Sednoids are a class of trans-Neptunian objects characterized by a large semi-major axis and high perihelion, similar to the orbit of the dwarf planet Sedna. Only four sednoids are currently known: Sedna, 2012 VP113, 541132 Leleākūhonua, and 2023 KQ14, all with perihelia beyond 60 AU, lying in a distant, nearly empty region of the Solar System where they have minimal planetary interaction. They are grouped with detached objects and sometimes considered part of the inner Oort cloud. Sednoids have high eccentricities over 0.8, distinguishing them from other high-perihelion bodies like 2015 KQ174 that are in resonance with Neptune.
Unexplained orbits
The sednoids' orbits cannot be explained by perturbations from the giant planets,9 nor by interaction with the galactic tides.10 If they formed in their current locations, their orbits must originally have been circular; otherwise accretion (the coalescence of smaller bodies into larger ones) would not have been possible because the large relative velocities between planetesimals would have been too disruptive.11 Their present elliptical orbits can be explained by several hypotheses:
- These objects could have had their orbits and perihelion distances "lifted" by the passage of a nearby star when the Sun was still embedded in its birth star cluster.1213
- They could have been captured from around passing stars, most likely in the Sun's birth cluster.1415
- Their orbits could have been disrupted by an as-yet-unknown planet-sized body beyond the Kuiper belt such as the hypothesized Planet Nine.1617
- Their perihelion distances could have been "lifted" by a temporarily-present rogue planet in the early solar system.1819
Known members
Sednoids and candidates (June 202520) with orbital elementsName | ω(°) | ☊(°) | i(°) | e | q(AU) | a(AU) | M(°) | Q(AU) | P(dy) | H | Diameter(km) | Year discovered (precovered) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 MQ53 (MPC) | 18.6 | 287.1 | 73.4 | 0.93 | 55.58 | 770.68 | 359.8 | 1485.78 | 21395 | 8.6 | 40–125 (est. 0.04–0.4) | 2020 |
2021 RR205 (MPC) | 209.0 | 108.3 | 7.6 | 0.96 | 55.64 | 1265.75 | 0.2 | 2475.85 | 45032 | 6.7 | 95-300 (est. 0.04–0.4) | 2021 (2017) |
(541132) Leleakuhonua | 118.1 | 301.1 | 11.7 | 0.96 | 64.75 | 1482.89 | 359.7 | 2901.03 | 57104 | 5.6 | 22021 | 2015 (2005) |
2023 KQ14 (MPC) | 198.9 | 72.1 | 11.0 | 0.73 | 65.86 | 245.46 | 356.4 | 425.06 | 3846 | 6.8 | 90-290 (est. 0.04–0.4) | 2023 (2014) |
2019 EE6 (MPC) | 43.7 | 201.8 | 163.3 | 0.63 | 75.05 | 203.35 | 358.0 | 331.65 | 2900 | 6.4 | 110-350 (est. 0.04–0.4) | 2019 |
(90377) Sedna | 310.9 | 144.4 | 11.9 | 0.86 | 76.30 | 552.17 | 358.6 | 1028.03 | 12975 | 1.5 | 995 ± 80 | 2003 (1990) |
2012 VP113 | 294.2 | 90.9 | 24.0 | 0.70 | 80.60 | 273.14 | 3.6 | 465.68 | 4514 | 4.0 | 300–100022 | 2012 (2007) |
The first three known sednoids, like all of the more extreme detached objects (objects with semi-major axes > 150 AU and perihelia > 30 AU; the orbit of Neptune), have a similar orientation (argument of perihelion) of ≈ 0° (338°±38°). This is not due to an observational bias and is unexpected, because interaction with the giant planets should have randomized their arguments of perihelion (ω),23 with precession periods between 40 Myr and 650 Myr and 1.5 Gyr for Sedna.24 This suggests that one25 or more26 undiscovered massive perturbers may exist in the outer Solar System. A super-Earth at 250 AU would cause these objects to librate around ω = 0°±60° for billions of years. There are multiple possible configurations and a low-albedo super-Earth at that distance would have an apparent magnitude below the current all-sky-survey detection limits. This hypothetical super-Earth has been dubbed Planet Nine. Larger, more-distant perturbers would also be too faint to be detected.27
As of 2016,[needs update] 27 known objects have a semi-major axis greater than 150 AU, a perihelion beyond Neptune, an argument of perihelion of 340°±55°, and an observation arc of more than 1 year.28 2013 SY99, 2014 ST373, 2015 FJ345, 2021 RW209, (612911) 2004 XR190, (690420) 2014 FC72, 2014 US277, 2014 FZ71, and 2021 RR205 are near the limit of perihelion of 50 AU, but are not considered sednoids.
