Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page

Red algae, or eukaryotic algae of the phylum Rhodophyta, include over 7,000 species mainly from the Florideophyceae class. Mostly multicellular and marine, they play key ecological roles, with groups like coralline algae building coral reefs via calcium carbonate secretion. Red algae lack flagella, store energy as floridean starch, and use phycobiliproteins giving their distinctive color. Species like Palmaria palmata and Porphyra are important in European and Asian cuisines, producing foods like laver and nori, as well as industrial products such as agar and carrageenan.

Related Image Collections Add Image
We don't have any YouTube videos related to Red algae yet.
We don't have any PDF documents related to Red algae yet.
We don't have any Books related to Red algae yet.

Evolution

Chloroplasts probably evolved following an endosymbiotic event between an ancestral, photosynthetic cyanobacterium and an early eukaryotic phagotroph.16 This event (termed primary endosymbiosis) is at the origin of the red and green algae (including the land plants or Embryophytes which emerged within them) and the glaucophytes, which together make up the oldest evolutionary lineages of photosynthetic eukaryotes, the Archaeplastida.17 A secondary endosymbiosis event involving an ancestral red alga and a heterotrophic eukaryote resulted in the evolution and diversification of several other photosynthetic lineages such as Cryptophyta, Haptophyta, Stramenopiles (or Heterokontophyta), and Alveolata.18 In addition to multicellular brown algae, it is estimated that more than half of all known species of microbial eukaryotes harbor red-alga-derived plastids.19

Red algae are divided into the Cyanidiophyceae, a class of unicellular and thermoacidophilic extremophiles found in sulphuric hot springs and other acidic environments,20 an adaptation partly made possible by horizontal gene transfers from prokaryotes,21 with about 1% of their genome having this origin,22 and two sister clades called SCRP (Stylonematophyceae, Compsopogonophyceae, Rhodellophyceae and Porphyridiophyceae) and BF (Bangiophyceae and Florideophyceae), which are found in both marine and freshwater environments. The BF are macroalgae, seaweed that usually do not grow to more than about 50 cm in length, but a few species can reach lengths of 2 m.23 In the SCRP clade the class Compsopogonophyceae is multicellular, with forms varying from microscopic filaments to macroalgae. Stylonematophyceae have both unicellular and small simple filamentous species, while Rhodellophyceae and Porphyridiophyceae are exclusively unicellular.2425 Most rhodophytes are marine with a worldwide distribution, and are often found at greater depths compared to other seaweeds. While this was formerly attributed to the presence of pigments (such as phycoerythrin) that would permit red algae to inhabit greater depths than other macroalgae by chromatic adaption, recent evidence calls this into question (e.g. the discovery of green algae at great depth in the Bahamas).26 Some marine species are found on sandy shores, while most others can be found attached to rocky substrata.27 Freshwater species account for 5% of red algal diversity, but they also have a worldwide distribution in various habitats;28 they generally prefer clean, high-flow streams with clear waters and rocky bottoms, but with some exceptions.29 A few freshwater species are found in black waters with sandy bottoms 30 and even fewer are found in more lentic waters.31 Both marine and freshwater taxa are represented by free-living macroalgal forms and smaller endo/epiphytic/zoic forms, meaning they live in or on other algae, plants, and animals.32 In addition, some marine species have adopted a parasitic lifestyle and may be found on closely or more distantly related red algal hosts.3334

Taxonomy

Further information: Wikispecies:Rhodophyta

In the classification system of Adl et al. 2005, the red algae are classified in the Archaeplastida, along with the glaucophytes and the green algae plus land plants (Viridiplantae or Chloroplastida). The authors use a hierarchical arrangement where the clade names do not signify rank; the class name Rhodophyceae is used for the red algae. No subdivisions are given; the authors say, "Traditional subgroups are artificial constructs, and no longer valid."35 Many subsequent studies provided evidence that is in agreement for monophyly in the Archaeplastida (including red algae).36373839 However, other studies have suggested Archaeplastida is paraphyletic.4041 As of January 2020[update], the general consensus is that Archaeplastida is paraphyletic.42

Below are other published taxonomies of the red algae using molecular and traditional alpha taxonomic data; however, the taxonomy of the red algae is still in a state of flux (with classification above the level of order having received little scientific attention for most of the 20th century).43

  • If the kingdom Plantae is defined as the Archaeplastida, then red algae will be part of that group.
  • If Plantae are defined more narrowly, to be the Viridiplantae, then the red algae might be excluded.

A major research initiative to reconstruct the Red Algal Tree of Life (RedToL) using phylogenetic and genomic approach is funded by the National Science Foundation as part of the Assembling the Tree of Life Program.

Classification comparison

Classification system according toSaunders and Hommersand 200444Classification system according toHwan Su Yoon et al. 200645OrdersMulticellular?Pit plugs?Example
Subkingdom RhodoplantaePhylum CyanidiophytaPhylum Rhodophyta WettsteinSubphylum Cyanidiophytina subphylum novusCyanidialesNoNoCyanidioschyzon merolae
Phylum Rhodophyta WettsteinSubphylum RhodellophytinaSubphylum Rhodophytina subphylum novusRhodellalesNoNoRhodella
Rufusiales, StylonematalesYesNoStylonema

Porphyridiales

NoNoPorphyridium cruentum
  • Subphylum Metarhodophytina
Compsopogonales, Rhodochaetales, ErythropeltidalesYesNoCompsopogon

Bangiales

YesYesBangia, "Porphyra"
HildenbrandialesYesYesHildenbrandia
Batrachospermales, Balliales, Balbianiales, Nemaliales, Colaconematales, Acrochaetiales, Palmariales, ThorealesYesYesNemalion
Rhodogorgonales, CorallinalesYesYesCorallina officinalis
Ahnfeltiales, PihiellalesYesYesAhnfeltia
Bonnemaisoniales, Gigartinales, Gelidiales, Gracilariales, Halymeniales, Rhodymeniales, Nemastomatales, Plocamiales, CeramialesYesYesGelidium

Some sources (such as Lee) place all red algae into the class "Rhodophyceae". (Lee's organization is not a comprehensive classification, but a selection of orders considered common or important.46: 107 )

A subphylum - Proteorhodophytina - has been proposed to encompass the existing classes Compsopogonophyceae, Porphyridiophyceae, Rhodellophyceae and Stylonematophyceae.47 This proposal was made on the basis of the analysis of the plastid genomes.

