Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Table of Gaussian integer factorizations

A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite. The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime. The factorizations take the form of an optional unit multiplied by integer powers of Gaussian primes.

Note that there are rational primes which are not Gaussian primes. A simple example is the rational prime 5, which is factored as 5=(2+i)(2−i) in the table, and therefore not a Gaussian prime.

We don't have any images related to Table of Gaussian integer factorizations yet.
We don't have any YouTube videos related to Table of Gaussian integer factorizations yet.
We don't have any PDF documents related to Table of Gaussian integer factorizations yet.
We don't have any Books related to Table of Gaussian integer factorizations yet.
We don't have any archived web articles related to Table of Gaussian integer factorizations yet.

Conventions

The second column of the table contains only integers in the first quadrant, which means the real part x is positive and the imaginary part y is non-negative. The table might have been further reduced to the integers in the first octant of the complex plane using the symmetry y + ix =i (xiy).

The factorizations are often not unique in the sense that the unit could be absorbed into any other factor with exponent equal to one. The entry 4+2i = −i(1+i)2(2+i), for example, could also be written as 4+2i= (1+i)2(1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.

The entries are sorted according to increasing norm x2 + y2 (sequence A001481 in the OEIS). The table is complete up to the maximum norm at the end of the table in the sense that each composite or prime in the first quadrant appears in the second column.

Gaussian primes occur only for a subset of norms, detailed in sequence OEIS: A055025. This here is a composition of sequences OEIS: A103431 and OEIS: A103432.

Factorizations

Norm 1–250
NormIntegerFactorization
2 1+i(p)
4 2i·(1+i)2
5 2+i 1+2i(p) (p)
8 2+2ii·(1+i)3
9 3(p)
10 1+3i 3+i (1+i)·(2+i) (1+i)·(2−i)
13 3+2i 2+3i(p) (p)
16 4 −(1+i)4
17 1+4i 4+i(p) (p)
18 3+3i (1+i)·3
20 2+4i 4+2i (1+i)2·(2−i) −i·(1+i)2·(2+i)
25 3+4i 4+3i 5 (2+i)2 i·(2−i)2 (2+i)·(2−i)