On 1 October 2018, Leleākūhonua, then known as 2015 TG387, was announced with perihelion of 65 AU and a semi-major axis of 1094 AU. With an aphelion over 2100 AU, it brings the object further out than Sedna.
In late 2015, V774104 was announced at the Division for Planetary Science conference as a further candidate sednoid, but its observation arc was too short to know whether its perihelion was even outside Neptune's influence.29 The talk about V774104 was probably meant to refer to Leleākūhonua (2015 TG387) even though V774104 is the internal designation for non-sednoid 2015 TH367.
Sednoids might constitute a proper dynamical class, but they may have a heterogeneous origin; the spectral slope of 2012 VP113 is very different from that of Sedna.30
Malena Rice and Gregory Laughlin applied a targeted shift-stacking search algorithm to analyze data from TESS sectors 18 and 19 looking for candidate outer Solar System objects.31 Their search recovered known objects like Sedna and produced 17 new outer Solar System body candidates located at geocentric distances in the range 80–200 AU, that need follow-up observations with ground-based telescope resources for confirmation. Early results from a survey with the William Herschel Telescope aimed at recovering these distant TNO candidates have failed to confirm two of them.3233
Theoretical population
Each of the proposed mechanisms for Sedna's extreme orbit would leave a distinct mark on the structure and dynamics of any wider population. If a trans-Neptunian planet were responsible, all such objects would share roughly the same perihelion (≈80 AU). If Sedna had been captured from another planetary system that rotated in the same direction as the Solar System, then all of its population would have orbits on relatively low inclinations and have semi-major axes ranging from 100 to 500 AU. If it rotated in the opposite direction, then two populations would form, one with low and one with high inclinations. The perturbations from passing stars would produce a wide variety of perihelia and inclinations, each dependent on the number and angle of such encounters.34
Acquiring a larger sample of such objects would therefore help in determining which scenario is most likely.35 "I call Sedna a fossil record of the earliest Solar System", said Brown in 2006. "Eventually, when other fossil records are found, Sedna will help tell us how the Sun formed and the number of stars that were close to the Sun when it formed."36 A 2007–2008 survey by Brown, Rabinowitz and Schwamb attempted to locate another member of Sedna's hypothetical population. Although the survey was sensitive to movement out to 1,000 AU and discovered the likely dwarf planet Gonggong, it detected no new sednoids.37 Subsequent simulations incorporating the new data suggested about 40 Sedna-sized objects probably exist in this region, with the brightest being about Eris's magnitude (−1.0).38
Following the discovery of Leleākūhonua, Sheppard et al. concluded that it implies a population of about 2 million Inner Oort Cloud objects larger than 40 km, with a total mass in the range of 1×1022 kg, about the mass of Pluto and several times the mass of the asteroid belt.39
