Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of radium
Radium nuclides with different mass numbers

Radium (88Ra) has no stable or nearly stable isotopes, and thus a standard atomic weight cannot be given. The longest lived, and most common, isotope of radium is 226Ra with a half-life of 1600 years. 226Ra occurs in the decay chain of 238U (often referred to as the radium series). Radium has 34 known isotopes from 201Ra to 234Ra.

In the early history of the study of radioactivity, the different natural isotopes of radium were given different names, as it was not until Frederick Soddy's scientific career in the early 1900s that the concept of isotopes was realized. In this scheme, 223Ra was named actinium X (AcX), 224Ra thorium X (ThX), 226Ra radium (Ra), and 228Ra mesothorium 1 (MsTh1). When it was realized that all of these are isotopes of the same element, many of these names fell out of use, and "radium" came to refer to all isotopes, not just 226Ra, though mesothorium 1 in particular was still used for some time, with a footnote explaining that it referred to 228Ra. Some of radium-226's decay products received historical names including "radium", ranging from radium A to radium G, with the letter indicating approximately how far they were down the chain from their parent 226Ra.

In 2013 it was discovered that the nucleus of radium-224 is pear-shaped. This was the first discovery of an asymmetrical nucleus.

We don't have any images related to Isotopes of radium yet.
We don't have any YouTube videos related to Isotopes of radium yet.
We don't have any PDF documents related to Isotopes of radium yet.
We don't have any Books related to Isotopes of radium yet.
We don't have any archived web articles related to Isotopes of radium yet.