26 1+5i 5+i (1+i)·(3+2i) (1+i)·(3−2i)
29 2+5i 5+2i(p) (p)
32 4+4i −(1+i)5
34 3+5i 5+3i (1+i)·(4+i) (1+i)·(4−i)
36 6i·(1+i)2·3
37 1+6i 6+i(p) (p)
40 2+6i 6+2ii·(1+i)3·(2+i) −i·(1+i)3·(2−i)
41 4+5i 5+4i(p) (p)
45 3+6i 6+3i i·(2−i)·3 (2+i)·3
49 7(p)
50 1+7i 5+5i 7+i i·(1+i)·(2−i)2 (1+i)·(2+i)·(2−i) −i·(1+i)·(2+i)2
52 4+6i 6+4i (1+i)2·(3−2i) −i·(1+i)2·(3+2i)
53 2+7i 7+2i(p) (p)
58 3+7i 7+3i (1+i)·(5+2i) (1+i)·(5−2i)
61 5+6i 6+5i(p) (p)
64 8 i·(1+i)6
65 1+8i 4+7i 7+4i 8+i i·(2+i)·(3−2i) (2+i)·(3+2i) i·(2−i)·(3−2i) (2−i)·(3+2i)
68 2+8i 8+2i (1+i)2·(4−i) −i·(1+i)2·(4+i)
72 6+6ii·(1+i)3·3
73 3+8i 8+3i(p) (p)
74 5+7i 7+5i (1+i)·(6+i) (1+i)·(6−i)
80 4+8i 8+4ii·(1+i)4·(2−i) −(1+i)4·(2+i)
81 9 32
82 1+9i 9+i (1+i)·(5+4i) (1+i)·(5−4i)
85 2+9i 6+7i 7+6i 9+2i i·(2−i)·(4+i) i·(2−i)·(4−i) (2+i)·(4+i) (2+i)·(4−i)
89 5+8i 8+5i(p) (p)
90 3+9i 9+3i (1+i)·(2+i)·3 (1+i)·(2−i)·3
97 4+9i 9+4i(p) (p)
98 7+7i (1+i)·7
100 6+8i 8+6i 10i·(1+i)2·(2+i)2 (1+i)2·(2−i)2 −i·(1+i)2·(2+i)·(2−i)
101 1+10i 10+i(p) (p)
104 2+10i 10+2ii·(1+i)3·(3+2i) −i·(1+i)3·(3−2i)
106 5+9i 9+5i (1+i)·(7+2i) (1+i)·(7−2i)
109 3+10i 10+3i(p) (p)
113 7+8i 8+7i(p) (p)
116 4+10i 10+4i (1+i)2·(5−2i) −i·(1+i)2·(5+2i)
117 6+9i 9+6i i·3·(3−2i) 3·(3+2i)
121 11(p)
122 1+11i 11+i (1+i)·(6+5i) (1+i)·(6−5i)
125 2+11i 5+10i 10+5i 11+2i (2+i)3 i·(2+i)·(2−i)2 (2+i)2·(2−i) i·(2−i)3
128 8+8i i·(1+i)7
130 3+11i 7+9i 9+7i 11+3i i·(1+i)·(2−i)·(3−2i) (1+i)·(2−i)·(3+2i) (1+i)·(2+i)·(3−2i) −i·(1+i)·(2+i)·(3+2i)
136 6+10i 10+6ii·(1+i)3·(4+i) −i·(1+i)3·(4−i)
137 4+11i 11+4i(p) (p)
144 12 −(1+i)4·3
145 1+12i 8+9i 9+8i 12+i i·(2−i)·(5+2i) (2+i)·(5+2i) i·(2−i)·(5−2i) (2+i)·(5−2i)
146 5+11i 11+5i (1+i)·(8+3i) (1+i)·(8−3i)
148 2+12i 12+2i (1+i)2·(6−i) −i·(1+i)2·(6+i)
149 7+10i 10+7i(p) (p)
153 3+12i 12+3i i·3·(4−i) 3·(4+i)
157 6+11i 11+6i(p) (p)
160 4+12i 12+4i −(1+i)5·(2+i) −(1+i)5·(2−i)
162 9+9i (1+i)·32
164 8+10i 10+8i (1+i)2·(5−4i) −i·(1+i)2·(5+4i)
169 5+12i 12+5i 13 (3+2i)2 i·(3−2i)2 (3+2i)·(3−2i)
170 1+13i 7+11i 11+7i 13+i (1+i)·(2+i)·(4+i) (1+i)·(2+i)·(4−i) (1+i)·(2−i)·(4+i) (1+i)·(2−i)·(4−i)
173 2+13i 13+2i(p) (p)
178 3+13i 13+3i (1+i)·(8+5i) (1+i)·(8−5i)
180 6+12i 12+6i (1+i)2·(2−i)·3 −i·(1+i)2·(2+i)·3
181 9+10i 10+9i(p) (p)
185 4+13i 8+11i 11+8i 13+4i i·(2−i)·(6+i) i·(2−i)·(6−i) (2+i)·(6+i) (2+i)·(6−i)
193 7+12i 12+7i(p) (p)
