Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Parkinson's disease
Long-term degenerative neurological disorder

Parkinson's disease (PD) is a neurodegenerative disease of the central nervous system that affects both motor and non-motor functions. Motor symptoms, collectively called parkinsonism, include tremors, bradykinesia, rigidity, and postural instability. The disease involves degeneration of nerve cells in the substantia nigra, reducing dopamine to the basal ganglia. Diagnosis relies on signs and symptoms and neurological examination, sometimes supported by medical imaging. While no cure exists, treatments like levodopa and deep brain stimulation help manage symptoms, though challenges remain for non-motor issues such as sleep and mood disturbances.

We don't have any images related to Parkinson's disease yet.
We don't have any YouTube videos related to Parkinson's disease yet.
We don't have any PDF documents related to Parkinson's disease yet.
We don't have any Books related to Parkinson's disease yet.

Classification and terminology

See also: Parkinsonism and Parkinson-plus syndrome

Parkinson's disease (PD) is a neurodegenerative disease affecting both the central and peripheral nervous systems, characterized by the loss of dopamine-producing neurons in the substantia nigra region of the brain.1 It is classified as a synucleinopathy due to the abnormal accumulation of the protein alpha-synuclein, which aggregates into Lewy bodies within affected neurons.2

The loss of dopamine-producing neurons in the substantia nigra causes movement abnormalities, leading to Parkinson's further categorization as a movement disorder.3 In 30% of cases, disease progression leads to the cognitive decline, resulting in Parkinson's disease dementia (PDD).4 Alongside dementia with Lewy bodies, PDD is one of the two subtypes of Lewy body dementia.5

The four cardinal motor symptoms of Parkinson's—bradykinesia (slowed movements), postural instability, rigidity, and tremor—are called parkinsonism.67 These four symptoms are not exclusive to Parkinson's and can occur in many other conditions,8 including HIV infection and recreational drug use.910 Neurodegenerative diseases that feature parkinsonism but have distinct differences are grouped under the umbrella of Parkinson-plus syndromes or, alternatively, atypical parkinsonian disorders.1112 Parkinson's disease can be attributed to genetic factors, but most cases are sporadic, with no clearly identifiable cause.13

Signs and symptoms

Main article: Signs and symptoms of Parkinson's disease

Motor

See also: Parkinsonism

A wide spectrum of motor and non-motor symptoms appear in Parkinson's; the cardinal features are tremor, bradykinesia, rigidity, and postural instability, collectively termed parkinsonism.14 Appearing in 70–75 percent of those with PD,1516 tremor is often the predominant motor symptom.17 Resting tremor is the most common, but kinetic tremors—occurring during voluntary movements—and postural tremor—preventing upright, stable posture—also occur.18 Tremor largely affects the hands and feet:19 a classic parkinsonian tremor is "pill-rolling", a resting tremor in which the thumb and index finger make contact in a circular motion at 4–6 Hz frequency.2021

Bradykinesia describes difficulties in motor planning, beginning, and executing, resulting in overall slowed movement with reduced amplitude that affects sequential and simultaneous tasks.22 Bradykinesia can also lead to hypomimia, reduced facial expressions.23 Rigidity, also called rigor, refers to a feeling of stiffness and resistance to passive stretching of muscles.24 Postural instability typically appears in later stages, leading to impaired balance and falls.25 Postural instability also leads to a forward stooping posture.26

Beyond the cardinal four, other motor deficits, termed secondary motor symptoms, commonly occur.27 Notably, gait disturbances result in the Parkinsonian gait, which includes shuffling and paroxysmal deficits, where a normal gait is interrupted by rapid footsteps—known as festination—or sudden stops, impairing balance and causing falls.2829 Most people with PD experience speech problems, including stuttering, hypophonic, "soft" speech, slurring, and festinating speech (rapid and poorly intelligible).30 Handwriting is commonly altered in Parkinson's, decreasing in size—known as micrographia—and becoming jagged and sharply fluctuating.31 Grip and dexterity are also impaired.32

Neuropsychiatric and cognitive

Table featuring the prevalence of neuropsychiatric symptoms in PDNeuropsychiatric symptom prevalence in Parkinson's disease33
Symptom
Prevalence (%)
Anxiety40–50
Apathy40
Depression20–40
Impulse control disorders36–60
Psychosis15–30

Neuropsychiatric symptoms like anxiety, apathy, depression, hallucination, and impulse control disorders occur in up to 60% of those with Parkinson's. They often precede motor symptoms and vary with disease progression.34 Non-motor fluctuations, including dysphoria, fatigue, and slowness of thought, are also common.35 Some neuropsychiatric symptoms are not directly caused by neurodegeneration but rather by its pharmacological management.36

Cognitive impairments rank among the most prevalent and debilitating non-motor symptoms.37 These deficits may emerge in the early stages or before diagnosis,3839 and their prevalence and severity tend to increase with disease progression. Ranging from mild cognitive impairment to severe Parkinson's disease dementia, these impairments include executive dysfunction, slowed cognitive processing speed, and disruptions in time perception and estimation.40