See also
- Trans-Neptunian objects category
- Extreme trans-Neptunian object
External links
- Media related to Sednoids at Wikimedia Commons
- New icy body hints at planet lurking beyond Pluto
References
"JPL Small-Body Database Search Engine: a > 150 (AU) and q > 50 (AU) and data-arc span > 365 (d)". JPL Solar System Dynamics. Retrieved 2014-10-15. https://ssd.jpl.nasa.gov/sbdb_query.cgi?obj_group=all;obj_kind=all;obj_numbered=all;OBJ_field=0;ORB_field=0;combine_mode=AND;c1_group=ORB;c1_item=Bh;c1_op=%3E;c1_value=150;c2_group=ORB;c2_item=Cj;c2_op=%3E;c2_value=365;c3_group=ORB;c3_item=Bi;c3_op=%3E;c3_value=50;table_format=HTML;max_rows=100;format_option=comp;c_fields=AcBhBgBjBkBlBiBnBsCjCpAiBq;.cgifields=format_option;.cgifields=combine_mode;.cgifields=ast_orbit_class;.cgifields=obj_kind;.cgifields=table_format;.cgifields=obj_group;.cgifields=obj_numbered;.cgifields=com_orbit_class&query=1&c_sort=BiA ↩
Sheppard, Scott S. "Beyond the Edge of the Solar System: The Inner Oort Cloud Population". Department of Terrestrial Magnetism, Carnegie Institution for Science. Retrieved 2014-04-17. http://home.dtm.ciw.edu/users/sheppard/inner_oort_cloud/ ↩
Trujillo, Chadwick A.; Sheppard, Scott S. (2014). "A Sedna-like body with a perihelion of 80 astronomical units" (PDF). Nature. 507 (7493): 471–474. Bibcode:2014Natur.507..471T. doi:10.1038/nature13156. PMID 24670765. S2CID 4393431. Archived (PDF) from the original on 2014-12-16. /wiki/Chadwick_A._Trujillo ↩
Sheppard, Scott S. "Known Extreme Outer Solar System Objects". Department of Terrestrial Magnetism, Carnegie Institution for Science. Retrieved 2014-04-17. /wiki/Scott_S._Sheppard ↩
Sheppard, Scott S. "Scott Sheppard Small Body Discoveries". Earth and Planets Laboratory. Carnegie Institution for Science. Retrieved 10 October 2022. https://sites.google.com/carnegiescience.edu/sheppard/home/discoveries ↩
Bannister, Michele; Shankman, Cory; Volk, Katherine (2017). "OSSOS: V. Diffusion in the orbit of a high-perihelion distant Solar System object". The Astronomical Journal. 153 (6): 262. arXiv:1704.01952. Bibcode:2017AJ....153..262B. doi:10.3847/1538-3881/aa6db5. S2CID 3502267. https://doi.org/10.3847%2F1538-3881%2Faa6db5 ↩
Huang, Yukun; Gladman, Brett (February 2024). "Primordial Orbital Alignment of Sednoids". The Astrophysical Journal Letters. 962 (2): 6. arXiv:2310.20614. Bibcode:2024ApJ...962L..33H. doi:10.3847/2041-8213/ad2686. L33. https://doi.org/10.3847%2F2041-8213%2Fad2686 ↩
Sheppard, Scott S.; Trujillo, Chadwick; Tholen, David J. (July 2016). "Beyond the Kuiper Belt Edge: New High Perihelion Trans-Neptunian Objects with Moderate Semimajor Axes and Eccentricities". The Astrophysical Journal Letters. 825 (1). L13. arXiv:1606.02294. Bibcode:2016ApJ...825L..13S. doi:10.3847/2041-8205/825/1/L13. S2CID 118630570. https://doi.org/10.3847%2F2041-8205%2F825%2F1%2FL13 ↩
Brown, Michael E.; Trujillo, Chadwick A.; Rabinowitz, David L. (2004). "Discovery of a Candidate Inner Oort Cloud Planetoid" (PDF). Astrophysical Journal. 617 (1): 645–649. arXiv:astro-ph/0404456. Bibcode:2004ApJ...617..645B. doi:10.1086/422095. S2CID 7738201. Archived from the original (PDF) on 2006-06-27. Retrieved 2008-04-02. /wiki/Michael_E._Brown ↩