See also: Eukaryote § Phylogeny

Species of red algae

Over 7,000 species are currently described for the red algae,48 but the taxonomy is in constant flux with new species described each year.4950 The vast majority of these are marine with about 200 that live only in fresh water.

Some examples of species and genera of red algae are:

Phylogeny

While Cyanidiophyceae is universally agreed to be the most basal, the remaining 6 classes in the subphylum Rhodophytina have uncertain relationships. The below cladogram follows the results of a 2016 study concerning diversification times among red algae.51

Rhodophyta

Cyanidiophyceae

Rhodophytina

Porphyridiophyceae

Compsopogonophyceae

Stylonematophyceae

Rhodellophyceae

Bangiophyceae

Florideophyceae

Morphology

Red algal morphology is diverse ranging from unicellular forms to complex parenchymatous and non- parenchymatous thallus.52 Red algae have double cell walls.53 The outer layers contain the polysaccharides agarose and agaropectin that can be extracted from the cell walls as agar by boiling.54 The internal walls are mostly cellulose.55 They also have the most gene-rich plastid genomes known.56

Cell structure

Red algae do not have flagella and centrioles during their entire life cycle. The distinguishing characters of red algal cell structure include the presence of normal spindle fibres, microtubules, un-stacked photosynthetic membranes, phycobilin pigment granules,57 pit connection between cells, filamentous genera, and the absence of chloroplast endoplasmic reticulum.58

Chloroplasts

The presence of the water-soluble pigments called phycobilins (phycocyanobilin, phycoerythrobilin, phycourobilin and phycobiliviolin), which are localized into phycobilisomes, gives red algae their distinctive color.59 Their chloroplasts contain evenly spaced and ungrouped thylakoids60 and contain the pigments chlorophyll a, α- and β-carotene, lutein and zeaxanthin. Their chloroplasts are enclosed in a double membrane, lack grana and phycobilisomes on the stromal surface of the thylakoid membrane.61

Storage products

The major photosynthetic products include floridoside (major product), D‐isofloridoside, digeneaside, mannitol, sorbitol, dulcitol etc.62 Floridean starch (similar to amylopectin in land plants), a long-term storage product, is deposited freely (scattered) in the cytoplasm.63 The concentration of photosynthetic products are altered by the environmental conditions like change in pH, the salinity of medium, change in light intensity, nutrient limitation etc.64 When the salinity of the medium increases the production of floridoside is increased in order to prevent water from leaving the algal cells.

Pit connections and pit plugs

Main article: Pit connection

Pit connections

Pit connections and pit plugs are unique and distinctive features of red algae that form during the process of cytokinesis following mitosis.6566 In red algae, cytokinesis is incomplete. Typically, a small pore is left in the middle of the newly formed partition. The pit connection is formed where the daughter cells remain in contact.

Shortly after the pit connection is formed, cytoplasmic continuity is blocked by the generation of a pit plug, which is deposited in the wall gap that connects the cells.

Connections between cells having a common parent cell are called primary pit connections. Because apical growth is the norm in red algae, most cells have two primary pit connections, one to each adjacent cell.

Connections that exist between cells not sharing a common parent cell are labelled secondary pit connections. These connections are formed when an unequal cell division produced a nucleated daughter cell that then fuses to an adjacent cell. Patterns of secondary pit connections can be seen in the order Ceramiales.67

Pit plugs

After a pit connection is formed, tubular membranes appear. A granular protein called the plug core then forms around the membranes. The tubular membranes eventually disappear. While some orders of red algae simply have a plug core, others have an associated membrane at each side of the protein mass, called cap membranes. The pit plug continues to exist between the cells until one of the cells dies. When this happens, the living cell produces a layer of wall material that seals off the plug.

Function

The pit connections have been suggested to function as structural reinforcement, or as avenues for cell-to-cell communication and transport in red algae, however little data supports this hypothesis.68

Reproduction

The reproductive cycle of red algae may be triggered by factors such as day length.69 Red algae reproduce sexually as well as asexually. Asexual reproduction can occur through the production of spores and by vegetative means (fragmentation, cell division or propagules production).70

Fertilization

Red algae lack motile sperm. Hence, they rely on water currents to transport their gametes to the female organs – although their sperm are capable of "gliding" to a carpogonium's trichogyne.71 Animals also help with the dispersal and fertilization of the gametes. The first species discovered to do so is the isopod Idotea balthica.72

The trichogyne will continue to grow until it encounters a spermatium; once it has been fertilized, the cell wall at its base progressively thickens, separating it from the rest of the carpogonium at its base.73

Upon their collision, the walls of the spermatium and carpogonium dissolve. The male nucleus divides and moves into the carpogonium; one half of the nucleus merges with the carpogonium's nucleus.74

The polyamine spermine is produced, which triggers carpospore production.75

Spermatangia may have long, delicate appendages, which increase their chances of "hooking up".76

Life cycle

They display alternation of generations. In addition to a gametophyte generation, many have two sporophyte generations, the carposporophyte-producing carpospores, which germinate into a tetrasporophyte – this produces spore tetrads, which dissociate and germinate into gametophytes.77 The gametophyte is typically (but not always) identical to the tetrasporophyte.78

Carpospores may also germinate directly into thalloid gametophytes, or the carposporophytes may produce a tetraspore without going through a (free-living) tetrasporophyte phase.79 Tetrasporangia may be arranged in a row (zonate), in a cross (cruciate), or in a tetrad.80

The carposporophyte may be enclosed within the gametophyte, which may cover it with branches to form a cystocarp.81

The two following case studies may be helpful to understand some of the life histories algae may display:

In a simple case, such as Rhodochorton investiens:

In the carposporophyte: a spermatium merges with a trichogyne (a long hair on the female sexual organ), which then divides to form carposporangia – which produce carpospores. Carpospores germinate into gametophytes, which produce sporophytes. Both of these are very similar; they produce monospores from monosporangia "just below a cross-wall in a filament"82 and their spores are "liberated through the apex of sporangial cell."83 The spores of a sporophyte produce either tetrasporophytes. Monospores produced by this phase germinates immediately, with no resting phase, to form an identical copy of the parent. Tetrasporophytes may also produce a carpospore, which germinates to form another tetrasporophyte.84 The gametophyte may replicate asexually using monospores, but also produces nonmotile sperm in spermatangia, and a lower, nucleus-containing "egg" region of the carpogonium.8586