Autonomic

Autonomic nervous system failures, known as dysautonomia, can appear at any stage of Parkinson's.4142 They are among the most debilitating symptoms and greatly reduce quality of life.43 Although almost all individuals with PD have cardiovascular autonomic dysfunction, only some are symptomatic.44 Chiefly, orthostatic hypotension—a sustained blood pressure drop of at least 20 mmHg systolic or 10 mmHg diastolic after standing—occurs in 30–50 percent of cases. This can result in lightheadedness or fainting: subsequent falls are associated with higher morbidity and mortality.4546

Other autonomic failures include gastrointestinal issues like chronic constipation, impaired stomach emptying and subsequent nausea, excessive salivation, and dysphagia (difficulty swallowing): all greatly reduce quality of life.47 Dysphagia, for instance, can prevent pill swallowing and lead to aspiration pneumonia.48 Urinary incontinence, sexual dysfunction, and thermoregulatory dysfunction—including heat and cold intolerance and excessive sweating—also frequently occur.49

Other

Sensory deficits appear in up to 90 percent of people with PD and are usually present at early stages.50 Nociceptive and neuropathic pain are common,51 with peripheral neuropathy affecting up to 55 percent of individuals.52 Visual impairments are also frequently observed, including deficits in visual acuity, color vision, eye coordination, and visual hallucinations.53 An impaired sense of smell is also prevalent.54 Individuals often struggle with spatial awareness, recognizing faces and emotions, and may experience challenges with reading and double vision.55

Sleep disorders are highly prevalent in PD, affecting up to 98%.56 These disorders include insomnia, excessive daytime sleepiness, restless legs syndrome, REM sleep behavior disorder (RBD), and sleep-disordered breathing, many of which can be worsened by medication. RBD may begin years before the initial motor symptoms. Individual presentation of symptoms varies, although most people affected by PD show an altered circadian rhythm at some point of disease progression.5758

PD is also associated with a variety of skin disorders that include melanoma, seborrheic dermatitis, bullous pemphigoid, and rosacea.59 Seborrheic dermatitis is recognized as a premotor feature that indicates dysautonomia and demonstrates that PD can be detected not only by changes of nervous tissue, but tissue abnormalities outside the nervous system as well.60

Causes

Main article: Causes of Parkinson's disease

As of 2024, the cause of neurodegeneration in Parkinson's is unclear,61 though it is believed to result from the interplay of genetic and environmental factors.62 The majority of cases are sporadic with no clearly identifiable cause, while approximately 5–10 percent are familial.63 Around a third of familial cases can be attributed to a single monogenic cause.64

Molecularly, abnormal aggregation of alpha-synuclein is considered a key contributor to PD pathogenesis,65 although the trigger for this aggregation is debated.66 Proteostasis disruption and the dysfunction of cell organelles, including endosomes, lysosomes, and mitochondria, are implicated in pathogenesis.67 Additionally, maladaptive immune and inflammatory responses are potential contributors.68 The substantial heterogeneity in PD presentation and progression suggests the involvement of multiple interacting triggers and pathogenic pathways.69

Genetic

Parkinson's can be narrowly defined as a genetic disease, as rare inherited gene variants have been firmly linked to monogenic PD, and the majority of sporadic cases carry variants that increase PD risk.707172 PD heritability is estimated to range from 22 to 40 percent.73 Around 15 percent of diagnosed individuals have a family history, of which 5–10 percent can be attributed to a causative risk gene mutation. Carrying one of these mutations may not lead to disease. Rates of familial PD vary by ethnicity: monogenic PD occurs in up to 40% of Arab-Berber and 20% of Ashkenazi Jewish people with PD.74

As of 2024, around 90 genetic risk variants across 78 genomic loci have been identified.75 Notable risk variants include SNCA (which encodes alpha-synuclein), LRRK2, and VPS35 for autosomal dominant inheritance, and PRKN, PINK1, and DJ1 for autosomal recessive inheritance.7677 LRRK2 is the most common autosomal dominant variant, responsible for 1–2 percent of all PD cases and 40 percent of familial cases.7879 Parkin variants are associated with nearly half of recessive, early-onset monogenic PD.80 Mutations in the GBA1 gene, linked to Gaucher's disease, can cause monogenic PD,81 and are associated with cognitive decline.82

Environmental

See also: Environmental health and Exposome

The limited heritability of Parkinson's strongly suggests environmental factors are involved, though identifying these risk factors and establishing causality is challenging due to PD's decade-long prodromal period.83

Environmental toxicants such as air pollution, pesticides, and industrial solvents like trichloroethylene are strongly linked to Parkinson's.84 Certain pesticides—like paraquat, glyphosate, and rotenone—are the most established environmental toxicants for Parkinson's and are likely causal.858687 PD prevalence is strongly associated with local pesticide use, and many pesticides are mitochondrial toxins.88 Paraquat, for instance, structurally resembles metabolized MPTP,89 which selectively kills dopaminergic neurons by inhibiting mitochondrial complex 1 and is widely used to model PD.9091 Pesticide exposure after diagnosis may also accelerate disease progression.92 Without pesticide exposure, an estimated 20 percent of all PD cases would be prevented.93

