Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of tantalum

Natural tantalum (73Ta) consists of two stable isotopes: 181Ta (99.988%) and 180mTa (0.012%).

There are also 35 known artificial radioisotopes, the longest-lived of which are 179Ta with a half-life of 1.82 years, 182Ta with a half-life of 114.43 days, 183Ta with a half-life of 5.1 days, and 177Ta with a half-life of 56.56 hours. All other isotopes have half-lives under a day, most under an hour. There are also numerous isomers, the most stable of which (other than 180mTa) is 178m1Ta with a half-life of 2.36 hours. All isotopes and nuclear isomers of tantalum are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Tantalum has been proposed as a "salting" material for nuclear weapons (cobalt is another, better-known salting material). A jacket of 181Ta, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 182Ta with a half-life of 114.43 days and produce approximately 1.12 MeV of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several months. Such a weapon is not known to have ever been built, tested, or used. While the conversion factor from absorbed dose (measured in Grays) to effective dose (measured in Sievert) for gamma rays is 1 while it is 50 for alpha radiation (i.e., a gamma dose of 1 Gray is equivalent to 1 Sievert whereas an alpha dose of 1 Gray is equivalent to 50 Sievert), gamma rays are only attenuated by shielding, not stopped. As such, alpha particles require incorporation to have an effect while gamma rays can have an effect via mere proximity. In military terms, this allows a gamma ray weapon to deny an area to either side as long as the dose is high enough, whereas radioactive contamination by alpha emitters which do not release significant amounts of gamma rays can be counteracted by ensuring the material is not incorporated.

We don't have any images related to Isotopes of tantalum yet.
We don't have any YouTube videos related to Isotopes of tantalum yet.
We don't have any PDF documents related to Isotopes of tantalum yet.
We don't have any Books related to Isotopes of tantalum yet.
We don't have any archived web articles related to Isotopes of tantalum yet.

