Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Charlier polynomials

In mathematics, Charlier polynomials (also called Poisson–Charlier polynomials) are a family of orthogonal polynomials introduced by Carl Charlier. They are given in terms of the generalized hypergeometric function by

C n ( x ; μ ) = 2 F 0 ( − n , − x ; − ; − 1 / μ ) = ( − 1 ) n n ! L n ( − 1 − x ) ( − 1 μ ) , {\displaystyle C_{n}(x;\mu )={}_{2}F_{0}(-n,-x;-;-1/\mu )=(-1)^{n}n!L_{n}^{(-1-x)}\left(-{\frac {1}{\mu }}\right),}

where L {\displaystyle L} are generalized Laguerre polynomials. They satisfy the orthogonality relation

∑ x = 0 ∞ μ x x ! C n ( x ; μ ) C m ( x ; μ ) = μ − n e μ n ! δ n m , μ > 0. {\displaystyle \sum _{x=0}^{\infty }{\frac {\mu ^{x}}{x!}}C_{n}(x;\mu )C_{m}(x;\mu )=\mu ^{-n}e^{\mu }n!\delta _{nm},\quad \mu >0.}

They form a Sheffer sequence related to the Poisson process, similar to how Hermite polynomials relate to the Brownian motion.

We don't have any images related to Charlier polynomials yet.
We don't have any YouTube videos related to Charlier polynomials yet.
We don't have any PDF documents related to Charlier polynomials yet.
We don't have any Books related to Charlier polynomials yet.
We don't have any archived web articles related to Charlier polynomials yet.

See also

  • C. V. L. Charlier (1905–1906) Über die Darstellung willkürlicher Funktionen, Ark. Mat. Astr. och Fysic 2, 20.
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Szegő, Gabor (1939), Orthogonal Polynomials, Colloquium Publications – American Mathematical Society, ISBN 978-0-8218-1023-1, MR 0372517 {{citation}}: ISBN / Date incompatibility (help)