Hypotheses

Prionic

The hallmark of Parkinson's is the formation of protein aggregates, beginning with alpha-synuclein fibrils and followed by Lewy bodies and Lewy neurites.94 The prion hypothesis suggests that alpha-synuclein aggregates are pathogenic and can spread to neighboring, healthy neurons and seed new aggregates. Some propose that the heterogeneity of PD may stem from different "strains" of alpha-synuclein aggregates and varying anatomical sites of origin.9596 Alpha-synuclein propagation has been demonstrated in cell and animal models and is the most popular explanation for the progressive spread through specific neuronal systems.97 However, therapeutic efforts to clear alpha-synuclein have failed.98 Additionally, postmortem brain tissue analysis shows that alpha-synuclein pathology does not clearly progress through the nearest neural connections.99

Braak's

Main article: Parkinson's disease and gut-brain axis § Braak's hypothesis

In 2002, Heiko Braak and colleagues proposed that Parkinson's disease begins outside the brain and is triggered by a "neuroinvasion" of some unknown pathogen.100101 The pathogen enters through the nasal cavity and is swallowed into the digestive tract, initiating Lewy pathology in both areas.102103 This alpha-synuclein pathology may then travel from the gut to the central nervous system through the vagus nerve.104 This theory could explain the presence of Lewy pathology in both the enteric nervous system and olfactory tract neurons, as well as clinical symptoms like loss of smell and gastrointestinal problems.105 It has also been suggested that environmental toxicants might be ingested in a similar manner to trigger PD.106

Risk factors

As 90 percent of Parkinson's cases are sporadic, the identification of the risk factors that may influence disease progression or severity is critical.107108 The most significant risk factor in developing PD is age, with a prevalence of 1 percent in those aged over 65 and approximately 4.3 percent in age over 85.109 Traumatic brain injury significantly increases PD risk, especially if recent.110111 Dairy consumption correlates with a higher risk, possibly due to contaminants like heptachlor epoxide.112 Although the connection is unclear, melanoma diagnosis is associated with an approximately 45 percent risk increase.113 There is also an association between methamphetamine use and PD risk.114

Protective factors

Although no compounds or activities have been mechanistically established as neuroprotective for Parkinson's,115116 several factors have been found to be associated with a decreased risk.117 Tobacco use and smoking is strongly associated with a decreased risk, reducing the chance of developing PD by up to 70%.118119120 Various tobacco and smoke components have been hypothesized to be neuroprotective, including nicotine, carbon monoxide, and monoamine oxidase B inhibitors.121122 Consumption of caffeine as an ingredient of coffee or tea is also strongly associated with neuroprotection.123 Prescribed adrenergic antagonists like terazosin may reduce risk.124

Although findings have varied, usage of nonsteroidal anti-inflammatory drugs (NSAIDs) like ibuprofen may be neuroprotective.125126 Calcium channel blockers may also have a protective effect, with a 22% risk reduction reported.127 Higher blood concentrations of urate—a potent antioxidant—have been proposed to be neuroprotective.128129 Although longitudinal studies observe a slight decrease in PD risk among those who consume alcohol—possibly due to alcohol's urate-increasing effect—alcohol abuse may increase risk.130

Pathophysiology

Main article: Pathophysiology of Parkinson's disease

Parkinson's disease has two hallmark pathophysiological processes: the abnormal aggregation of alpha-synuclein that leads to Lewy pathology, and the degeneration of dopaminergic neurons in the substantia nigra pars compacta.131132 The death of these neurons reduces available dopamine in the striatum, which in turn affects circuits controlling movement in the basal ganglia.133 By the time motor symptoms appear, 50–80 percent of all dopaminergic neurons in the substantia nigra have degenerated.134

However, cell death and Lewy pathology are not limited to the substantia nigra.135 The six-stage Braak system holds that alpha-synuclein pathology begins in the olfactory bulb or outside the central nervous system in the enteric nervous system before ascending the brain stem.136 In the third Braak stage, Lewy body pathology appears in the substantia nigra,137 and, by the sixth step, Lewy pathology has spread to the limbic and neocortical regions.138 Although Braak staging offers a strong basis for PD progression, around 50 percent of individuals do not adhere to the predicted model.139 Lewy pathology is highly variable and may be entirely absent in some persons with PD.140141

Alpha-synuclein pathology

Further information: Protein aggregation and Lewy body

Alpha-synuclein is an intracellular protein typically localized to presynaptic terminals and involved in synaptic vesicle trafficking, intracellular transport, and neurotransmitter release.142143 When misfolded, it can aggregate into oligomers and proto-fibrils that in turn lead to Lewy body formation.144145146 Due to their lower molecular weight, oligomers and proto-fibrils may disseminate and be transmitted to other cells more rapidly.147

Lewy bodies consist of a fibrillar exterior and granular core. Although alpha-synuclein is the dominant proteinaceous component, the core contains mitochondrial and autophagosomal membrane components, suggesting a link with organelle dysfunction.148149 It is unclear whether Lewy bodies themselves contribute to or are simply the result of PD pathogenesis: alpha-synuclein oligomers can independently mediate cell damage, and neurodegeneration can precede Lewy body formation.150