A rather different example is Porphyra gardneri:

In its diploid phase, a carpospore can germinate to form a filamentous "conchocelis stage", which can also self-replicate using monospores. The conchocelis stage eventually produces conchosporangia. The resulting conchospore germinates to form a tiny prothallus with rhizoids, which develops to a cm-scale leafy thallus. This too can reproduce via monospores, which are produced inside the thallus itself.87 They can also reproduce via spermatia, produced internally, which are released to meet a prospective carpogonium in its conceptacle.88

Chemistry

Algal groupδ13C range89
HCO3-using red algae−22.5‰ to −9.6‰
CO2-using red algae−34.5‰ to −29.9‰
Brown algae−20.8‰ to −10.5‰
Green algae−20.3‰ to −8.8‰

The δ13C values of red algae reflect their lifestyles. The largest difference results from their photosynthetic metabolic pathway: algae that use HCO3 as a carbon source have less negative δ13C values than those that only use CO2.90 An additional difference of about 1.71‰ separates groups intertidal from those below the lowest tide line, which are never exposed to atmospheric carbon. The latter group uses the more 13C-negative CO2 dissolved in sea water, whereas those with access to atmospheric carbon reflect the more positive signature of this reserve.

Photosynthetic pigments of Rhodophyta are chlorophylls a and d. Red algae are red due to phycoerythrin. They contain the sulfated polysaccharide carrageenan in the amorphous sections of their cell walls, although red algae from the genus Porphyra contain porphyran. They also produce a specific type of tannin called phlorotannins, but in a lower amount than brown algae do.

Genomes and transcriptomes of red algae

As enlisted in realDB,91 27 complete transcriptomes and 10 complete genomes sequences of red algae are available. Listed below are the 10 complete genomes of red algae.

Fossil record

One of the oldest fossils identified as a red alga is also the oldest fossil eukaryote that belongs to a specific modern taxon. Bangiomorpha pubescens, a multicellular fossil from arctic Canada, strongly resembles the modern red alga Bangia and occurs in rocks dating to 1.05 billion years ago.103

Two kinds of fossils resembling red algae were found sometime between 2006 and 2011 in well-preserved sedimentary rocks in Chitrakoot, central India. The presumed red algae lie embedded in fossil mats of cyanobacteria, called stromatolites, in 1.6 billion-year-old Indian phosphorite – making them the oldest plant-like fossils ever found by about 400 million years.104

Red algae are important builders of limestone reefs. The earliest such coralline algae, the solenopores, are known from the Cambrian period. Other algae of different origins filled a similar role in the late Paleozoic, and in more recent reefs.

Calcite crusts that have been interpreted as the remains of coralline red algae, date to the Ediacaran Period.105 Thallophytes resembling coralline red algae are known from the late Proterozoic Doushantuo formation.106

Relationship to other algae

Chromista and Alveolata algae (e.g., chrysophytes, diatoms, phaeophytes, dinophytes) seem to have evolved from bikonts that have acquired red algae as endosymbionts. According to this theory, over time these endosymbiont red algae have evolved to become chloroplasts. This part of endosymbiotic theory is supported by various structural and genetic similarities.107

Applications

Human consumption

Red algae have a long history of use as a source of nutritional, functional food ingredients and pharmaceutical substances.108 They are a source of antioxidants including polyphenols, and phycobiliproteins and contain proteins, minerals, trace elements, vitamins and essential fatty acids.109110

Traditionally, red algae are eaten raw, in salads, soups, meal and condiments. Several species are food crops, in particular dulse (Palmaria palmata)111 and members of the genus Porphyra, variously known as nori (Japan), gim (Korea), zicai 紫菜 (China), and laver (British Isles).112

Red algal species such as Gracilaria and Laurencia are rich in polyunsaturated fatty acids (eicopentaenoic acid, docohexaenoic acid, arachidonic acid)113 and have protein content up to 47% of total biomass.114 Where a big portion of world population is getting insufficient daily iodine intake, a 150 ug/day requirement of iodine is obtained from a single gram of red algae.115 Red algae, like Gracilaria, Gelidium, Euchema, Porphyra, Acanthophora, and Palmaria are primarily known for their industrial use for phycocolloids (agar, algin, furcellaran and carrageenan) as thickening agent, textiles, food, anticoagulants, water-binding agents, etc.116 Dulse (Palmaria palmata) is one of the most consumed red algae and is a source of iodine, protein, magnesium and calcium.117 Red algae's nutritional value is used for the dietary supplement of algas calcareas.118

China, Japan, Republic of Korea are the top producers of seaweeds.119 In East and Southeast Asia, agar is most commonly produced from Gelidium amansii. These rhodophytes are easily grown and, for example, nori cultivation in Japan goes back more than three centuries.120

Animal feed

Researchers in Australia discovered that limu kohu (Asparagopsis taxiformis) can reduce methane emissions in cattle. In one Hawaii experiment, the reduction reached 77%. The World Bank predicted the industry could be worth ~$1.1 billion by 2030. As of 2024, preparation included three stages of cultivation and drying. Australia's first commercial harvest was in 2022. Agriculture accounts for 37% of the world’s anthropogenic methane emissions. One cow produces between 154 and 264 pounds of methane/yr.121

Other

Other algae-based markets include construction materials, fertilizers and other agricultural inputs, bioplastics, biofuels and fabric. Red algae also provides ecosystem services such as filtering water and carbon sequestration.122

See also

References

  1. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  2. Frey, Wolfgang; Engler, Adolf; Jaklitsch, Walter M.; Kamiya, Mitsunobu; Begerow, Dominik; McTaggart, Alistair; Agerer, R.; Fischer, Eberhard; Müller, Kai, eds. (2017). Syllabus of plant families: Adolf Engler's Syllabus der Pflanzenfamilien. Part 2/2: Photoautotropic eukaryotic algae, Rhodophyta (13th ed.). Berlin: Gebr. Borntraeger Verlagsbuchhandlung. ISBN 978-3-443-01094-2. OCLC 911004269. 978-3-443-01094-2

  3. Guiry, M.D.; Guiry, G.M. (2016). "Algaebase". www.algaebase.org. Retrieved November 20, 2016. http://www.algaebase.org/browse/taxonomy/?id=97240