List of isotopes

Nuclide2ZNIsotopic mass (Da)345Half-life67Decaymode89Daughterisotope1011Spin andparity121314Natural abundance (mole fraction)
Excitation energy15Normal proportion16Range of variation
155Ta7382154.97425(32)#3.2(13) msp154Hf11/2−
156Ta7383155.97209(32)#106(4) msp (71%)155Hf(2−)
β+ (29%)156Hf
156mTa94(8) keV360(40) msβ+ (95.8%)156Hf(9+)
p (4.2%)155Hf
157Ta7384156.96823(16)10.1(4) msα (96.6%)153Lu1/2+
p (3.4%)156Hf
157m1Ta22(5) keV4.3(1) msα153Lu11/2−
157m2Ta1593(9) keV1.7(1) msα153Lu25/2−#
158Ta7385157.96659(22)#49(4) msα154Lu(2)−
158m1Ta141(11) keV36.0(8) msα (95%)154Lu(9)+
158m2Ta2808(16) keV6.1(1) μsIT (98.6%)158Ta(19−)
α (1.4%)154Lu
159Ta7386158.963028(21)1.04(9) sβ+ (66%)159Hf1/2+
α (34%)155Lu
159mTa64(5) keV560(60) msα (55%)155Lu11/2−
β+ (45%)159Hf
160Ta7387159.961542(58)1.70(20) sα156Lu(2)−
160mTa17110(250) keV1.55(4) sα156Lu(9,10)+
161Ta7388160.958369(26)3# s(1/2+)
161mTa1861(23) keV3.08(11) sβ+ (93%)161Hf(11/2−)
α (7%)157Lu
162Ta7389161.957293(68)3.57(12) sβ+ (99.93%)162Hf3−#
α (0.074%)158Lu
162mTa19120(50)# keV5# s7+#
163Ta7390162.954337(41)10.6(18) sβ+ (99.8%)163Hf1/2+
163mTa138(18)# keV10# s9/2−
164Ta7391163.953534(30)14.2(3) sβ+164Hf(3+)
165Ta7392164.950780(15)31.0(15) sβ+165Hf(1/2+,3/2+)
165mTa2024(18) keV30# s(9/2−)
166Ta7393165.950512(30)34.4(5) sβ+166Hf(2)+
167Ta7394166.948093(30)1.33(7) minβ+167Hf(3/2+)
168Ta7395167.948047(30)2.0(1) minβ+168Hf(3+)
169Ta7396168.946011(30)4.9(4) minβ+169Hf(5/2+)
170Ta7397169.946175(30)6.76(6) minβ+170Hf(3+)
171Ta7398170.944476(30)23.3(3) minβ+171Hf(5/2+)
172Ta7399171.944895(30)36.8(3) minβ+172Hf(3+)
173Ta73100172.943750(30)3.14(13) hβ+173Hf5/2−
173m1Ta173.10(21) keV205.2(56) nsIT173Ta9/2−
173m1Ta1717.2(4) keV132(3) nsIT173Ta21/2−
174Ta73101173.944454(30)1.14(8) hβ+174Hf3+
175Ta73102174.943737(30)10.5(2) hβ+175Hf7/2+
175m1Ta131.41(17) keV222(8) nsIT175Ta9/2−
175m2Ta339.2(13) keV170(20) nsIT175Ta(1/2+)
175m3Ta1567.6(3) keV1.95(15) μsIT175Ta21/2−
176Ta73103175.944857(33)8.09(5) hβ+176Hf(1)−
176m1Ta103.0(10) keV1.08(7) msIT176Ta7+
176m2Ta1474.0(14) keV3.8(4) μsIT176Ta14−
176m3Ta2874.0(14) keV0.97(7) msIT176Ta20−
177Ta73104176.9444819(36)56.36(13) hβ+177Hf7/2+
177m1Ta73.16(7) keV410(7) nsIT177Ta9/2−
177m2Ta186.16(6) keV3.62(10) μsIT177Ta5/2−
177m3Ta1354.8(3) keV5.30(11) μsIT177Ta21/2−
177m4Ta4656.3(8) keV133(4) μsIT177Ta49/2−
178Ta73105177.945680(56)#2.36(8) hβ+178Hf7−
178m1Ta21100(50)# keV9.31(3) minβ+178Hf(1+)
178m2Ta1467.82(16) keV59(3) msIT178Ta15−
178m3Ta2901.9(7) keV290(12) msIT178Ta21−
179Ta73106178.9459391(16)1.82(3) yEC179Hf7/2+
179m1Ta30.7(1) keV1.42(8) μsIT179Ta9/2−
179m2Ta520.23(18) keV280(80) nsIT179Ta1/2+
179m3Ta1252.60(23) keV322(16) nsIT179Ta21/2−
179m4Ta1317.2(4) keV9.0(2) msIT179Ta25/2+
179m5Ta1328.0(4) keV1.6(4) μsIT179Ta23/2−
179m6Ta2639.3(5) keV54.1(17) msIT179Ta37/2+
180Ta73107179.9474676(22)8.154(6) hEC (85%)180Hf1+
β− (15%)180W
180m1Ta75.3(14) keVObservationally stable22239−1.201(32)×10−4
180m2Ta1452.39(22) keV31.2(14) μsIT15−
180m3Ta3678.9(10) keV2.0(5) μsIT(22−)
180m4Ta4172.2(16) keV17(5) μsIT(24+)
181Ta73108180.9479985(17)Observationally stable247/2+0.9998799(32)
181m1Ta6.237(20) keV6.05(12) μsIT181Ta9/2−
181m2Ta615.19(3) keV18(1) μsIT181Ta1/2+
181m3Ta1428(14) keV140(36) nsIT181Ta19/2+#
181m4Ta1483.43(21) keV25.2(18) μsIT181Ta21/2−
181m5Ta2227.9(9) keV210(20) μsIT181Ta29/2−
182Ta73109181.9501546(17)114.74(12) dβ−182W3−
182m1Ta16.273(4) keV283(3) msIT182Ta5+
182m2Ta519.577(16) keV15.84(10) minIT182Ta10−
183Ta73110182.9513754(17)5.1(1) dβ−183W7/2+
183m1Ta73.164(14) keV106(10) nsIT183Ta9/2−
183m2Ta1335(14) keV0.9(3) μsIT183Ta(19/2+)
184Ta73111183.954010(28)8.7(1) hβ−184W(5−)
185Ta73112184.955561(15)49.4(15) minβ−185W(7/2+)
185m1Ta406(1) keV0.9(3) μsIT185Ta(3/2+)
185m2Ta1273.4(4) keV11.8(14) msIT185Ta21/2−
186Ta73113185.958553(64)10.5(3) minβ−186W3#
186mTa336(20) keV1.54(5) min9+#
187Ta73114186.960391(60)2.3(60) minβ−187W(7/2+)
187m1Ta1778(1) keV7.3(9) sIT187Ta(25/2−)
187m2Ta252933(14) keV136(24) sβ−187mW41/2+#[≥35/2]
IT187m1Ta
188Ta73115187.96360(22)#19.6(20) sβ−188W(1−)
188m1Ta99(33) keV19.6(20) s(7−)
188m2Ta391(33) keV3.6(4) μsIT188Ta10+#
189Ta73116188.96569(22)#20# s[>300 ns]β−189W7/2+#
189mTa1650(100)# keV1.6(2) μsIT189Ta21/2−#
190Ta73117189.96917(22)#5.3(7) sβ−190W(3)
191Ta73118190.97153(32)#460# ms[>300 ns]7/2+#
192Ta73119191.97520(43)#2.2(7) sβ−192W(2)
193Ta73120192.97766(43)#220# ms[>300 ns]7/2+#
194Ta73121193.98161(54)#2# s[>300 ns]
This table header & footer:
  • view