194 5+13i 13+5i (1+i)·(9+4i) (1+i)·(9−4i)
196 14i·(1+i)2·7
197 1+14i 14+i(p) (p)
200 2+14i 10+10i 14+2i (1+i)3·(2−i)2 −i·(1+i)3·(2+i)·(2−i) −(1+i)3·(2+i)2
202 9+11i 11+9i (1+i)·(10+i) (1+i)·(10−i)
205 3+14i 6+13i 13+6i 14+3i i·(2+i)·(5−4i) (2+i)·(5+4i) i·(2−i)·(5−4i) (2−i)·(5+4i)
208 8+12i 12+8ii·(1+i)4·(3−2i) −(1+i)4·(3+2i)
212 4+14i 14+4i (1+i)2·(7−2i) −i·(1+i)2·(7+2i)
218 7+13i 13+7i (1+i)·(10+3i) (1+i)·(10−3i)
221 5+14i 10+11i 11+10i 14+5i i·(3−2i)·(4+i) (3+2i)·(4+i) i·(3−2i)·(4−i) (3+2i)·(4−i)
225 9+12i 12+9i 15 (2+i)2·3 i·(2−i)2·3 (2+i)·(2−i)·3
226 1+15i 15+i (1+i)·(8+7i) (1+i)·(8−7i)
229 2+15i 15+2i(p) (p)
232 6+14i 14+6ii·(1+i)3·(5+2i) −i·(1+i)3·(5−2i)
233 8+13i 13+8i(p) (p)
234 3+15i 15+3i (1+i)·3·(3+2i) (1+i)·3·(3−2i)
241 4+15i 15+4i(p) (p)
242 11+11i (1+i)·11
244 10+12i 12+10i (1+i)2·(6−5i) −i·(1+i)2·(6+5i)
245 7+14i 14+7i i·(2−i)·7 (2+i)·7
250 5+15i 9+13i 13+9i 15+5i (1+i)·(2+i)2·(2−i) i·(1+i)·(2−i)3 −i·(1+i)·(2+i)3 (1+i)·(2+i)·(2−i)2
Norm 251–500
NormIntegerFactorization
256 16 (1+i)8
257 1+16i 16+i(p) (p)
260 2+16i 8+14i 14+8i 16+2i (1+i)2·(2+i)·(3−2i) −i·(1+i)2·(2+i)·(3+2i) (1+i)2·(2−i)·(3−2i) −i·(1+i)2·(2−i)·(3+2i)
261 6+15i 15+6i i·3·(5−2i) 3·(5+2i)
265 3+16i 11+12i 12+11i 16+3i i·(2−i)·(7+2i) i·(2−i)·(7−2i) (2+i)·(7+2i) (2+i)·(7−2i)
269 10+13i 13+10i(p) (p)
272 4+16i 16+4ii·(1+i)4·(4−i) −(1+i)4·(4+i)
274 7+15i 15+7i (1+i)·(11+4i) (1+i)·(11−4i)
277 9+14i 14+9i(p) (p)
281 5+16i 16+5i(p) (p)
288 12+12i −(1+i)5·3
289 8+15i 15+8i 17 i·(4−i)2 (4+i)2 (4+i)·(4−i)
290 1+17i 11+13i 13+11i 17+i i·(1+i)·(2−i)·(5−2i) (1+i)·(2+i)·(5−2i) (1+i)·(2−i)·(5+2i) −i·(1+i)·(2+i)·(5+2i)
292 6+16i 16+6i (1+i)2·(8−3i) −i·(1+i)2·(8+3i)
293 2+17i 17+2i(p) (p)
296 10+14i 14+10ii·(1+i)3·(6+i) −i·(1+i)3·(6−i)
298 3+17i 17+3i (1+i)·(10+7i) (1+i)·(10−7i)
305 4+17i 7+16i 16+7i 17+4i i·(2+i)·(6−5i) (2+i)·(6+5i) i·(2−i)·(6−5i) (2−i)·(6+5i)
306 9+15i 15+9i (1+i)·3·(4+i) (1+i)·3·(4−i)
313 12+13i 13+12i(p) (p)
314 5+17i 17+5i (1+i)·(11+6i) (1+i)·(11−6i)
317 11+14i 14+11i(p) (p)
320 8+16i 16+8i −(1+i)6·(2−i) i·(1+i)6·(2+i)
324 18i·(1+i)2·32
325 1+18i 6+17i 10+15i 15+10i 17+6i 18+i (2+i)2·(3+2i) i·(2−i)2·(3+2i) i·(2+i)·(2−i)·(3−2i) (2+i)·(2−i)·(3+2i) (2+i)2·(3−2i) i·(2−i)2·(3−2i)
328 2+18i 18+2ii·(1+i)3·(5+4i) −i·(1+i)3·(5−4i)
333 3+18i 18+3i i·3·(6−i) 3·(6+i)