Trujillo, Chadwick A.; Sheppard, Scott S. (2014). "A Sedna-like body with a perihelion of 80 astronomical units" (PDF). Nature. 507 (7493): 471–474. Bibcode:2014Natur.507..471T. doi:10.1038/nature13156. PMID 24670765. S2CID 4393431. Archived (PDF) from the original on 2014-12-16. /wiki/Chadwick_A._Trujillo ↩
Sheppard, Scott S.; Jewitt, David (2005). "Small Bodies in the Outer Solar System" (PDF). Frank N. Bash Symposium. University of Texas at Austin. Retrieved 2008-03-25. http://www.dtm.ciw.edu/users/sheppard/pub/Sheppard06smallbodies.pdf ↩
Morbidelli, Alessandro; Levison, Harold (2004). "Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects 2000 CR105 and 2003 VB12 (Sedna)". Astronomical Journal. 128 (5): 2564–2576. arXiv:astro-ph/0403358. Bibcode:2004AJ....128.2564M. doi:10.1086/424617. S2CID 119486916. /wiki/Alessandro_Morbidelli_(astronomer) ↩
Pfalzner, Susanne; Bhandare, Asmita; Vincke, Kirsten; Lacerda, Pedro (2018-08-09). "Outer Solar System Possibly Shaped by a Stellar Fly-by". The Astrophysical Journal. 863 (1): 45. arXiv:1807.02960. Bibcode:2018ApJ...863...45P. doi:10.3847/1538-4357/aad23c. ISSN 1538-4357. S2CID 119197960. https://doi.org/10.3847%2F1538-4357%2Faad23c ↩
Brown, Michael E.; Trujillo, Chadwick A.; Rabinowitz, David L. (2004). "Discovery of a Candidate Inner Oort Cloud Planetoid" (PDF). Astrophysical Journal. 617 (1): 645–649. arXiv:astro-ph/0404456. Bibcode:2004ApJ...617..645B. doi:10.1086/422095. S2CID 7738201. Archived from the original (PDF) on 2006-06-27. Retrieved 2008-04-02. /wiki/Michael_E._Brown ↩
Jílková, Lucie; Portegies Zwart, Simon; Pijloo, Tjibaria; Hammer, Michael (2015). "How Sedna and family were captured in a close encounter with a solar sibling". MNRAS. 453 (3): 3158–3163. arXiv:1506.03105. Bibcode:2015MNRAS.453.3157J. doi:10.1093/mnras/stv1803. https://doi.org/10.1093%2Fmnras%2Fstv1803 ↩
Gomes, Rodney S.; Matese, John J.; Lissauer, Jack J. (2006). "A distant planetary-mass solar companion may have produced distant detached objects". Icarus. 184 (2): 589–601. Bibcode:2006Icar..184..589G. doi:10.1016/j.icarus.2006.05.026. /wiki/Icarus_(journal) ↩
Lykawka, Patryk S.; Mukai, Tadashi (2008). "An outer planet beyond Pluto and the origin of the trans-Neptunian belt". Astronomical Journal. 135 (4): 1161–1200. arXiv:0712.2198. Bibcode:2008AJ....135.1161L. doi:10.1088/0004-6256/135/4/1161. S2CID 118414447. /wiki/ArXiv_(identifier) ↩
Gladman, Brett; Chan, Collin (2006-06-01). "Production of the Extended Scattered Disk by Rogue Planets". The Astrophysical Journal. 643 (2): L135 – L138. Bibcode:2006ApJ...643L.135G. doi:10.1086/505214. ISSN 0004-637X. https://iopscience.iop.org/article/10.1086/505214 ↩
Huang 黄, Yukun 宇坤; Gladman, Brett (2024-02-01). "Primordial Orbital Alignment of Sednoids". The Astrophysical Journal Letters. 962 (2): L33. arXiv:2310.20614. Bibcode:2024ApJ...962L..33H. doi:10.3847/2041-8213/ad2686. ISSN 2041-8205. https://doi.org/10.3847%2F2041-8213%2Fad2686 ↩
"MPC list of q > 50 and a > 150". Minor Planet Center. Retrieved 1 October 2018. http://minorplanetcenter.net/db_search/show_by_properties?perihelion_distance_min=50&semimajor_axis_min=150 ↩