Tantalum-180m

The nuclide 180mTa (m denotes a metastable state) is one of a very few nuclear isomers which are more stable than their ground states. Although it is not unique in this regard (this property is shared by bismuth-210m (210mBi) and americium-242m (242mAm), among other nuclides), it is exceptional in that it is observationally stable: no decay has ever been observed. In contrast, the ground state nuclide 180Ta has a half-life of only 8 hours.

180mTa has sufficient energy to decay in three ways: isomeric transition to the ground state of 180Ta, beta decay to 180W, or electron capture to 180Hf. However, no radioactivity from any of these theoretically possible decay modes has ever been observed. As of 2023, the half-life of 180mTa is calculated from experimental observation to be at least 2.9×1017 (290 quadrillion) years.262728 The very slow decay of 180mTa is attributed to its high spin (9 units) and the low spin of lower-lying states. Gamma or beta decay would require many units of angular momentum to be removed in a single step, so that the process would be very slow.29

Because of this stability, 180mTa is a primordial nuclide, the only naturally occurring nuclear isomer (excluding short-lived radiogenic and cosmogenic nuclides). It is also the rarest primordial nuclide in the Universe observed for any element which has any stable isotopes. In an s-process stellar environment with a thermal energy kBT = 26 keV (i.e. a temperature of 300 million kelvin), the nuclear isomers are expected to be fully thermalized, meaning that 180Ta rapidly transitions between spin states and its overall half-life is predicted to be 11 hours.30

It is one of only five stable nuclides to have both an odd number of protons and an odd number of neutrons, the other four stable odd-odd nuclides being 2H, 6Li, 10B and 14N.31

References

  1. D. T. Win; M. Al Masum (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. 6 (4): 199–219. http://www.journal.au.edu/au_techno/2003/apr2003/aujt6-4_article07.pdf

  2. mTa – Excited nuclear isomer. /wiki/Nuclear_isomer

  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  4. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  5. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Modes of decay: EC:Electron captureIT:Isomeric transitionp:Proton emission /wiki/Electron_capture

  10. Bold italics symbol as daughter – Daughter product is nearly stable.

  11. Bold symbol as daughter – Daughter product is stable.

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. ( ) spin value – Indicates spin with weak assignment arguments.