337 9+16i 16+9i(p) (p)
338 7+17i 13+13i 17+7i i·(1+i)·(3−2i)2 (1+i)·(3+2i)·(3−2i) −i·(1+i)·(3+2i)2
340 4+18i 12+14i 14+12i 18+4i (1+i)2·(2−i)·(4+i) (1+i)2·(2−i)·(4−i) −i·(1+i)2·(2+i)·(4+i) −i·(1+i)2·(2+i)·(4−i)
346 11+15i 15+11i (1+i)·(13+2i) (1+i)·(13−2i)
349 5+18i 18+5i(p) (p)
353 8+17i 17+8i(p) (p)
356 10+16i 16+10i (1+i)2·(8−5i) −i·(1+i)2·(8+5i)
360 6+18i 18+6ii·(1+i)3·(2+i)·3 −i·(1+i)3·(2−i)·3
361 19(p)
362 1+19i 19+i (1+i)·(10+9i) (1+i)·(10−9i)
365 2+19i 13+14i 14+13i 19+2i i·(2−i)·(8+3i) (2+i)·(8+3i) i·(2−i)·(8−3i) (2+i)·(8−3i)
369 12+15i 15+12i i·3·(5−4i) 3·(5+4i)
370 3+19i 9+17i 17+9i 19+3i (1+i)·(2+i)·(6+i) (1+i)·(2+i)·(6−i) (1+i)·(2−i)·(6+i) (1+i)·(2−i)·(6−i)
373 7+18i 18+7i(p) (p)
377 4+19i 11+16i 16+11i 19+4i i·(3−2i)·(5+2i) (3+2i)·(5+2i) i·(3−2i)·(5−2i) (3+2i)·(5−2i)
386 5+19i 19+5i (1+i)·(12+7i) (1+i)·(12−7i)
388 8+18i 18+8i (1+i)2·(9−4i) −i·(1+i)2·(9+4i)
389 10+17i 17+10i(p) (p)
392 14+14ii·(1+i)3·7
394 13+15i 15+13i (1+i)·(14+i) (1+i)·(14−i)
397 6+19i 19+6i(p) (p)
400 12+16i 16+12i 20 −(1+i)4·(2+i)2 −i·(1+i)4·(2−i)2 −(1+i)4·(2+i)·(2−i)
401 1+20i 20+i(p) (p)
404 2+20i 20+2i (1+i)2·(10−i) −i·(1+i)2·(10+i)
405 9+18i 18+9i i·(2−i)·32 (2+i)·32
409 3+20i 20+3i(p) (p)
410 7+19i 11+17i 17+11i 19+7i i·(1+i)·(2−i)·(5−4i) (1+i)·(2−i)·(5+4i) (1+i)·(2+i)·(5−4i) −i·(1+i)·(2+i)·(5+4i)
416 4+20i 20+4i −(1+i)5·(3+2i) −(1+i)5·(3−2i)
421 14+15i 15+14i(p) (p)
424 10+18i 18+10ii·(1+i)3·(7+2i) −i·(1+i)3·(7−2i)
425 5+20i 8+19i 13+16i 16+13i 19+8i 20+5i i·(2+i)·(2−i)·(4−i) (2+i)2·(4+i) i·(2−i)2·(4+i) (2+i)2·(4−i) i·(2−i)2·(4−i) (2+i)·(2−i)·(4+i)
433 12+17i 17+12i(p) (p)
436 6+20i 20+6i (1+i)2·(10−3i) −i·(1+i)2·(10+3i)
441 21 3·7
442 1+21i 9+19i 19+9i 21+i i·(1+i)·(3−2i)·(4−i) (1+i)·(3+2i)·(4−i) (1+i)·(3−2i)·(4+i) −i·(1+i)·(3+2i)·(4+i)
445 2+21i 11+18i 18+11i 21+2i i·(2+i)·(8−5i) (2+i)·(8+5i) i·(2−i)·(8−5i) (2−i)·(8+5i)
449 7+20i 20+7i(p) (p)
450 3+21i 15+15i 21+3i i·(1+i)·(2−i)2·3 (1+i)·(2+i)·(2−i)·3 −i·(1+i)·(2+i)2·3
452 14+16i 16+14i (1+i)2·(8−7i) −i·(1+i)2·(8+7i)
457 4+21i 21+4i(p) (p)
458 13+17i 17+13i (1+i)·(15+2i) (1+i)·(15−2i)
461 10+19i 19+10i(p) (p)
464 8+20i 20+8ii·(1+i)4·(5−2i) −(1+i)4·(5+2i)
466 5+21i 21+5i (1+i)·(13+8i) (1+i)·(13−8i)
468 12+18i 18+12i (1+i)2·3·(3−2i) −i·(1+i)2·3·(3+2i)
477 6+21i 21+6i i·3·(7−2i) 3·(7+2i)