List of isotopes

Nuclide8HistoricnameZNIsotopic mass (Da)91011Half-life12Decaymode1314Daughterisotope15Spin andparity161718Isotopicabundance
Excitation energy19
201Ra88113201.012815(22)20(30) msα197Rn(3/2−)
201mRa263(26) keV6(5) msα197Rn13/2+
202Ra88114202.009742(16)4.1(11) msα198Rn0+
203Ra88115203.009234(10)36(13) msα199Rn3/2−
203mRa246(14) keV25(5) msα199Rn13/2+
204Ra88116204.0065069(96)60(9) msα (99.7%)200Rn0+
205Ra88117205.006231(24)220(50) msα201Rn3/2−
205mRa263(25) keV180(50) msα201Rn13/2+
206Ra88118206.003828(19)0.24(2) sα202Rn0+
207Ra88119207.003772(63)1.38(18) sα (86%)203Rn5/2−#
β+ (14%)207Fr
207mRa560(60) keV57(8) msIT (85#%)207Ra13/2+
α (?%)203Rn
208Ra88120208.0018550(97)1.110(45) sα (87%)204Rn0+
β+ (13%)208Fr
208mRa2147.4(4) keV263(17) nsIT208Ra(8+)
209Ra88121209.0019949(62)4.71(8) sα (90%)205Rn5/2−
209mRa882.4(7) keV117(5) μsα (90%)205Rn13/2+
β+ (10%)209Fr
210Ra88122210.0004754(99)4.0(1) sα206Rn0+
210mRa2050.9(7) keV2.29(3) μsIT210Ra8+
211Ra88123211.0008930(53)12.6(12) sα207Rn5/2−
211mRa1198.1(8) keV9.5(3) μsIT211Ra13/2+
212Ra88124211.999787(11)13.0(2) sα (?%)208Rn0+
β+ (?%)212Fr
212m1Ra1958.4(20) keV9.3(9) μsIT212Ra8+
212m2Ra2613.3(20) keV0.85(13) μsIT212Ra11−
213Ra88125213.000371(11)2.73(5) minα (87%)209Rn1/2−
β+ (13%)213Fr
213mRa1768(4) keV2.20(5) msIT (99.4%)213Ra(17/2−)
α (0.6%)209Rn
214Ra88126214.0000996(56)2.437(16) sα (99.94%)210Rn0+
β+ (0.059%)214Fr
214m1Ra1819.7(18) keV118(7) nsIT214Ra6+
214m2Ra1865.2(18) keV67.3(15) μsIT (99.91%)214Ra8+
α (0.09%)210Rn
214m3Ra2683.2(18) keV295(7) nsIT214Ra11−
214m4Ra3478.4(18) keV279(4) nsIT214Ra14+
214m5Ra4146.8(18) keV225(4) nsIT214Ra17−
214m6Ra6577.0(18) keV128(4) nsIT214Ra(25−)
215Ra88127215.0027182(77)1.669(9) msα211Rn9/2+#
215m1Ra1877.8(3) keV7.31(13) μsIT215Ra(25/2+)
215m2Ra2246.9(4) keV1.39(7) μsIT215Ra(29/2−)
215m3Ra3807(50)# keV555(10) nsIT215Ra(43/2−)
216Ra88128216.0035335(86)172(7) nsα212Rn0+
EC (<1×10−8%)216Fr
217Ra88129217.0063227(76)1.95(12) μsα213Rn(9/2+)
218Ra88130218.007134(11)25.91(14) μsα214Rn0+
219Ra88131219.0100847(73)9(2) msα215Rn(7/2)+
219mRa16.7(8) keV10(3) nsα215Rn(11/2)+
220Ra88132220.0110275(82)18.1(12) msα216Rn0+
221Ra88133221.0139173(05)25(4) sα217Rn5/2+Trace20
CD (1.2×10−10%)21207Pb14C
222Ra88134222.0153734(48)33.6(4) sα218Rn0+
CD (3.0×10−8%)208Pb14C
223Ra22Actinium X88135223.0185006(22)11.4352(10) dα219Rn3/2+Trace23
CD (8.9×10−8%)209Pb14C
224RaThorium X88136224.0202104(19)3.6316(14) dα220Rn0+Trace24
CD (4.0×10−9%)210Pb14C
225Ra88137225.0236105(28)14.82(19) dβ−225Ac1/2+Trace25
α (2.6×10−3%)26221Rn
226RaRadium2788138226.0254082(21)1600(7) yα28222Rn0+Trace29
CD (2.6×10−9%)212Pb14C
227Ra88139227.0291762(21)42.2(5) minβ−227Ac3/2+
228RaMesothorium 188140228.0310686(21)5.75(3) yβ−228Ac0+Trace30
229Ra88141229.034957(17)4.0(2) minβ−229Ac5/2+
230Ra88142230.037055(11)93(2) minβ−230Ac0+
231Ra88143231.041027(12)104(1) sβ−231Ac(5/2+)
231mRa66.21(9) keV~53 μsIT231Ra(1/2+)
232Ra88144232.0434753(98)4.0(3) minβ−232Ac0+
233Ra88145233.0475946(92)30(5) sβ−233Ac1/2+#
234Ra88146234.0503821(90)30(10) sβ−234Ac0+
This table header & footer:
  • view

Actinides vs fission products

Actinides and fission products by half-life
  • v
  • t
  • e
Actinides31 by decay chainHalf-life range (a)Fission products of 235U by yield32
4n4n + 14n + 24n + 34.5–7%0.04–1.25%<0.001%
228Ra№4–6 a155Euþ
248Bk33> 9 a
244Cmƒ241Puƒ250Cf227Ac№10–29 a90Sr85Kr113mCdþ
232238Puƒ243Cmƒ29–97 a137Cs151Smþ121mSn
249Cfƒ242mAmƒ141–351 a

No fission products have a half-lifein the range of 100 a–210 ka ...

241Amƒ251Cfƒ34430–900 a
226Ra№247Bk1.3–1.6 ka
240Pu229Th246Cmƒ243Amƒ4.7–7.4 ka
245Cmƒ250Cm8.3–8.5 ka
239Puƒ24.1 ka
230Th№231Pa№32–76 ka
236Npƒ233234U№150–250 ka99Tc₡126Sn
248Cm242Pu327–375 ka79Se₡
1.33 Ma135Cs₡
237Npƒ1.61–6.5 Ma93Zr107Pd
236U247Cmƒ15–24 Ma129I₡
244Pu80 Ma