Buie, Marc W.; Leiva, Rodrigo; Keller, John M.; Desmars, Josselin; Sicardy, Bruno; Kavelaars, J. J.; et al. (April 2020). "A Single-chord Stellar Occultation by the Extreme Trans-Neptunian Object (541132) Leleākūhonua". The Astronomical Journal. 159 (5): 230. arXiv:2011.03889. Bibcode:2020AJ....159..230B. doi:10.3847/1538-3881/ab8630. S2CID 219039999. 230. https://doi.org/10.3847%2F1538-3881%2Fab8630 ↩
Lakdawalla, Emily (26 March 2014). "A second Sedna! What does it mean?". Planetary Society blogs. The Planetary Society. Retrieved 12 June 2019. /wiki/Emily_Lakdawalla ↩
Trujillo, Chadwick A.; Sheppard, Scott S. (2014). "A Sedna-like body with a perihelion of 80 astronomical units" (PDF). Nature. 507 (7493): 471–474. Bibcode:2014Natur.507..471T. doi:10.1038/nature13156. PMID 24670765. S2CID 4393431. Archived (PDF) from the original on 2014-12-16. /wiki/Chadwick_A._Trujillo ↩
Jílková, Lucie; Portegies Zwart, Simon; Pijloo, Tjibaria; Hammer, Michael (2015). "How Sedna and family were captured in a close encounter with a solar sibling". MNRAS. 453 (3): 3158–3163. arXiv:1506.03105. Bibcode:2015MNRAS.453.3157J. doi:10.1093/mnras/stv1803. https://doi.org/10.1093%2Fmnras%2Fstv1803 ↩
Trujillo, Chadwick A.; Sheppard, Scott S. (2014). "A Sedna-like body with a perihelion of 80 astronomical units" (PDF). Nature. 507 (7493): 471–474. Bibcode:2014Natur.507..471T. doi:10.1038/nature13156. PMID 24670765. S2CID 4393431. Archived (PDF) from the original on 2014-12-16. /wiki/Chadwick_A._Trujillo ↩
de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl (1 September 2014). "Extreme trans-Neptunian objects and the Kozai mechanism: signalling the presence of trans-Plutonian planets". Monthly Notices of the Royal Astronomical Society: Letters. 443 (1): L59 – L63. arXiv:1406.0715. Bibcode:2014MNRAS.443L..59D. doi:10.1093/mnrasl/slu084. https://doi.org/10.1093%2Fmnrasl%2Fslu084 ↩
Trujillo, Chadwick A.; Sheppard, Scott S. (2014). "A Sedna-like body with a perihelion of 80 astronomical units" (PDF). Nature. 507 (7493): 471–474. Bibcode:2014Natur.507..471T. doi:10.1038/nature13156. PMID 24670765. S2CID 4393431. Archived (PDF) from the original on 2014-12-16. /wiki/Chadwick_A._Trujillo ↩
"JPL Small-Body Database Search Engine: a > 150 (AU) and q > 30 (AU) and data-arc span > 365 (d)". JPL Solar System Dynamics. Retrieved 2016-02-08. https://ssd.jpl.nasa.gov/sbdb_query.cgi?obj_group=all;obj_kind=all;obj_numbered=all;OBJ_field=0;ORB_field=0;combine_mode=AND;c1_group=ORB;c1_item=Bh;c1_op=%3E;c1_value=150;c2_group=ORB;c2_item=Bi;c2_op=%3E;c2_value=30;c3_group=ORB;c3_item=Ck;c3_op=%3E;c3_value=365;table_format=HTML;max_rows=100;format_option=comp;c_fields=AcBhBgBjBkBlBiBnBsCkCqAiBq;.cgifields=format_option;.cgifields=obj_kind;.cgifields=obj_group;.cgifields=obj_numbered;.cgifields=combine_mode;.cgifields=ast_orbit_class;.cgifields=table_format;.cgifields=com_orbit_class&query=1&c_sort=AcA ↩
Witze, Alexandra (2015-11-10). "Astronomers spy most distant Solar System object ever". Nature News. doi:10.1038/nature.2015.18770. S2CID 123763943. http://www.nature.com/news/astronomers-spy-most-distant-solar-system-object-ever-1.18770 ↩