  4. Guiry, M.D.; Guiry, G.M. (2016). "Algaebase". www.algaebase.org. Retrieved November 20, 2016. http://www.algaebase.org/browse/taxonomy/?id=97240

  5. D. Thomas (2002). Seaweeds. Life Series. Natural History Museum, London. ISBN 978-0-565-09175-0. 978-0-565-09175-0

  6. Dodds, Walter Kennedy; Whiles, Matt R. (7 May 2019). Freshwater ecology : concepts and environmental applications of limnology (Third ed.). London, United Kingdom: Academic Press. ISBN 9780128132555. OCLC 1096190142. 9780128132555

  7. Sheath, Robert G. (1284). "The biology of freshwater red algae". Progress Phycological Research. 3: 89–157.

  8. "Huan Qiu Red Algae DEENR at Rutgers SEBS". deenr.rutgers.edu. http://deenr.rutgers.edu/Huan_Qiu_red_algae.html

  9. Azua-Bustos, A; González-Silva, C; Arenas-Fajardo, C; Vicuña, R (2012). "Extreme environments as potential drivers of convergent evolution by exaptation: the Atacama Desert Coastal Range case". Front Microbiol. 3: 426. doi:10.3389/fmicb.2012.00426. PMC 3526103. PMID 23267354. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526103

  10. W. J. Woelkerling (1990). "An introduction". In K. M. Cole; R. G. Sheath (eds.). Biology of the Red Algae. Cambridge University Press, Cambridge. pp. 1–6. ISBN 978-0-521-34301-5. 978-0-521-34301-5

  11. Reece, Jane B.; Meyers, Noel; Urry, Lisa A.; Cain, Michael L.; Wasserman, Steven A.; Minorsky, Peter V. (May 20, 2015). Campbell Biology Australian and New Zealand Edition. Pearson Higher Education AU. ISBN 978-1-4860-1229-9 – via Google Books. 978-1-4860-1229-9

  12. Morrissey, John; Sumich, James (June 11, 2012). Introduction to the Biology of Marine Life. Jones & Bartlett Publishers. ISBN 978-0-7637-8160-6 – via Google Books. 978-0-7637-8160-6

  13. Viola, R.; Nyvall, P.; Pedersén, M. (2001). "The unique features of starch metabolism in red algae". Proceedings of the Royal Society of London B. 268 (1474): 1417–1422. doi:10.1098/rspb.2001.1644. PMC 1088757. PMID 11429143. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088757

  14. "Algae". autocww.colorado.edu. Archived from the original on 2012-03-15. Retrieved 2012-11-30. https://web.archive.org/web/20120315030820/http://autocww.colorado.edu/~toldy2/E64ContentFiles/AlgaeAndFungi/Algae.html

  15. M. D. Guiry. "Rhodophyta: red algae". National University of Ireland, Galway. Archived from the original on 2007-05-04. Retrieved 2007-06-28. https://web.archive.org/web/20070504155119/http://www.seaweed.ie/algae/rhodophyta.lasso

  16. Gould, S.B.; Waller, R.F.; McFadden, G.I. (2008). "Plastid Evolution". Annual Review of Plant Biology. 59: 491–517. doi:10.1146/annurev.arplant.59.032607.092915. PMID 18315522. S2CID 30458113. /wiki/Doi_(identifier)

  17. McFadden, G.I. (2001). "Primary and Secondary Endosymbiosis and the Evolution of Plastids". Journal of Phycology. 37 (6): 951–959. doi:10.1046/j.1529-8817.2001.01126.x. S2CID 51945442. /wiki/Doi_(identifier)

  18. McFadden, G.I. (2001). "Primary and Secondary Endosymbiosis and the Evolution of Plastids". Journal of Phycology. 37 (6): 951–959. doi:10.1046/j.1529-8817.2001.01126.x. S2CID 51945442. /wiki/Doi_(identifier)

  19. "Steal My Sunshine". The Scientist Magazine®. https://www.the-scientist.com/steal-my-sunshine-39996

  20. Ciniglia, C.; Yoon, H.; Pollio, A.; Bhattacharya, D. (2004). "Hidden biodiversity of the extremophilic Cyanidiales red algae". Molecular Ecology. 13 (7): 1827–1838. Bibcode:2004MolEc..13.1827C. doi:10.1111/j.1365-294X.2004.02180.x. PMID 15189206. S2CID 21858509. /wiki/Bibcode_(identifier)

  21. "Plants and animals sometimes take genes from bacteria, study of algae suggests - Sciencemag.org". https://www.science.org/content/article/plants-and-animals-sometimes-take-genes-bacteria-study-algae-suggests

  22. Rossoni, Alessandro W; Price, Dana C; Seger, Mark; Lyska, Dagmar; Lammers, Peter; Bhattacharya, Debashish; Weber, Andreas PM (May 31, 2019). Tautz, Diethard; Rainey, Paul B; Fournier, Gregory (eds.). "The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions". eLife. 8: e45017. doi:10.7554/eLife.45017. PMC 6629376. PMID 31149898. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629376

  23. Brawley, SH (2017). "Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)". Proceedings of the National Academy of Sciences of the United States of America. 114 (31): E6361 – E6370. Bibcode:2017PNAS..114E6361B. doi:10.1073/pnas.1703088114. PMC 5547612. PMID 28716924. /wiki/Susan_Brawley

  24. Algae: Anatomy, Biochemistry, and Biotechnology, Second Edition (page 27) https://ia801206.us.archive.org/24/items/Algae_Anatomy_Biochemistry_and_Biotechnology_2nd_Edition_By_Laura_Barsanti_Paolo/Algae_Anatomy_Biochemistry_and_Biotechnology_2nd_Edition_By_Laura_Barsanti_Paolo_Gualtieri.pdf

  25. Zuccarello, Giuseppe C.; West, John A.; Kikuchi, Norio (April 11, 2008). "PHYLOGENETIC RELATIONSHIPS WITHIN THE STYLONEMATALES (STYLONEMATOPHYCEAE, RHODOPHYTA): BIOGEOGRAPHIC PATTERNS DO NOT APPLY TO STYLONEMA ALSIDII 1". Journal of Phycology. 44 (2): 384–393. Bibcode:2008JPcgy..44..384Z. doi:10.1111/j.1529-8817.2008.00467.x. PMID 27041194 – via CrossRef. https://onlinelibrary.wiley.com/doi/10.1111/j.1529-8817.2008.00467.x