... nor beyond 15.7 Ma35

232Th№238U№235Uƒ№0.7–14.1 Ga

Notes

References

  1. Nagel, Miriam C. (September 1982). "Frederick Soddy: From alchemy to isotopes". Journal of Chemical Education. 59 (9): 739. Bibcode:1982JChEd..59..739N. doi:10.1021/ed059p739. ISSN 0021-9584. https://pubs.acs.org/doi/abs/10.1021/ed059p739

  2. Kirby, H.W. & Salutsky, Murrell L. (December 1964). The Radiochemistry of Radium (Report). crediting UNT Libraries Government Documents Department. p. 3 – via University of North Texas, UNT Digital Library. Alternate source: https://sgp.fas.org/othergov/doe/lanl/lib-www/books/rc000041.pdf https://digital.library.unt.edu/ark:/67531/metadc1027502/

  3. Giunta, Carmen J. (2017). "ISOTOPES: IDENTIFYING THE BREAKTHROUGH PUBLICATION (1)" (PDF). Bull. Hist. Chem. 42 (2): 103–111. https://acshist.scs.illinois.edu/awards/OPA%20Papers/2017-Giunta.pdf

  4. Looney, William B. (1958). "Effects of Radium in Man". Science. 127 (3299): 630–633. Bibcode:1958Sci...127..630L. doi:10.1126/science.127.3299.630. ISSN 0036-8075. JSTOR 1755774. PMID 13529029. https://www.jstor.org/stable/1755774

  5. Mitchell, S. A. "Is Radium in the Sun?". Popular Astronomy. 21: 321–331. Bibcode:1913PA.....21..321M. https://adsabs.harvard.edu/full/1913PA.....21..321M

  6. Radium emanation = 222Rn, Ra A = 218Po, Ra B = 214Pb, Ra C = 214Bi, Ra C1 = 214Po, Ra C2 = 210Tl, Ra D = 210Pb, Ra E = 210Bi, Ra F = 210Po, and Ra G = 206Pb.[8][9]

  7. Hills, Stephanie (8 May 2013). "First observations of short-lived pear-shaped atomic nuclei". CERN. https://home.cern/about/updates/2013/05/first-observations-short-lived-pear-shaped-atomic-nuclei

  8. mRa – Excited nuclear isomer. /wiki/Nuclear_isomer

  9. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  10. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  11. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  14. Modes of decay: EC:Electron captureCD:Cluster decayIT:Isomeric transition /wiki/Electron_capture

  15. Bold symbol as daughter – Daughter product is stable.

  16. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  17. ( ) spin value – Indicates spin with weak assignment arguments.

  18. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  19. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  20. Intermediate decay product of 237Np /wiki/Neptunium-237

  21. Lightest known nuclide to undergo cluster decay /wiki/Cluster_decay

  22. Used for treating bone cancer /wiki/Radium-223#Medical_use

  23. Intermediate decay product of 235U /wiki/Decay_product

  24. Intermediate decay product of 232Th /wiki/Thorium-232

  25. Intermediate decay product of 237Np /wiki/Neptunium-237

  26. Liang, C. F.; Paris, P.; Sheline, R. K. (2000-09-19). "α decay of 225Ra". Physical Review C. 62 (4). American Physical Society (APS): 047303. Bibcode:2000PhRvC..62d7303L. doi:10.1103/physrevc.62.047303. ISSN 0556-2813. /wiki/Bibcode_(identifier)

  27. Source of element's name

  28. Theoretically capable of β−β− decay to 226Th

  29. Intermediate decay product of 238U /wiki/Uranium-238

  30. Intermediate decay product of 232Th /wiki/Thorium-232

  31. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here. /wiki/Polonium

  32. Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor. /wiki/Thermal_neutron

  33. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4."The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 [years]. No growth of Cf248 was detected, and a lower limit for the β− half-life can be set at about 104 [years]. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 [years]." /wiki/Bibcode_(identifier)

  34. This is the heaviest nuclide with a half-life of at least four years before the "sea of instability". /wiki/Sea_of_instability

  35. Excluding those "classically stable" nuclides with half-lives significantly in excess of 232Th; e.g., while 113mCd has a half-life of only fourteen years, that of 113Cd is eight quadrillion years. /wiki/Primordial_nuclide