Pathways involved in neurodegeneration

See also: Neurodegeneration § Mechanisms

Three major pathways—vesicular trafficking, lysosomal degradation, and mitochondrial maintenance—are known to be affected by and contribute to Parkinson's pathogenesis, with all three linked to alpha-synuclein.151 High risk gene variants also impair all three of these processes.152 All steps of vesicular trafficking are impaired by alpha-synuclein. It blocks endoplasmic reticulum (ER) vesicles from reaching the Golgi—leading to ER stress—and Golgi vesicles from reaching the lysosome, preventing alpha-synuclein degradation and leading to its build-up.153 Risky gene variants, chiefly GBA, further compromise lysosomal function.154 Although the mechanism is not well established, alpha-synuclein can impair mitochondrial function and cause subsequent oxidative stress. Mitochondrial dysfunction can in turn lead to further alpha-synuclein accumulation in a positive feedback loop.155 Microglial activation, possibly caused by alpha-synuclein, is also strongly indicated.156157

Mitochondrial dysfunction

See also: Mitochondrial disease

Mitochondrial dysfunction is well-established in Parkinson's.158 Increased oxidative stress and reduced calcium buffering may contribute to neurodegeneration.159 The finding that MPP+—a respiratory complex I inhibitor and MPTP metabolite—caused parkinsonian symptoms strongly implied that mitochondria contributed to PD pathogenesis.160 Additionally, faulty gene variants involved in familial Parkinson's—including PINK1 and Parkin—prevent the elimination of dysfunctional mitochondria through mitophagy.161

Neuroinflammation

Some hypothesize that neurodegeneration arises from a chronic neuroinflammatory state created by local activated microglia and infiltrating immune cells.162 Mitochondrial dysfunction may also drive immune activation, particularly in monogenic PD.163 Some autoimmune disorders increase the risk of developing PD, supporting an autoimmune contribution.164 Additionally, influenza and herpes simplex virus infections increase the risk of PD, possibly due to a viral protein resembling alpha-synuclein.165 Parkinson's risk is also decreased with immunosuppressants.166

Diagnosis

Diagnosis of Parkinson's disease is largely clinical, relying on medical history and examination of symptoms, with an emphasis on symptoms that appear in later stages.167168 Although early stage diagnosis is not reliable,169170 prodromal diagnosis may consider previous family history of Parkinson's and possible early symptoms like rapid eye movement sleep behavior disorder (RBD), reduced sense of smell, and gastrointestinal issues.171 Isolated RBD is a particularly significant sign as 90% of those affected will develop some form of neurodegenerative parkinsonism.172 Diagnosis in later stages requires the manifestation of parkinsonism, specifically bradykinesia and rigidity or tremor. Further support includes other motor and non-motor symptoms and genetic profiling.173

A PD diagnosis is typically confirmed by two of the following criteria: responsiveness to levodopa, resting tremor, levodopa-induced dyskinesia, or with dopamine transporter single-proton emission computed tomography.174 If these criteria are not met, atypical parkinsonism is considered.175 Definitive diagnoses can only be made post-mortem through pathological analysis.176 Misdiagnosis is common, with a reported error rate of near 25 percent, and diagnoses often change during follow-ups.177178 Diagnosis can be further complicated by multiple overlapping conditions.179

Imaging

Diagnosis can be aided by molecular imaging techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT).180 As both conventional MRI and computed tomography (CT) scans are usually normal in early PD, they can be used to exclude other pathologies that cause parkinsonism.181182 Diffusion MRI can differentiate PD from multiple systems atrophy (MSA).183 Emerging MRI techniques of at least 3.0 T field strength—including neuromelanin-MRI, 1H-MRSI, and resting state fMRI—may detect abnormalities in the substantia nigra, nigrostriatal pathway, and elsewhere.184

Unlike MRI, PET and SPECT use radioisotopes for imaging.185 Both techniques can aid diagnosis by characterizing PD-associated alterations in the metabolism and transport of dopamine in the basal ganglia.186187 Largely used outside the United States, iodine-123-meta-iodobenzylguanidine myocardial scintigraphy can assess heart muscle denervation to support a PD diagnosis.188

Differential diagnosis

See also: Parkinson-plus syndrome

Differential diagnosis of Parkinson's is among the most difficult in neurology.189 Differentiating early PD from atypical parkinsonian disorders is a major difficulty. In their initial stages, PD can be difficult to distinguish from the atypical neurodegenerative parkinsonisms, including MSA, dementia with Lewy bodies, and the tauopathies progressive supranuclear palsy and corticobasal degeneration.190191 Other conditions that may present similarly to PD include vascular parkinsonism, Alzheimer's disease, and frontotemporal dementia.192193

The International Parkinson and Movement Disorder Society has proposed a set of criteria that, unlike the standard Queen's Square Brain Bank Criteria, includes non-exclusionary "red-flag" clinical features that may not suggest Parkinson's.194 A large number of "red flags" have been proposed and adopted for various conditions that might mimic the symptoms of PD.195 Diagnostic tests, including gene sequencing, molecular imaging techniques, and assessment of smell may also distinguish PD.196 MRI is particularly powerful due to several unique features for atypical parkinsonisms.197

