Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Tetrathiafulvalene
Chemical compound

Tetrathiafulvalene (TTF) is an organosulfur compound with the formula H2C2S2C=CS2C2H2. It is the parent of many tetrathiafulvenes. Studies on these heterocyclic compound contributed to the development of molecular electronics, although no practical applications of TTF emerged. TTF is related to the hydrocarbon fulvalene (H4C4C=CC4H4) by replacement of four CH groups with sulfur atoms. Over 10,000 scientific publications discuss TTF and its derivatives.

Related Image Collections Add Image
We don't have any YouTube videos related to Tetrathiafulvalene yet.
We don't have any PDF documents related to Tetrathiafulvalene yet.
We don't have any Books related to Tetrathiafulvalene yet.
We don't have any archived web articles related to Tetrathiafulvalene yet.

Preparation

The high level of interest in TTFs spawned many syntheses of TTF and its analogues.23 Most preparations entail the coupling of cyclic C3S2 building blocks such as 1,3-dithiole-2-thion or the related 1,3-dithiole-2-ones. For TTF itself, the synthesis begins with the cyclic trithiocarbonate H2C2S2C=S (1,3-dithiole-2-thione), which is S-methylated and then reduced to give H2C2S2CH(SCH3) (1,3-dithiole-2-yl methyl thioether), which is treated as follows:4

Protonolysis of a thioether:

H2C2S2CH(SCH3) + HBF4 → [H2C2S2CH]+BF−4 + CH3SH

Followed by deprotonation of the dithiolium cation with triethylamine:

2 [H2C2S2CH]+BF−4 + 2 N(CH2CH3)3 → H2C2S2C=CS2C2H2 + 2 [NH(CH2CH3)3]+BF−4

Redox properties

Bulk TTF itself has unremarkable electrical properties. Distinctive properties are, however, associated with salts of its oxidized derivatives, such as salts derived from TTF+.

The high electrical conductivity of TTF salts can be attributed to the following features of TTF:

TTF → TTF+ + e− (E = 0.34 V) TTF+ → TTF2+ + e− (E = 0.78 V, vs. Ag/AgCl in CH3CN solution)

Each dithiolylidene ring in TTF has 7π electrons: 2 for each sulfur atom, 1 for each sp2 carbon atom. Thus, oxidation converts each ring to an aromatic 6π-electron configuration, consequently leaving the central double bond essentially a single bond, as all π-electrons occupy ring orbitals.

History

The salt [TTF+]Cl− was reported to be a semiconductor in 1972.5 Subsequently, the charge-transfer salt [TTF]TCNQ was shown to be a narrow band gap semiconductor.6 X-ray diffraction studies of [TTF][TCNQ] revealed stacks of partially oxidized TTF molecules adjacent to anionic stacks of TCNQ molecules. This "segregated stack" motif was unexpected and is responsible for the distinctive electrical properties, i.e. high and anisotropic electrical conductivity. Since these early discoveries, numerous analogues of TTF have been prepared. Well studied analogues include tetramethyltetrathiafulvalene (Me4TTF), tetramethylselenafulvalenes (TMTSFs), and bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, CAS [66946-48-3]).7 Several tetramethyltetrathiafulvalene salts (called Fabre salts) are of some relevance as organic superconductors.

See also

Further reading

References

  1. Bendikov, M; Wudl, F; Perepichka, D F (2004). "Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics". Chemical Reviews. 104 (11): 4891–4945. doi:10.1021/cr030666m. PMID 15535637. /wiki/Dmitrii_Perepichka

  2. Fabre, J. M. (2004). "Synthesis Strategies and Chemistry of Nonsymmetrically Substituted Tetrachalcogenafulvalenes". Chemical Reviews. 104 (11): 5133–5150. doi:10.1021/cr0306440. /wiki/Doi_(identifier)

  3. Bendikov, M; Wudl, F; Perepichka, D F (2004). "Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics". Chemical Reviews. 104 (11): 4891–4945. doi:10.1021/cr030666m. PMID 15535637. /wiki/Dmitrii_Perepichka

  4. Wudl, F.; Kaplan, M. L. (1979). "2,2′-Bi-1,3-Dithiolylidene (Tetrathiafulvalene, TTF) and its Radical Cation Salts". Inorg. Synth. 19: 27–30. doi:10.1002/9780470132500.ch7. ISBN 978-0-470-13250-0. 978-0-470-13250-0

  5. Wudl, F.; Wobschall, D.; Hufnagel, E. J. (1972). "Electrical Conductivity by the Bis(1,3-dithiole)-bis(1,3-dithiolium) System". J. Am. Chem. Soc. 94 (2): 670–672. doi:10.1021/ja00757a079. /wiki/J._Am._Chem._Soc.

  6. Ferraris, J.; Cowan, D. O.; Walatka, V. V. Jr.; Perlstein, J. H. (1973). "Electron transfer in a new highly conducting donor-acceptor complex". J. Am. Chem. Soc. 95 (3): 948–949. doi:10.1021/ja00784a066. /wiki/J._Am._Chem._Soc.

  7. Larsen, J.; Lenoir, C. (1998). "2,2'-Bi-5,6-Dihydro-1,3-Dithiolo[4,5-b][1,4]dithiinylidene (BEDT-TTF)". Organic Syntheses; Collected Volumes, vol. 9, p. 72. http://www.orgsyn.org/demo.aspx?prep=cv9p0072