481 9+20i 15+16i 16+15i 20+9i i·(3−2i)·(6+i) i·(3−2i)·(6−i) (3+2i)·(6+i) (3+2i)·(6−i)
482 11+19i 19+11i (1+i)·(15+4i) (1+i)·(15−4i)
484 22i·(1+i)2·11
485 1+22i 14+17i 17+14i 22+i i·(2−i)·(9+4i) (2+i)·(9+4i) i·(2−i)·(9−4i) (2+i)·(9−4i)
488 2+22i 22+2ii·(1+i)3·(6+5i) −i·(1+i)3·(6−5i)
490 7+21i 21+7i (1+i)·(2+i)·7 (1+i)·(2−i)·7
493 3+22i 13+18i 18+13i 22+3i i·(4+i)·(5−2i) i·(4−i)·(5−2i) (4+i)·(5+2i) (4−i)·(5+2i)
500 4+22i 10+20i 20+10i 22+4ii·(1+i)2·(2+i)3 (1+i)2·(2+i)·(2−i)2 −i·(1+i)2·(2+i)2·(2−i) (1+i)2·(2−i)3
Norm 501–750
NormIntegerFactorization
505 8+21i 12+19i 19+12i 21+8i i·(2−i)·(10+i) i·(2−i)·(10−i) (2+i)·(10+i) (2+i)·(10−i)
509 5+22i 22+5i(p) (p)
512 16+16i (1+i)9
514 15+17i 17+15i (1+i)·(16+i) (1+i)·(16−i)
520 6+22i 14+18i 18+14i 22+6i (1+i)3·(2−i)·(3−2i) −i·(1+i)3·(2−i)·(3+2i) −i·(1+i)3·(2+i)·(3−2i) −(1+i)3·(2+i)·(3+2i)
521 11+20i 20+11i(p) (p)
522 9+21i 21+9i (1+i)·3·(5+2i) (1+i)·3·(5−2i)
529 23(p)
530 1+23i 13+19i 19+13i 23+i (1+i)·(2+i)·(7+2i) (1+i)·(2+i)·(7−2i) (1+i)·(2−i)·(7+2i) (1+i)·(2−i)·(7−2i)
533 2+23i 7+22i 22+7i 23+2i i·(3+2i)·(5−4i) (3+2i)·(5+4i) i·(3−2i)·(5−4i) (3−2i)·(5+4i)
538 3+23i 23+3i (1+i)·(13+10i) (1+i)·(13−10i)
541 10+21i 21+10i(p) (p)
544 12+20i 20+12i −(1+i)5·(4+i) −(1+i)5·(4−i)
545 4+23i 16+17i 17+16i 23+4i i·(2−i)·(10+3i) i·(2−i)·(10−3i) (2+i)·(10+3i) (2+i)·(10−3i)
548 8+22i 22+8i (1+i)2·(11−4i) −i·(1+i)2·(11+4i)
549 15+18i 18+15i i·3·(6−5i) 3·(6+5i)
554 5+23i 23+5i (1+i)·(14+9i) (1+i)·(14−9i)
557 14+19i 19+14i(p) (p)
562 11+21i 21+11i (1+i)·(16+5i) (1+i)·(16−5i)
565 6+23i 9+22i 22+9i 23+6i i·(2+i)·(8−7i) (2+i)·(8+7i) i·(2−i)·(8−7i) (2−i)·(8+7i)
569 13+20i 20+13i(p) (p)
576 24 i·(1+i)6·3
577 1+24i 24+i(p) (p)
578 7+23i 17+17i 23+7i (1+i)·(4+i)2 (1+i)·(4+i)·(4−i) (1+i)·(4−i)2
580 2+24i 16+18i 18+16i 24+2i (1+i)2·(2−i)·(5+2i) −i·(1+i)2·(2+i)·(5+2i) (1+i)2·(2−i)·(5−2i) −i·(1+i)2·(2+i)·(5−2i)
584 10+22i 22+10ii·(1+i)3·(8+3i) −i·(1+i)3·(8−3i)
585 3+24i 12+21i 21+12i 24+3i i·(2+i)·3·(3−2i) (2+i)·3·(3+2i) i·(2−i)·3·(3−2i) (2−i)·3·(3+2i)
586 15+19i 19+15i (1+i)·(17+2i) (1+i)·(17−2i)
592 4+24i 24+4ii·(1+i)4·(6−i) −(1+i)4·(6+i)
593 8+23i 23+8i(p) (p)
596 14+20i 20+14i (1+i)2·(10−7i) −i·(1+i)2·(10+7i)
601 5+24i 24+5i(p) (p)
605 11+22i 22+11i i·(2−i)·11 (2+i)·11