DisorderDistinguishing symptoms and features198199200
Corticobasal syndromeLevodopa resistance, myoclonus, dystonia, corticosensory loss, alien limb phenomenon, apraxia, and non-fluent aphasia
Dementia with Lewy bodiesLevodopa resistance, cognitive predominance before motor symptoms, and fluctuating cognitive symptoms
Essential tremorTremor that worsens with action, normal SPECT scan
Multiple system atrophyLevodopa resistance, rapidly progressive, autonomic failure, stridor, present Babinski sign, cerebellar ataxia, and specific MRI findings like the "Hot Cross Bun"
Progressive supranuclear palsyLevodopa resistance, restrictive vertical gaze, pseudobulbar crying, eyelid twitching, specific MRI findings, and early and different postural difficulties

Management

Main article: Management of Parkinson's disease

As of 2024, no disease-modifying therapies exist that reverse or slow neurodegeneration.201202 Management typically combines lifestyle modifications with physical therapy.203 Current pharmacological interventions purely target symptoms, by either increasing endogenous dopamine levels or directly mimicking dopamine's effect on the patient's brain.204205 These include dopamine agonists, MAO-B inhibitors, and levodopa: the most widely used and effective drug.206207 The optimal time to initiate pharmacological treatment is debated,208 but initial dopamine agonist and MAO-B inhibitor treatment and later levodopa therapy is common.209 Invasive procedures such as deep brain stimulation may be used when medication is ineffective.210211

Medications

Levodopa

Levodopa is the most widely used and the most effective therapy—the gold standard—for Parkinson's treatment.212 The compound occurs naturally and is the immediate precursor for dopamine synthesis in the dopaminergic neurons of the substantia nigra.213 Levodopa administration reduces the dopamine deficienciency in parkinsonism.214215

Despite its efficacy, levodopa poses several challenges and its administration been called the "pharmacologist's nightmare".216217 Its metabolism outside the brain by aromatic L-amino acid decarboxylase (AAAD) and catechol-O-methyltransferase (COMT) can cause nausea and vomiting; inhibitors like carbidopa, entacapone, and benserazide are usually taken with levodopa to mitigate these effects.218219220 Long-term levodopa use may also induce dyskinesia and motor fluctuations. Although this often causes levodopa use to be delayed to later stages, earlier administration leads to improved motor function and quality of life.221

Dopamine agonists

Dopamine agonists are an alternative or complement for levodopa therapy. They activate dopamine receptors in the striatum, with reduced risk of motor fluctuations and dyskinesia, and are efficacious in both early and late stage Parkinson's,222 The agonist apomorphine is often used for drug-resistant OFF time in later-stage PD.223224 After five years of use, impulse control disorders may occur in over 40 percent of those taking dopamine agonists.225 A problematic, narcotic-like withdrawal effect may occur when agonist use is reduced or stopped.226227 Compared to levodopa, dopamine agonists are more likely to cause fatigue, daytime sleepiness, and hallucinations.228

MAO-B inhibitors

MAO-B inhibitors—such as safinamide, selegiline and rasagiline—increase the amount of dopamine in the basal ganglia by inhibiting the activity of monoamine oxidase B, an enzyme that breaks down dopamine.229 These compounds mildly alleviate motor symptoms when used as monotherapy but can also be used with levodopa and can be used at any disease stage.230 Common side effects are nausea, dizziness, insomnia, sleepiness, and orthostatic hypotension.231 MAO-Bs are known to increase serotonin and cause a potentially dangerous condition known as serotonin syndrome.232

Other drugs

Treatments for non-motor symptoms of PD have not been well studied and many medications are used off-label.233 A diverse range of symptoms beyond those related to motor function can be treated pharmaceutically.234 Examples include cholinesterase inhibitors for cognitive impairment and modafinil for excessive daytime sleepiness.235 Fludrocortisone, midodrine and droxidopa are commonly used off label for orthostatic hypotension related to autonomic dysfunction. Sublingual atropine or botulinum toxin injections may be used off-label for drooling. SSRIs and SNRIs are often used for depression related to PD, but there is a risk of serotonin syndrome with the SSRI or SNRI antidepressants.236 Doxepin and rasagline may reduce physical fatigue in PD.237

Invasive interventions

Surgery for Parkinson's first appeared in the 19th century and by the 1960s had evolved into ablative brain surgery that lesioned the basal ganglia, thalamus or globus pallidus (a pallidotomy).238 The discovery of levadopa for PD treatment caused ablative therapies to largely disappear.239240 Ablative surgeries experienced a resurgence in the 1990s but were quickly superseded by newly-developed deep brain stimulation (DBS).241 Although gamma knife and high-intensity focused ultrasound surgeries have been developed for pallidotomies and thalamotomies, their use is rare as of 2025.242243

