold symbol as daughter – Daughter product is stable.

  15. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  16. ( ) spin value – Indicates spin with weak assignment arguments.

  17. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  18. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  19. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  20. Al-Aqeel, Muneerah Abdullah M. "Decay Spectroscopy of the Thallium Isotopes 176,177Tl". University of Liverpool. ProQuest 2447566201. Retrieved 21 June 2023. https://www.proquest.com/docview/2447566201

  21. Reich, E. S. (2010). "Mercury serves up a nuclear surprise: a new type of fission". Scientific American. Retrieved 12 May 2011. https://www.scientificamerican.com/article/mercury-serves-up-a-nuclear-su/

  22. Order of ground state and isomer is uncertain.

  23. Order of ground state and isomer is uncertain.

  24. Order of ground state and isomer is uncertain.

  25. Order of ground state and isomer is uncertain.

  26. Main isotope used in scintigraphy /wiki/Scintigraphy

  27. Believed to undergo α decay to 199Au

  28. Final decay product of 4n+1 decay chain (the Neptunium series) /wiki/Decay_chain

  29. Believed to undergo α decay to 201Au

  30. Can undergo bound-state β− decay to 205Pb81+ with a half-life of 291+33−27 days when fully ionized[7] /wiki/Beta_decay#Bound-state_β−_decay

  31. Intermediate decay product of 238U /wiki/Decay_product

  32. Intermediate decay product of 235U /wiki/Decay_product

  33. Intermediate decay product of 232Th /wiki/Decay_product

  34. Intermediate decay product of 237Np /wiki/Neptunium-237

  35. Intermediate decay product of 238U /wiki/Decay_product

  36. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  37. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  38. "Manual for reactor produced radioisotopes" (PDF). International Atomic Energy Agency. 2003. Archived (PDF) from the original on 2011-05-21. Retrieved 2010-05-13. http://www-pub.iaea.org/MTCD/publications/PDF/te_1340_web.pdf

  39. Cyclotron Produced Radionuclides: Principles and Practice (PDF). International Atomic Energy Agency. 2008. ISBN 9789201002082. Retrieved 2022-07-01. 9789201002082

  40. Maddahi, Jamshid; Berman, Daniel (2001). "Detection, Evaluation, and Risk Stratification of Coronary Artery Disease by Thallium-201 Myocardial Perfusion Scintigraphy 155". Cardiac SPECT imaging (2nd ed.). Lippincott Williams & Wilkins. pp. 155–178. ISBN 978-0-7817-2007-6. Archived from the original on 2017-02-22. Retrieved 2016-09-26. 978-0-7817-2007-6