  26. Norris, J. N.; Olsen, J. L. (1991). "Deep-water green algae from the Bahamas, including Cladophora vandenhoekii sp. nov. (Cladophorales)". Phycologia. 30 (4): 315–328. Bibcode:1991Phyco..30..315N. doi:10.2216/i0031-8884-30-4-315.1. ISSN 0031-8884. /wiki/Bibcode_(identifier)

  27. Kain, J.M.; Norton, T.A. (1990). "Marine Ecology". In Cole, J.M.; Sheath, R.G. (eds.). Biology of the Red Algae. Cambridge, U.K.: Cambridge University Press. pp. 377–423. ISBN 978-0521343015. 978-0521343015

  28. Sheath, Robert G. (1284). "The biology of freshwater red algae". Progress Phycological Research. 3: 89–157.

  29. Eloranta, P.; Kwandrans, J. (2004). "Indicator value of freshwater red algae in running waters for water quality assessment" (PDF). International Journal of Oceanography and Hydrobiology. XXXIII (1): 47–54. ISSN 1730-413X. Archived from the original (PDF) on 2011-07-27. https://web.archive.org/web/20110727135339/http://www.oandhs.org/files/60.pdf

  30. Vis, M.L.; Sheath, R.G.; Chiasson, W.B. (2008). "A survey of Rhodophyta and associated macroalgae from coastal streams in French Guiana". Cryptogamie Algologie. 25: 161–174.

  31. Sheath, R.G.; Hambrook, J.A. (1990). "Freshwater Ecology". In Cole, K.M.; Sheath, R.G. (eds.). Biology of the Red Algae. Cambridge, U.K.: Cambridge University Press. pp. 423–453. ISBN 978-0521343015. 978-0521343015

  32. W. J. Woelkerling (1990). "An introduction". In K. M. Cole; R. G. Sheath (eds.). Biology of the Red Algae. Cambridge University Press, Cambridge. pp. 1–6. ISBN 978-0-521-34301-5. 978-0-521-34301-5

  33. Goff, L.J. (1982). "The biology of parasitic red algae". Progress Phycological Research. 1: 289–369.

  34. Salomaki, E.D.; Lane, C.E. (2014). "Are all red algal parasites cut from the same cloth?". Acta Societatis Botanicorum Poloniae. 83 (4): 369–375. doi:10.5586/asbp.2014.047. https://doi.org/10.5586%2Fasbp.2014.047

  35. Adl, Sina M.; et al. (2005). "The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists". Journal of Eukaryotic Microbiology. 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873. S2CID 8060916. https://doi.org/10.1111%2Fj.1550-7408.2005.00053.x

  36. Fabien Burki; Kamran Shalchian-Tabrizi; Marianne Minge; Åsmund Skjæveland; Sergey I. Nikolaev; Kjetill S. Jakobsen; Jan Pawlowski (2007). Butler, Geraldine (ed.). "Phylogenomics Reshuffles the Eukaryotic Supergroups". PLOS ONE. 2 (8): e790. Bibcode:2007PLoSO...2..790B. doi:10.1371/journal.pone.0000790. PMC 1949142. PMID 17726520. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1949142

  37. Burki, Fabien; Inagaki, Yuji; Bråte, Jon; Archibald, John M.; Keeling, Patrick J.; Cavalier-Smith, Thomas; Sakaguchi, Miako; Hashimoto, Tetsuo; Horak, Ales; Kumar, Surendra; Klaveness, Dag; Jakobsen, Kjetill S.; Pawlowski, Jan; Shalchian-Tabrizi, Kamran (2009). "Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates". Genome Biology and Evolution. 1: 231–8. doi:10.1093/gbe/evp022. PMC 2817417. PMID 20333193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817417

  38. Cavalier-Smith, Thomas (2009). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–5. doi:10.1098/rsbl.2009.0948. PMC 2880060. PMID 20031978. /wiki/Thomas_Cavalier-Smith

  39. Rogozin, I.B.; Basu, M.K.; Csürös, M. & Koonin, E.V. (2009). "Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes". Genome Biology and Evolution. 1: 99–113. doi:10.1093/gbe/evp011. PMC 2817406. PMID 20333181. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817406

  40. Kim, E.; Graham, L.E. & Graham, Linda E. (2008). Redfield, Rosemary Jeanne (ed.). "EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata". PLOS ONE. 3 (7): e2621. Bibcode:2008PLoSO...3.2621K. doi:10.1371/journal.pone.0002621. PMC 2440802. PMID 18612431. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440802

  41. Nozaki, H.; Maruyama, S.; Matsuzaki, M.; Nakada, T.; Kato, S.; Misawa, K. (2009). "Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes". Molecular Phylogenetics and Evolution. 53 (3): 872–880. doi:10.1016/j.ympev.2009.08.015. PMID 19698794. /wiki/Doi_(identifier)

  42. Burki, Fabien; Roger, Andrew J.; Brown, Matthew W.; Simpson, Alastair G. B. (2020-01-01). "The New Tree of Eukaryotes". Trends in Ecology & Evolution. 35 (1): 43–55. doi:10.1016/j.tree.2019.08.008. ISSN 0169-5347. PMID 31606140. https://linkinghub.elsevier.com/retrieve/pii/S0169534719302575

  43. G. W. Saunders & M. H. Hommersand (2004). "Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data". American Journal of Botany. 91 (10): 1494–1507. doi:10.3732/ajb.91.10.1494. PMID 21652305. S2CID 9925890. /wiki/American_Journal_of_Botany

  44. G. W. Saunders & M. H. Hommersand (2004). "Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data". American Journal of Botany. 91 (10): 1494–1507. doi:10.3732/ajb.91.10.1494. PMID 21652305. S2CID 9925890. /wiki/American_Journal_of_Botany

  45. Hwan Su Yoon; K. M. Müller; R. G. Sheath; F. D. Ott & D. Bhattacharya (2006). "Defining the major lineages of red algae (Rhodophyta)" (PDF). Journal of Phycology. 42 (2): 482–492. Bibcode:2006JPcgy..42..482Y. doi:10.1111/j.1529-8817.2006.00210.x. S2CID 27377549. Archived from the original (PDF) on 2016-03-04. Retrieved 2011-12-09. https://web.archive.org/web/20160304022743/http://dblab.rutgers.edu/redtol/pdfs/major_lineages.pdf