610 9+23i 13+21i 21+13i 23+9i i·(1+i)·(2−i)·(6−5i) (1+i)·(2−i)·(6+5i) (1+i)·(2+i)·(6−5i) −i·(1+i)·(2+i)·(6+5i)
612 6+24i 24+6i (1+i)2·3·(4−i) −i·(1+i)2·3·(4+i)
613 17+18i 18+17i(p) (p)
617 16+19i 19+16i(p) (p)
625 7+24i 15+20i 20+15i 24+7i 25 −(2−i)4 (2+i)3·(2−i) i·(2+i)·(2−i)3 −i·(2+i)4 (2+i)2·(2−i)2
626 1+25i 25+i (1+i)·(13+12i) (1+i)·(13−12i)
628 12+22i 22+12i (1+i)2·(11−6i) −i·(1+i)2·(11+6i)
629 2+25i 10+23i 23+10i 25+2i i·(4−i)·(6+i) i·(4−i)·(6−i) (4+i)·(6+i) (4+i)·(6−i)
634 3+25i 25+3i (1+i)·(14+11i) (1+i)·(14−11i)
637 14+21i 21+14i i·(3−2i)·7 (3+2i)·7
640 8+24i 24+8i i·(1+i)7·(2+i) i·(1+i)7·(2−i)
641 4+25i 25+4i(p) (p)
648 18+18ii·(1+i)3·32
650 5+25i 11+23i 17+19i 19+17i 23+11i 25+5i (1+i)·(2+i)·(2−i)·(3+2i) (1+i)·(2+i)2·(3−2i) i·(1+i)·(2−i)2·(3−2i) −i·(1+i)·(2+i)2·(3+2i) (1+i)·(2−i)2·(3+2i) (1+i)·(2+i)·(2−i)·(3−2i)
653 13+22i 22+13i(p) (p)
656 16+20i 20+16ii·(1+i)4·(5−4i) −(1+i)4·(5+4i)
657 9+24i 24+9i i·3·(8−3i) 3·(8+3i)
661 6+25i 25+6i(p) (p)
666 15+21i 21+15i (1+i)·3·(6+i) (1+i)·3·(6−i)
673 12+23i 23+12i(p) (p)
674 7+25i 25+7i (1+i)·(16+9i) (1+i)·(16−9i)
676 10+24i 24+10i 26i·(1+i)2·(3+2i)2 (1+i)2·(3−2i)2 −i·(1+i)2·(3+2i)·(3−2i)
677 1+26i 26+i(p) (p)
680 2+26i 14+22i 22+14i 26+2ii·(1+i)3·(2+i)·(4+i) −i·(1+i)3·(2+i)·(4−i) −i·(1+i)3·(2−i)·(4+i) −i·(1+i)3·(2−i)·(4−i)
685 3+26i 18+19i 19+18i 26+3i i·(2−i)·(11+4i) (2+i)·(11+4i) i·(2−i)·(11−4i) (2+i)·(11−4i)
689 8+25i 17+20i 20+17i 25+8i i·(3−2i)·(7+2i) (3+2i)·(7+2i) i·(3−2i)·(7−2i) (3+2i)·(7−2i)
692 4+26i 26+4i (1+i)2·(13−2i) −i·(1+i)2·(13+2i)
697 11+24i 16+21i 21+16i 24+11i i·(4+i)·(5−4i) (4+i)·(5+4i) i·(4−i)·(5−4i) (4−i)·(5+4i)
698 13+23i 23+13i (1+i)·(18+5i) (1+i)·(18−5i)
701 5+26i 26+5i(p) (p)
706 9+25i 25+9i (1+i)·(17+8i) (1+i)·(17−8i)
709 15+22i 22+15i(p) (p)
712 6+26i 26+6ii·(1+i)3·(8+5i) −i·(1+i)3·(8−5i)
720 12+24i 24+12ii·(1+i)4·(2−i)·3 −(1+i)4·(2+i)·3
722 19+19i (1+i)·19
724 18+20i 20+18i (1+i)2·(10−9i) −i·(1+i)2·(10+9i)
725 7+26i 10+25i 14+23i 23+14i 25+10i 26+7i (2+i)2·(5+2i) i·(2+i)·(2−i)·(5−2i) i·(2−i)2·(5+2i) (2+i)2·(5−2i) (2+i)·(2−i)·(5+2i) i·(2−i)2·(5−2i)
729 27 33
730 1+27i 17+21i 21+17i 27+i i·(1+i)·(2−i)·(8−3i) (1+i)·(2+i)·(8−3i) (1+i)·(2−i)·(8+3i) −i·(1+i)·(2+i)·(8+3i)
733 2+27i 27+2i(p) (p)
738 3+27i 27+3i (1+i)·3·(5+4i) (1+i)·3·(5−4i)