Deep brain stimulation (DBS) involves the implantation of electrodes called neurostimulators, which sends electrical impulses to specific parts of the brain.244 DBS for the subthalamic nucleus and globus pallidus interna has high efficacy for up to 2 years, but longterm efficacy is unclear and likely decreases with time.245 DBS typically targets rigidity and tremor,246 and is recommended for PD patients who are intolerant or do not respond to medication.247 Cognitive impairment is the most common exclusion criteria.248

Rehabilitation

Further information: Management of Parkinson's disease § Rehabilitation

Although pharmacological therapies can improve symptoms, autonomy and ability to perform everyday tasks is still reduced by PD. Rehabilitation is often useful, but the scientific support for any single rehabilitation treatment is limited.249

Exercise programs are often recommended, with preliminary evidence of efficacy.250251252 Regular physical exercise with or without physical therapy can be beneficial to maintain and improve mobility, flexibility, strength, gait speed, and quality of life.253 Aerobic, mind-body, and resistance training may be beneficial in alleviating PD-associated depression and anxiety.254255 Strength training may increase manual dexterity and strength, facilitating daily tasks that require grasping objects.256 Aerobic exercise, resistance training, balance and task-specific training have been found to improve strength, VO2 Max and balance. While flexibility training is commonly used, but it has a lower strength of recommendation compared to aerobic and resistance training.257

In improving flexibility and range of motion for people experiencing rigidity, generalized relaxation techniques such as gentle rocking have been found to decrease excessive muscle tension. Other effective techniques to promote relaxation include slow rotational movements of the extremities and trunk, rhythmic initiation, diaphragmatic breathing, and meditation.258 Deep diaphragmatic breathing may also improve chest-wall mobility and vital capacity decreased by the stooped posture and respiratory dysfunctions of advanced Parkinson's.259 Rehabilitation techniques targeting gait and the challenges posed by bradykinesia, shuffling, and decreased arm swing include pole walking, treadmill walking, and marching exercises.260 Long-term physiotherapy (greater than six months) reduces the need for antiparkinsonian medication; multidisciplinary rehabilitation programs combined with physiotherapy can result in reduction in the levodopa-equivalent dose.261

Speech therapies such as the Lee Silverman voice treatment may reduce the effect of speech disorders associated with PD.262 Occupational therapy is a rehabilitation strategy that can improve quality of life by enabling people with PD to find engaging activities and communal roles, adapt to their living environment, and improve domestic and work abilities.263

Diet

Parkinson's poses digestive problems like constipation and prolonged emptying of stomach contents, and a balanced diet with periodical nutritional assessments is recommended to avoid weight loss or gain and minimize the consequences of gastrointestinal dysfunction. In particular, a Mediterranean diet is advised and may slow disease progression.264265 As it can compete for uptake with amino acids derived from protein, levodopa should be taken 30 minutes before meals to minimize such competition. Low protein diets may also be needed by later stages.266 As the disease advances, swallowing difficulties often arise. Using thickening agents for liquid intake and an upright posture when eating may be useful; both measures reduce the risk of choking. Gastrostomy can be used to deliver food directly into the stomach.267268 Increased water and fiber intake is used to treat constipation.269

Palliative care

As Parkinson's is incurable, palliative care aims to improve the quality of life for both the patient and family by alleviating the symptoms and stress associated with illness.270271272 Early integration of palliative care into the disease course is recommended, rather than delaying until later stages.273 Palliative care specialists can help with physical symptoms, emotional factors such as loss of function and jobs, depression, fear, as well as existential concerns.274 Palliative care team members also help guide difficult decisions caused by disease progression, such as wishes for a feeding tube, noninvasive ventilator or tracheostomy, use of cardiopulmonary resuscitation, and entering hospice care.275276

Prognosis

See also: Unified Parkinson's disease rating scale

Prognosis of PD subtypes277278
Parkinson's subtypeMean years post-diagnosis until:
Severe cognitive or movement abnormalities279Death
Mild-motor predominant14.320.2
Intermediate8.213.1
Diffuse malignant3.58.1

As Parkinson's is a heterogeneous condition with multiple etiologies, prognostication can be difficult and prognoses can be highly variable.280281 On average, life expectancy is reduced in those with Parkinson's, with younger age of onset resulting in greater life expectancy decreases.282 Although PD subtype categorization is controversial, the 2017 Parkinson's Progression Markers Initiative study identified three broad scorable subtypes of increasing severity and more rapid progression: mild-motor predominant, intermediate, and diffuse malignant. Mean years of survival post-diagnosis were 20.2, 13.1, and 8.1.283

Around 30% of individuals with Parkinson's develop dementia, which is 12 times more likely to occur in the elderly with severe PD.284 Dementia is less likely to arise in tremor-dominant PD.285 Parkinson's disease dementia is associated with a reduced quality of life in people with PD and their caregivers, increased mortality, and a higher probability of needing nursing home care.286

The incidence rate of falls is approximately 45 to 68%, thrice that of healthy individuals, and half of such falls result in serious secondary injuries. Falls increase morbidity and mortality.287 Around 90% of those with PD develop hypokinetic dysarthria, which worsens with disease progression and can hinder communication.288 Over 80% develop dysphagia: consequent inhalation of gastric and oropharyngeal secretions can lead to aspiration pneumonia.289