  46. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  47. Muñoz-Gómez, SA; Mejía-Franco, FG; Durnin, K; Colp, M; Grisdale, CJ; Archibald, JM; Ch, Slamovits (2017). "The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known". Curr Biol. 27 (11): 1677–1684. Bibcode:2017CBio...27E1677M. doi:10.1016/j.cub.2017.04.054. PMID 28528908. https://doi.org/10.1016%2Fj.cub.2017.04.054

  48. Guiry, M.D.; Guiry, G.M. (2016). "Algaebase". www.algaebase.org. Retrieved November 20, 2016. http://www.algaebase.org/browse/taxonomy/?id=97240

  49. G. W. Saunders & M. H. Hommersand (2004). "Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data". American Journal of Botany. 91 (10): 1494–1507. doi:10.3732/ajb.91.10.1494. PMID 21652305. S2CID 9925890. /wiki/American_Journal_of_Botany

  50. Hwan Su Yoon; K. M. Müller; R. G. Sheath; F. D. Ott & D. Bhattacharya (2006). "Defining the major lineages of red algae (Rhodophyta)" (PDF). Journal of Phycology. 42 (2): 482–492. Bibcode:2006JPcgy..42..482Y. doi:10.1111/j.1529-8817.2006.00210.x. S2CID 27377549. Archived from the original (PDF) on 2016-03-04. Retrieved 2011-12-09. https://web.archive.org/web/20160304022743/http://dblab.rutgers.edu/redtol/pdfs/major_lineages.pdf

  51. Yang, Eun; et al. (19 February 2016). "Divergence time estimates and the evolution of major lineages in the florideophyte red algae". Scientific Reports. https://www.nature.com/articles/srep21361

  52. Goff, L. J.; Coleman, A. W. (1986). "A Novel Pattern of Apical Cell Polyploidy, Sequential Polyploidy Reduction and Intercellular Nuclear Transfer in the Red Alga Polysiphonia". American Journal of Botany. 73 (8): 1109–1130. doi:10.1002/j.1537-2197.1986.tb08558.x. /wiki/Doi_(identifier)

  53. Fritsch, F. E. (1945), The structure and reproduction of the algae, Cambridge: Cambridge Univ. Press, ISBN 0521050421, OCLC 223742770 0521050421

  54. Fritsch, F. E. (1945), The structure and reproduction of the algae, Cambridge: Cambridge Univ. Press, ISBN 0521050421, OCLC 223742770 0521050421

  55. Fritsch, F. E. (1945), The structure and reproduction of the algae, Cambridge: Cambridge Univ. Press, ISBN 0521050421, OCLC 223742770 0521050421

  56. Janouškovec, Jan; Liu, Shao-Lun; Martone, Patrick T.; Carré, Wilfrid; Leblanc, Catherine; Collén, Jonas; Keeling, Patrick J. (2013). "Evolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and Taxonomic Utility of Plastid Markers". PLOS ONE. 8 (3): e59001. Bibcode:2013PLoSO...859001J. doi:10.1371/journal.pone.0059001. PMC 3607583. PMID 23536846. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607583

  57. W. J. Woelkerling (1990). "An introduction". In K. M. Cole; R. G. Sheath (eds.). Biology of the Red Algae. Cambridge University Press, Cambridge. pp. 1–6. ISBN 978-0-521-34301-5. /wiki/ISBN_(identifier)

  58. Scott, J.; Cynthia, B.; Schornstein, K.; Thomas, J. (1980). "Ultrastructure of Cell Division and Reproductive Differentiation of Male Plants in the Florideophyceae (Rhodophyta): Cell Division in Polysiphonia1". Journal of Phycology. 16 (4): 507–524. Bibcode:1980JPcgy..16..507S. doi:10.1111/j.1529-8817.1980.tb03068.x. S2CID 83062611. /wiki/Bibcode_(identifier)

  59. Gantt, E (1969). "Properties and Ultrastructure of Phycoerythrin From Porphyridium cruentum12". Plant Physiology. 44 (11): 1629–1638. doi:10.1104/pp.44.11.1629. PMC 396315. PMID 16657250. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC396315

  60. Dodge, John David (January 1973). The Fine Structure of Algal Cells - 1st Edition. Academic Press. ISBN 978-0-12-219150-3. Retrieved 2023-08-16. 978-0-12-219150-3

  61. Tsekos, I.; Reiss, H.-D.; Orfanidis, S.; Orologas, N. (1996). "Ultrastructure and supramolecular organization of photosynthetic membranes of some marine red algae". New Phytologist. 133 (4): 543–551. doi:10.1111/j.1469-8137.1996.tb01923.x. https://doi.org/10.1111%2Fj.1469-8137.1996.tb01923.x

  62. Karsten, U.; West, J. A.; Zuccarello, G. C.; Engbrodt, R.; Yokoyama, A.; Hara, Y.; Brodie, J. (2003). "Low Molecular Weight Carbohydrates of the Bangiophycidae (Rhodophyta)1". Journal of Phycology. 39 (3): 584–589. Bibcode:2003JPcgy..39..584K. doi:10.1046/j.1529-8817.2003.02192.x. S2CID 84561417. /wiki/Bibcode_(identifier)

  63. Lee, RE (1974). "Chloroplast structure and starch grain production as phylogenetic indicators in the lower Rhodophyceae". British Phycological Journal. 9 (3): 291–295. doi:10.1080/00071617400650351. /wiki/Doi_(identifier)

  64. Eggert, Anja; Karsten, Ulf (2010). "Low Molecular Weight Carbohydrates in Red Algae – an Ecophysiological and Biochemical Perspective". In Seckbach, Joseph; Chapman, David J. (eds.). Red Algae in the Genomic Age. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 13. Dordrecht: Springer Netherlands. pp. 443–456. doi:10.1007/978-90-481-3795-4_24. ISBN 978-90-481-3795-4. Retrieved 2023-08-16. 978-90-481-3795-4

  65. Clinton JD, Scott FM, Bowler E (November–December 1961). "A Light- and Electron-Microscopic Survey of Algal Cell Walls. I. Phaeophyta and Rhodophyta". American Journal of Botany. 48 (10): 925–934. doi:10.2307/2439535. JSTOR 2439535. /wiki/Doi_(identifier)

  66. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  67. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  68. "Pit Plugs". FHL Marine Botany. Retrieved 2016-06-30. https://depts.washington.edu/fhl/mb/Scagelia_Ricky/special.html

  69. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  70. In Archibald, J. M., In Simpson, A. G. B., & In Slamovits, C. H. (2017). Handbook of the protists.