740 8+26i 16+22i 22+16i 26+8i (1+i)2·(2−i)·(6+i) (1+i)2·(2−i)·(6−i) −i·(1+i)2·(2+i)·(6+i) −i·(1+i)2·(2+i)·(6−i)
745 4+27i 13+24i 24+13i 27+4i i·(2+i)·(10−7i) (2+i)·(10+7i) i·(2−i)·(10−7i) (2−i)·(10+7i)
746 11+25i 25+11i (1+i)·(18+7i) (1+i)·(18−7i)
Norm 751–1000
NormIntegerFactorization
754 5+27i 15+23i 23+15i 27+5i i·(1+i)·(3−2i)·(5−2i) (1+i)·(3+2i)·(5−2i) (1+i)·(3−2i)·(5+2i) −i·(1+i)·(3+2i)·(5+2i)
757 9+26i 26+9i(p) (p)
761 19+20i 20+19i(p) (p)
765 6+27i 18+21i 21+18i 27+6i i·(2−i)·3·(4+i) i·(2−i)·3·(4−i) (2+i)·3·(4+i) (2+i)·3·(4−i)
769 12+25i 25+12i(p) (p)
772 14+24i 24+14i (1+i)2·(12−7i) −i·(1+i)2·(12+7i)
773 17+22i 22+17i(p) (p)
776 10+26i 26+10ii·(1+i)3·(9+4i) −i·(1+i)3·(9−4i)
778 7+27i 27+7i (1+i)·(17+10i) (1+i)·(17−10i)
784 28 −(1+i)4·7
785 1+28i 16+23i 23+16i 28+i i·(2+i)·(11−6i) (2+i)·(11+6i) i·(2−i)·(11−6i) (2−i)·(11+6i)
788 2+28i 28+2i (1+i)2·(14−i) −i·(1+i)2·(14+i)
793 3+28i 8+27i 27+8i 28+3i i·(3+2i)·(6−5i) (3+2i)·(6+5i) i·(3−2i)·(6−5i) (3−2i)·(6+5i)
794 13+25i 25+13i (1+i)·(19+6i) (1+i)·(19−6i)
797 11+26i 26+11i(p) (p)
800 4+28i 20+20i 28+4ii·(1+i)5·(2−i)2 −(1+i)5·(2+i)·(2−i) i·(1+i)5·(2+i)2
801 15+24i 24+15i i·3·(8−5i) 3·(8+5i)
802 19+21i 21+19i (1+i)·(20+i) (1+i)·(20−i)
808 18+22i 22+18ii·(1+i)3·(10+i) −i·(1+i)3·(10−i)
809 5+28i 28+5i(p) (p)
810 9+27i 27+9i (1+i)·(2+i)·32 (1+i)·(2−i)·32
818 17+23i 23+17i (1+i)·(20+3i) (1+i)·(20−3i)
820 6+28i 12+26i 26+12i 28+6i (1+i)2·(2+i)·(5−4i) −i·(1+i)2·(2+i)·(5+4i) (1+i)2·(2−i)·(5−4i) −i·(1+i)2·(2−i)·(5+4i)
821 14+25i 25+14i(p) (p)
829 10+27i 27+10i(p) (p)
832 16+24i 24+16i −(1+i)6·(3−2i) i·(1+i)6·(3+2i)
833 7+28i 28+7i i·(4−i)·7 (4+i)·7
841 20+21i 21+20i 29 i·(5−2i)2 (5+2i)2 (5+2i)·(5−2i)
842 1+29i 29+i (1+i)·(15+14i) (1+i)·(15−14i)
845 2+29i 13+26i 19+22i 22+19i 26+13i 29+2i −(2−i)·(3−2i)2 i·(2−i)·(3+2i)·(3−2i) i·(2+i)·(3−2i)2 (2−i)·(3+2i)2 (2+i)·(3+2i)·(3−2i) −i·(2+i)·(3+2i)2
848 8+28i 28+8ii·(1+i)4·(7−2i) −(1+i)4·(7+2i)
850 3+29i 11+27i 15+25i 25+15i 27+11i 29+3i (1+i)·(2+i)2·(4−i) i·(1+i)·(2−i)2·(4−i) (1+i)·(2+i)·(2−i)·(4+i) (1+i)·(2+i)·(2−i)·(4−i) −i·(1+i)·(2+i)2·(4+i) (1+i)·(2−i)2·(4+i)
853 18+23i 23+18i(p) (p)
857 4+29i 29+4i(p) (p)
865 9+28i 17+24i 24+17i 28+9i i·(2−i)·(13+2i) i·(2−i)·(13−2i) (2+i)·(13+2i) (2+i)·(13−2i)
866 5+29i 29+5i (1+i)·(17+12i) (1+i)·(17−12i)
872 14+26i 26+14ii·(1+i)3·(10+3i) −i·(1+i)3·(10−3i)