  14. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  15. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  16. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  17. Order of ground state and isomer is uncertain.

  18. Order of ground state and isomer is uncertain.

  19. Order of ground state and isomer is uncertain.

  20. Order of ground state and isomer is uncertain.

  21. Order of ground state and isomer is uncertain.

  22. Only known observationally stable nuclear isomer, believed to decay by isomeric transition to 180Ta, β− decay to 180W, or electron capture to 180Hf with a half-life over 2.9×1017 years;[6] also theorized to undergo α decay to 176Lu

  23. One of the few (observationally) stable odd-odd nuclei /wiki/Even_and_odd_atomic_nuclei#Odd_proton,_odd_neutron

  24. Believed to undergo α decay to 177Lu

  25. Chen, J. L.; Watanabe, H.; Walker, P. M.; et al. (2025). "Direct observation of β and γ decay from a high-spin long-lived isomer in 187Ta". Physical Review C. 111 (014304). arXiv:2501.02848. doi:10.1103/PhysRevC.111.014304. /wiki/ArXiv_(identifier)

  26. Arnquist, I. J.; Avignone III, F. T.; Barabash, A. S.; Barton, C. J.; Bhimani, K. H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Clark, M. L.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Henning, R.; Aguilar, D. Hervas; Hoppe, E. W.; Hostiuc, A.; Kim, I.; Kouzes, R. T.; Lannen V., T. E.; Li, A.; López-Castaño, J. M.; Massarczyk, R.; Meijer, S. J.; Meijer, W.; Oli, T. K.; Paudel, L. S.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Reine, A. L.; Rielage, K.; Rouyer, A.; Ruof, N. W.; Schaper, D. C.; Schleich, S. J.; Smith-Gandy, T. A.; Tedeschi, D.; Thompson, J. D.; Varner, R. L.; Vasilyev, S.; Watkins, S. L.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yu, C.-H. (13 October 2023). "Constraints on the Decay of 180mTa". Phys. Rev. Lett. 131 (15) 152501. arXiv:2306.01965. doi:10.1103/PhysRevLett.131.152501. /wiki/ArXiv_(identifier)

  27. Conover, Emily (2016-10-03). "Rarest nucleus reluctant to decay". Science News. Retrieved 2016-10-05. https://www.sciencenews.org/article/rarest-nucleus-reluctant-decay

  28. Lehnert, Björn; Hult, Mikael; Lutter, Guillaume; Zuber, Kai (2017). "Search for the decay of nature's rarest isotope 180mTa". Physical Review C. 95 (4) 044306. arXiv:1609.03725. Bibcode:2017PhRvC..95d4306L. doi:10.1103/PhysRevC.95.044306. S2CID 118497863. /wiki/ArXiv_(identifier)

  29. Quantum mechanics for engineers Leon van Dommelen, Florida State University https://web1.eng.famu.fsu.edu/~dommelen/quantum/style_a/ntgd.html

  30. P. Mohr; F. Kaeppeler; R. Gallino (2007). "Survival of Nature's Rarest Isotope 180Ta under Stellar Conditions". Phys. Rev. C. 75 012802. arXiv:astro-ph/0612427. doi:10.1103/PhysRevC.75.012802. S2CID 44724195. /wiki/ArXiv_(identifier)

  31. Lide, David R., ed. (2002). Handbook of Chemistry & Physics (88th ed.). CRC. ISBN 978-0-8493-0486-6. OCLC 179976746. Archived from the original on 24 July 2017. Retrieved 2008-05-23. 978-0-8493-0486-6