de León, Julia; de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl (May 2017). "Visible spectra of (474640) 2004 VN112-2013 RF98 with OSIRIS at the 10.4 m GTC: evidence for binary dissociation near aphelion among the extreme trans-Neptunian objects". Monthly Notices of the Royal Astronomical Society: Letters. 467 (1): L66 – L70. arXiv:1701.02534. Bibcode:2017MNRAS.467L..66D. doi:10.1093/mnrasl/slx003. https://doi.org/10.1093%2Fmnrasl%2Fslx003 ↩
Rice, Malena; Laughlin, Gregory (December 2020). "Exploring Trans-Neptunian Space with TESS: A Targeted Shift-stacking Search for Planet Nine and Distant TNOs in the Galactic Plane". The Planetary Science Journal. 1 (3): 81 (18 pp.). arXiv:2010.13791. Bibcode:2020PSJ.....1...81R. doi:10.3847/PSJ/abc42c. S2CID 225075671. https://doi.org/10.3847%2FPSJ%2Fabc42c ↩
de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Vaduvescu, Ovidiu; Stanescu, Malin (June 2022). "Distant trans-Neptunian object candidates from NASA's TESS mission scrutinized: fainter than predicted or false positives?". Monthly Notices of the Royal Astronomical Society Letters. 513 (1): L78 – L82. arXiv:2204.02230. Bibcode:2022MNRAS.513L..78D. doi:10.1093/mnrasl/slac036. https://doi.org/10.1093%2Fmnrasl%2Fslac036 ↩
"Distant Trans-Neptunian Object Candidates: Fainter Than Predicted or False Positives?". 20 May 2022. https://www.ing.iac.es/PR/press/tess.html ↩
Schwamb, Megan E. (2007). "Searching for Sedna's Sisters: Exploring the inner Oort cloud" (PDF). None. Caltech. Archived from the original (PDF) on 2013-05-12. Retrieved 2010-08-06. https://web.archive.org/web/20130512221422/http://www.astro.caltech.edu/~george/option/candex07/schwamb_report.pdf ↩
Schwamb, Megan E.; Brown, Michael E.; Rabinowitz, David L. (2009). "A Search for Distant Solar System Bodies in the Region of Sedna". The Astrophysical Journal Letters. 694 (1): L45 – L48. arXiv:0901.4173. Bibcode:2009ApJ...694L..45S. doi:10.1088/0004-637X/694/1/L45. S2CID 15072103. /wiki/ArXiv_(identifier) ↩
Fussman, Cal (2006). "The Man Who Finds Planets". Discover. Archived from the original on 16 June 2010. Retrieved 2010-05-22. http://discovermagazine.com/2006/may/cover ↩
Schwamb, Megan E.; Brown, Michael E.; Rabinowitz, David L. (2009). "A Search for Distant Solar System Bodies in the Region of Sedna". The Astrophysical Journal Letters. 694 (1): L45 – L48. arXiv:0901.4173. Bibcode:2009ApJ...694L..45S. doi:10.1088/0004-637X/694/1/L45. S2CID 15072103. /wiki/ArXiv_(identifier) ↩
Schwamb, Megan E.; Brown, Michael E.; Rabinowitz, David L. (2009). "A Search for Distant Solar System Bodies in the Region of Sedna". The Astrophysical Journal Letters. 694 (1): L45 – L48. arXiv:0901.4173. Bibcode:2009ApJ...694L..45S. doi:10.1088/0004-637X/694/1/L45. S2CID 15072103. /wiki/ArXiv_(identifier) ↩
Sheppard, Scott S.; Trujillo, Chadwick A.; Tholen, David J.; Kaib, Nathan (2019-04-01). "A New High Perihelion Trans-Plutonian Inner Oort Cloud Object: 2015 TG387". The Astronomical Journal. 157 (4): 139. arXiv:1810.00013. Bibcode:2019AJ....157..139S. doi:10.3847/1538-3881/ab0895. ISSN 0004-6256. S2CID 119071596. https://doi.org/10.3847%2F1538-3881%2Fab0895 ↩