  71. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  72. Tamisiea, Jack. "In a First, Tiny Crustaceans Are Found to 'Pollinate' Seaweed like Bees of the Sea". Scientific American. Retrieved 2023-08-16. https://www.scientificamerican.com/article/in-a-first-tiny-crustaceans-are-found-to-ldquo-pollinate-rdquo-seaweed-like-bees-of-the-sea/

  73. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  74. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  75. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  76. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  77. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  78. Kohlmeyer, J. (February 1975). "New Clues to the Possible Origin of Ascomycetes". BioScience. 25 (2): 86–93. doi:10.2307/1297108. JSTOR 1297108. /wiki/Doi_(identifier)

  79. Kohlmeyer, J. (February 1975). "New Clues to the Possible Origin of Ascomycetes". BioScience. 25 (2): 86–93. doi:10.2307/1297108. JSTOR 1297108. /wiki/Doi_(identifier)

  80. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  81. Kohlmeyer, J. (February 1975). "New Clues to the Possible Origin of Ascomycetes". BioScience. 25 (2): 86–93. doi:10.2307/1297108. JSTOR 1297108. /wiki/Doi_(identifier)

  82. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  83. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  84. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  85. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  86. Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E. (2005). Biology of Plants 7th ed. W.H. Freeman and Company Publishers, New York. p. 324. ISBN 0-7167-1007-2. 0-7167-1007-2

  87. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  88. Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8. 978-0-521-63883-8

  89. Maberly, S. C.; Raven, J. A.; Johnston, A. M. (1992). "Discrimination between 12C and 13C by marine plants". Oecologia. 91 (4): 481. doi:10.1007/BF00650320. JSTOR 4220100. /wiki/Oecologia

  90. Maberly, SC; Raven, JA; Johnston, AM (1992). "Discrimination between 12C and 13C by marine plants". Oecologia. 91 (4): 481. doi:10.1007/BF00650320. /wiki/Doi_(identifier)

  91. Chen, Fei; Zhang, Jiawei; Chen, Junhao; Li, Xiaojiang; Dong, Wei; Hu, Jian; Lin, Meigui; Liu, Yanhui; Li, Guowei; Wang, Zhengjia; Zhang, Liangsheng (2018-01-01). "realDB: a genome and transcriptome resource for the red algae (phylum Rhodophyta)". Database. 2018. doi:10.1093/database/bay072. ISSN 1758-0463. PMC 6051438. PMID 30020436. https://doi.org/10.1093/database/bay072

  92. Matsuzaki; et al. (April 2004). "Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D". Nature. 428 (6983): 653–657. Bibcode:2004Natur.428..653M. doi:10.1038/nature02398. PMID 15071595. https://doi.org/10.1038%2Fnature02398

  93. Nozaki; et al. (2007). "A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae". BMC Biology. 5: 28. doi:10.1186/1741-7007-5-28. PMC 1955436. PMID 17623057. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1955436

  94. Schönknecht; et al. (March 2013). "Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote". Science. 339 (6124): 1207–1210. Bibcode:2013Sci...339.1207S. doi:10.1126/science.1231707. PMID 23471408. S2CID 5502148. https://pub.uni-bielefeld.de/record/2915146

  95. Nakamura; et al. (2013). "The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis)". PLOS ONE. 8 (3): e57122. Bibcode:2013PLoSO...857122N. doi:10.1371/journal.pone.0057122. PMC 3594237. PMID 23536760. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594237

  96. Collen; et al. (2013). "Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida". PNAS. 110 (13): 5247–5252. Bibcode:2013PNAS..110.5247C. doi:10.1073/pnas.1221259110. PMC 3612618. PMID 23503846. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612618

  97. Bhattacharya; et al. (2013). "Genome of the red alga Porphyridium purpureum". Nature Communications. 4: 1941. Bibcode:2013NatCo...4.1941B. doi:10.1038/ncomms2931. PMC 3709513. PMID 23770768. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709513

  98. Brawley, SH; Blouin, NA; Ficko-Blean, E; Wheeler, GL; et al. (1 August 2017). "Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)". Proceedings of the National Academy of Sciences of the United States of America. 114 (31): E6361 – E6370. Bibcode:2017PNAS..114E6361B. doi:10.1073/pnas.1703088114. PMC 5547612. PMID 28716924. /wiki/Susan_Brawley

  99. Ho, C.-L.; Lee, W.-K.; Lim, E.-L. (2018). "Unraveling the nuclear and chloroplast genomes of an agar producing red macroalga, Gracilaria changii (Rhodophyta, Gracilariales)". Genomics. 110 (2): 124–133. doi:10.1016/j.ygeno.2017.09.003. PMID 28890206. https://doi.org/10.1016%2Fj.ygeno.2017.09.003

  100. Qiu, H.; Price, D. C.; Weber, A. P. M.; Reeb, V.; Yang, E. C.; Lee, J. M.; Bhattacharya, D. (2013). "Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea". Current Biology. 23 (19): R865 – R866. Bibcode:2013CBio...23.R865Q. doi:10.1016/j.cub.2013.08.046. PMID 24112977. https://doi.org/10.1016%2Fj.cub.2013.08.046

  101. Zhou, W.; Hu, Y.; Sui, Z.; Fu, F.; Wang, J.; Chang, L.; Li, B. (2013). "Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta) Based on Next-Generation Sequencing". PLOS ONE. 8 (7): e69909. Bibcode:2013PLoSO...869909Z. doi:10.1371/journal.pone.0069909. PMC 3713064. PMID 23875008. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713064

  102. JunMo Lee, Eun Chan Yang, Louis Graf, Ji Hyun Yang, Huan Qiu, Udi Zelzion, Cheong Xin Chan, Timothy G Stephens, Andreas P M Weber, Ga Hun Boo, Sung Min Boo, Kyeong Mi Kim, Younhee Shin, Myunghee Jung, Seung Jae Lee, Hyung-Soon Yim, Jung-Hyun Lee, Debashish Bhattacharya, Hwan Su Yoon, "Analysis of the Draft Genome of the Red Seaweed Gracilariopsis chorda Provides Insights into Genome Size Evolution" in Rhodophyta, Molecular Biology and Evolution, Volume 35, Issue 8, August 2018, pp. 1869–1886, doi:10.1093/molbev/msy081 /wiki/Doi_(identifier)