873 12+27i 27+12i i·3·(9−4i) 3·(9+4i)
877 6+29i 29+6i(p) (p)
881 16+25i 25+16i(p) (p)
882 21+21i (1+i)·3·7
884 10+28i 20+22i 22+20i 28+10i (1+i)2·(3−2i)·(4+i) −i·(1+i)2·(3+2i)·(4+i) (1+i)2·(3−2i)·(4−i) −i·(1+i)2·(3+2i)·(4−i)
890 7+29i 19+23i 23+19i 29+7i i·(1+i)·(2−i)·(8−5i) (1+i)·(2−i)·(8+5i) (1+i)·(2+i)·(8−5i) −i·(1+i)·(2+i)·(8+5i)
898 13+27i 27+13i (1+i)·(20+7i) (1+i)·(20−7i)
900 18+24i 24+18i 30i·(1+i)2·(2+i)2·3 (1+i)2·(2−i)2·3 −i·(1+i)2·(2+i)·(2−i)·3
901 1+30i 15+26i 26+15i 30+i i·(4+i)·(7−2i) i·(4−i)·(7−2i) (4+i)·(7+2i) (4−i)·(7+2i)
904 2+30i 30+2ii·(1+i)3·(8+7i) −i·(1+i)3·(8−7i)
905 8+29i 11+28i 28+11i 29+8i i·(2+i)·(10−9i) (2+i)·(10+9i) i·(2−i)·(10−9i) (2−i)·(10+9i)
909 3+30i 30+3i i·3·(10−i) 3·(10+i)
914 17+25i 25+17i (1+i)·(21+4i) (1+i)·(21−4i)
916 4+30i 30+4i (1+i)2·(15−2i) −i·(1+i)2·(15+2i)
922 9+29i 29+9i (1+i)·(19+10i) (1+i)·(19−10i)
925 5+30i 14+27i 21+22i 22+21i 27+14i 30+5i i·(2+i)·(2−i)·(6−i) (2+i)2·(6+i) i·(2−i)2·(6+i) (2+i)2·(6−i) i·(2−i)2·(6−i) (2+i)·(2−i)·(6+i)
928 12+28i 28+12i −(1+i)5·(5+2i) −(1+i)5·(5−2i)
929 20+23i 23+20i(p) (p)
932 16+26i 26+16i (1+i)2·(13−8i) −i·(1+i)2·(13+8i)
936 6+30i 30+6ii·(1+i)3·3·(3+2i) −i·(1+i)3·3·(3−2i)
937 19+24i 24+19i(p) (p)
941 10+29i 29+10i(p) (p)
949 7+30i 18+25i 25+18i 30+7i i·(3−2i)·(8+3i) (3+2i)·(8+3i) i·(3−2i)·(8−3i) (3+2i)·(8−3i)
953 13+28i 28+13i(p) (p)
954 15+27i 27+15i (1+i)·3·(7+2i) (1+i)·3·(7−2i)
961 31(p)
962 1+31i 11+29i 29+11i 31+i (1+i)·(3+2i)·(6+i) (1+i)·(3+2i)·(6−i) (1+i)·(3−2i)·(6+i) (1+i)·(3−2i)·(6−i)
964 8+30i 30+8i (1+i)2·(15−4i) −i·(1+i)2·(15+4i)
965 2+31i 17+26i 26+17i 31+2i i·(2+i)·(12−7i) (2+i)·(12+7i) i·(2−i)·(12−7i) (2−i)·(12+7i)
968 22+22ii·(1+i)3·11
970 3+31i 21+23i 23+21i 31+3i i·(1+i)·(2−i)·(9−4i) (1+i)·(2+i)·(9−4i) (1+i)·(2−i)·(9+4i) −i·(1+i)·(2+i)·(9+4i)
976 20+24i 24+20ii·(1+i)4·(6−5i) −(1+i)4·(6+5i)
977 4+31i 31+4i(p) (p)
980 14+28i 28+14i (1+i)2·(2−i)·7 −i·(1+i)2·(2+i)·7
981 9+30i 30+9i i·3·(10−3i) 3·(10+3i)
985 12+29i 16+27i 27+16i 29+12i i·(2−i)·(14+i) i·(2−i)·(14−i) (2+i)·(14+i) (2+i)·(14−i)
986 5+31i 19+25i 25+19i 31+5i (1+i)·(4+i)·(5+2i) (1+i)·(4−i)·(5+2i) (1+i)·(4+i)·(5−2i) (1+i)·(4−i)·(5−2i)
997 6+31i 31+6i(p) (p)
1000 10+30i 18+26i 26+18i 30+10ii·(1+i)3·(2+i)2·(2−i) (1+i)3·(2−i)3 −(1+i)3·(2+i)3 −i·(1+i)3·(2+i)·(2−i)2

See also