Epidemiology

As of 2024, Parkinson's is the second most common neurodegenerative disease and the fastest-growing in total cases.290291 As of 2023, global prevalence was estimated to be 1.51 per 1000.292 Although it is around 40% more common in men,293 age is the dominant predeterminant of Parkinson's.294 Consequently, as global life expectancy has increased, Parkinson's disease prevalence has also risen, with an estimated increase in cases by 74% from 1990 to 2016.295 The number is predicted to rise to over 12 million by 2040.296

This increase may be due to a number of global factors, including prolonged life expectancy, increased industrialisation, and decreased smoking.297 Although genetics is the sole factor in a minority of cases, most cases of Parkinson's are likely a result of gene-environment interactions: concordance studies with twins have found Parkinson's heritability to be just 30%.298 The influence of multiple genetic and environmental factors complicates epidemiological efforts.299

Relative to Europe and North America, disease prevalence is lower in Africa but similar in Latin America.300 Although China is predicted to have nearly half of the global Parkinson's population by 2030,301 estimates of prevalence in Asia vary.302 Potential explanations for these geographic differences include genetic variation, environmental factors, health care access, and life expectancy.303 Although PD incidence and prevalence may vary by race and ethnicity, significant disparities in care, diagnosis, and study participation limit generalizability and lead to conflicting results.304305 Within the United States, high rates of PD have been identified in the Midwest, the South, and agricultural regions of other states: collectively termed the "PD belt".306 The association between rural residence and Parkinson's has been hypothesized to be caused by environmental factors like herbicides, pesticides, and industrial waste.307

History

Main article: History of Parkinson's disease

In 1817, English physician James Parkinson published the first full medical description of the disease as a neurological syndrome in his monograph An Essay on the Shaking Palsy.308309 He presented six clinical cases, including three he had observed on the streets near Hoxton Square in London.310 Parkinson described three cardinal symptoms: tremor, postural instability and "paralysis" (undistinguished from rigidity or bradykinesia), and speculated that the disease was caused by trauma to the spinal cord.311312

There was little discussion or investigation of the "shaking palsy" until 1861, when Frenchman Jean-Martin Charcot—regarded as the father of neurology—began expanding Parkinson's description, adding bradykinesia as one of the four cardinal symptoms.313314315 In 1877, Charcot renamed the disease after Parkinson, as the tremor suggested by "shaking palsy" is not present in all.316317 Subsequent neurologists who made early advances to the understanding of Parkinson's include Armand Trousseau, William Gowers, Samuel Kinnier Wilson, and Wilhelm Erb.318

Although Parkinson is typically credited with the first detailed description of PD, many previous texts reference some of the disease's clinical signs.319 In his essay, Parkinson himself acknowledged partial descriptions by Galen, William Cullen, Johann Juncker, and others.320 Possible earlier but incomplete descriptions include a Nineteenth Dynasty Egyptian papyrus, the ayurvedic text Charaka Samhita, Ecclesiastes 12:3, and a discussion of tremors by Leonardo da Vinci.321322 Multiple traditional Chinese medicine texts may include references to PD, including a discussion in the Yellow Emperor's Internal Classic (c. 425–221 BC) of a disease with symptoms of tremor, stiffness, staring, and stooped posture.323 In 2009, a systematic description of PD was found in the Hungarian medical text Pax corporis written by Ferenc Pápai Páriz in 1690, some 120 years before Parkinson. Although Páriz correctly described all four cardinal signs, it was only published in Hungarian and was not widely distributed.324325

In 1912, Frederic Lewy described microscopic particles in affected brains, later named Lewy bodies.326 In 1919, Konstantin Tretiakoff reported that the substantia nigra was the main brain structure affected, corroborated by Rolf Hassler in 1938.327 The underlying changes in dopamine signaling were identified in the 1950s, largely by Arvid Carlsson and Oleh Hornykiewicz.328 In 1997, Polymeropoulos and colleagues at the NIH discovered the first gene for PD,329 SNCA, which encodes alpha-synuclein. Alpha-synuclein was in turn found to be the main component of Lewy bodies by Spillantini, Trojanowski, Goedert, and others.330 Anticholinergics and surgery were the only treatments until the use of levodopa,331332 which, although first synthesized by Casimir Funk in 1911,333 did not enter clinical use until 1967.334 By the late 1980s, deep brain stimulation introduced by Alim Louis Benabid and colleagues at Grenoble, France, emerged as an additional treatment.335

Society and culture

Social impact

For some people with PD, masked facial expressions and difficulty moderating facial expressions of emotion or recognizing other people's facial expressions can impact social well-being.336 As the condition progresses, tremor, other motor symptoms, difficulty communicating, or mobility issues may interfere with social engagement, causing individuals with PD to feel isolated.337 Public perception and awareness of PD symptoms such as shaking, hallucinating, slurring speech, and being off balance is lacking in some countries and can lead to stigma.338