  103. T.M. Gibson (2018). "Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis". Geology. 46 (2): 135–138. Bibcode:2018Geo....46..135G. doi:10.1130/G39829.1. https://pubs.geoscienceworld.org/gsa/geology/article/46/2/135/524864/Precise-age-of-Bangiomorpha-pubescens-dates-the

  104. Bengtson, S; Sallstedt, T; Belivanova, V; Whitehouse, M (2017). "Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae". PLOS Biol. 15 (3): e2000735. doi:10.1371/journal.pbio.2000735. PMC 5349422. PMID 28291791. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349422

  105. Grant, S. W. F.; Knoll, A. H.; Germs, G. J. B. (1991). "Probable Calcified Metaphytes in the Latest Proterozoic Nama Group, Namibia: Origin, Diagenesis, and Implications". Journal of Paleontology. 65 (1): 1–18. Bibcode:1991JPal...65....1G. doi:10.1017/S002233600002014X. JSTOR 1305691. PMID 11538648. S2CID 26792772. /wiki/Bibcode_(identifier)

  106. Yun, Z.; Xun-lal, Y. (1992). "New data on multicellular thallophytes and fragments of cellular tissues from Late Proterozoic phosphate rocks, South China". Lethaia. 25 (1): 1–18. Bibcode:1992Letha..25....1Y. doi:10.1111/j.1502-3931.1992.tb01788.x. /wiki/Bibcode_(identifier)

  107. Summarised in Cavalier-Smith, Thomas (April 2000). "Membrane heredity and early chloroplast evolution". Trends in Plant Science. 5 (4): 174–182. doi:10.1016/S1360-1385(00)01598-3. PMID 10740299. /wiki/Doi_(identifier)

  108. Wang, T., Jónsdóttir, R., Kristinsson, H. G., Hreggvidsson, G. O., Jónsson, J. Ó., Thorkelsson, G., & Ólafsdóttir, G. (2010). "Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata". LWT – Food Science and Technology, 43(9), 1387–1393. doi:10.1016/j.lwt.2010.05.010 /wiki/Doi_(identifier)

  109. MacArtain, P.; Gill, C. I. R.; Brooks, M.; Campbell, R.; Rowland, I. R. (2007). "Nutritional Value of Edible Seaweeds". Nutrition Reviews. 65 (12): 535–543. doi:10.1111/j.1753-4887.2007.tb00278.x. PMID 18236692. S2CID 494897. https://doi.org/10.1111%2Fj.1753-4887.2007.tb00278.x

  110. Becker, E.W. (March 2007). "Micro-algae as a source of protein". Biotechnology Advances. 25 (2): 207–210. doi:10.1016/j.biotechadv.2006.11.002. PMID 17196357. https://linkinghub.elsevier.com/retrieve/pii/S073497500600139X

  111. "Dulse: Palmaria palmata". Quality Sea Veg. Archived from the original on 2012-02-22. Retrieved 2007-06-28. https://web.archive.org/web/20120222192457/http://www.seaveg.co.uk/dulse.html

  112. T. F. Mumford & A. Muira (1988). "Porphyra as food: cultivation and economics". In C. A. Lembi & J. Waaland (eds.). Algae and Human Affairs. Cambridge University Press, Cambridge. ISBN 978-0-521-32115-0. 978-0-521-32115-0

  113. Gressler, V., Yokoya, N. S., Fujii, M. T., Colepicolo, P., Filho, J. M., Torres, R. P., & Pinto, E. (2010). "Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species". Food Chemistry, 120(2), 585–590. doi:10.1016/j.foodchem.2009.10.028 /wiki/Doi_(identifier)

  114. Wang, T., Jónsdóttir, R., Kristinsson, H. G., Hreggvidsson, G. O., Jónsson, J. Ó., Thorkelsson, G., & Ólafsdóttir, G. (2010). "Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata". LWT – Food Science and Technology, 43(9), 1387–1393. doi:10.1016/j.lwt.2010.05.010 /wiki/Doi_(identifier)

  115. Hoek, C. van den, Mann, D.G. and Jahns, H.M. (1995). Algae An Introduction to Phycology. Cambridge University Press, Cambridge. ISBN 0521304199 /wiki/ISBN_(identifier)

  116. Dhargalkar VK, Verlecar XN. "Southern Ocean Seaweeds: a resource for exploration in food and drugs". Aquaculture 2009; 287: 229–242.

  117. "On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr)". researchgate.net. December 2013. https://www.researchgate.net/publication/257577425

  118. Marone, Palma Ann; Yasmin, Taharat; Gupta, Ramesh C.; Bagchi, Manashi (July 2010). "Safety and toxicological evaluation of AlgaeCal ® (AC), a novel plant-based calcium supplement". Toxicology Mechanisms and Methods. 20 (6): 334–344. doi:10.3109/15376516.2010.490966. ISSN 1537-6516. PMID 20528255. http://www.tandfonline.com/doi/full/10.3109/15376516.2010.490966

  119. Manivannan, K., Thirumaran, G., Karthikai, D.G., Anantharaman. P., Balasubramanian, P. (2009). "Proximate Composition of Different Group of Seaweeds from Vedalai Coastal Waters (Gulf of Mannar): Southeast Coast of India". Middle-East J. Scientific Res., 4: 72–77.

  120. "Nori / Gim / Kim". www.clovegarden.com. Retrieved 2024-12-23. https://www.clovegarden.com/ingred/al_noriz.html

  121. Heaton, Thomas (2024-06-03). "Cattle Are A Major Source Of Greenhouse Gas Emissions. Hawaii Seaweed Could Change That". Honolulu Civil Beat. Retrieved 2024-06-04. https://www.civilbeat.org/2024/06/hawaii-seaweed-could-dramatically-improve-the-environmental-impact-of-cattle-farming/

  122. Heaton, Thomas (2024-06-03). "Cattle Are A Major Source Of Greenhouse Gas Emissions. Hawaii Seaweed Could Change That". Honolulu Civil Beat. Retrieved 2024-06-04. https://www.civilbeat.org/2024/06/hawaii-seaweed-could-dramatically-improve-the-environmental-impact-of-cattle-farming/