Cost

The economic cost of Parkinson's to both individuals and society is high.339 Globally, most government health insurance plans do not cover Parkinson's therapies, requiring expenses to be paid out-of-pocket.340 Indirect costs include lifetime earnings losses due to premature death, productivity losses, and caregiver burdens.341 The duration and progressive nature of PD can place a heavy burden on caregivers:342 family members like spouses dedicate around 22 hours per week to care.343

In 2010, the total economic burden of Parkinson's across Europe, including indirect and direct medical costs, was estimated to be €13.9 billion (US $14.9 billion) in 2010.344 The total burden in the United States was estimated to be $51.9 billion in 2017, and is project to surpass $79 billion by 2037.345 As of 2022, no rigorous economic surveys had been performed for low or middle income nations.346 Preventative care has been identified as crucial to prevent the rapidly increasing incidence of Parkinson's from overwhelming national health systems.347

Advocacy

The birthday of James Parkinson, 11 April, has been designated as World Parkinson's Day.348 A red tulip was chosen by international organizations as the symbol of the disease in 2005; it represents the 'James Parkinson' tulip cultivar, registered in 1981 by a Dutch horticulturalist.349

Advocacy organizations include the National Parkinson Foundation, which has provided more than $180 million in care, research, and support services since 1982,350 Parkinson's Disease Foundation, which has distributed more than $115 million for research and nearly $50 million for education and advocacy programs since its founding in 1957 by William Black;351352 the American Parkinson Disease Association, founded in 1961;353 and the European Parkinson's Disease Association, founded in 1992.354

Notable cases

Main article: List of people diagnosed with Parkinson's disease

In the 21st century, the diagnosis of Parkinson's among notable figures has increased the public's understanding of the disorder.355 Actor Michael J. Fox was diagnosed with PD at 29 years old,356 and has used his diagnosis to increase awareness of the disease.357 To illustrate the effects of the disease, Fox has appeared without medication in television roles and before the United States Congress without medication.358 The Michael J. Fox Foundation, which he founded in 2000, has raised over $2 billion for Parkinson's research.359

Boxer Muhammad Ali showed signs of PD when he was 38, but was undiagnosed until he was 42; he has been called the "world's most famous Parkinson's patient". 360 Whether he had PD or parkinsonism related to boxing is unresolved.361 Cyclist and Olympic medalist Davis Phinney, diagnosed with Parkinson's at 40, started the Davis Phinney Foundation in 2004 to support PD research.362363

Adolf Hitler is believed to have had Parkinson's, and the condition may have influenced his decision making.364365366

Clinical research

Main article: Research in Parkinson's disease

As of 2024, no disease-modifying therapies exist that reverse or slow the progression of Parkinson's.367368 Active research directions include the search for new animal models of the disease and development and trial of gene therapy, stem cell transplants, and neuroprotective agents.369 Improved treatments will likely combine therapeutic strategies to manage symptoms and enhance outcomes.370 Reliable biomarkers are needed for early diagnosis, and research criteria for their identification have been established.371372

Neuroprotective treatments

See also: Anti-α-synuclein drug

Anti-alpha-synuclein drugs that prevent alpha-synuclein oligomerization and aggregation or promote their clearance are under active investigation, and potential therapeutic strategies include small molecules and immunotherapies like vaccines and monoclonal antibodies.373374375 While immunotherapies show promise, their effiacy is often inconsistent.376 Anti-inflammatory drugs that target NLRP3 and the JAK-STAT signaling pathway offer another potential therapeutic approach.377

As the gut microbiome in PD is often disrupted and produces toxic compounds, fecal microbiota transplants might restore a healthy microbiome and alleviate various motor and non-motor symptoms.378 Neurotrophic factorspeptides that enhance the growth, maturation, and survival of neurons—show modest results but require invasive surgical administration. Viral vectors may represent a more feasible delivery platform.379 Calcium channel blockers may restore the calcium imbalance present in Parkinson's, and are being investigated as a neuroprotective treatment.380 Other therapies, like deferiprone, may reduce the abnormal accumulation of iron in PD.381

Cell-based therapies

Main article: Cell-based therapies for Parkinson's disease

In contrast to other neurodegenerative disorders, many Parkinson's symptoms can be attributed to the loss of a single cell type. Consequently, dopaminergic neuron regeneration is a promising therapeutic approach.382 Although most initial research sought to generate dopaminergic neuron precursor cells from fetal brain tissue,383 pluripotent stem cells—particularly induced pluripotent stem cells (iPSCs)—have become an increasingly popular tissue source.384385

Both fetal and iPSC-derived DA neurons have been transplanted into patients in clinical trials.386387 Although some individuals see improvement, the results are highly variable. Adverse effects, such as dyskinesia arising from excess dopamine release by the transplanted tissues, have also been observed.388389

Gene therapy

Main article: Gene therapy in Parkinson's disease

Gene therapy for Parkinson's seeks to restore the healthy function of dopaminergic neurons in the substantia nigra by delivering genetic material—typically through a viral vector—to these diseased cells.390391 This material may deilver a functional, wildtype version of a gene, or knockdown a pathological variants.392 Experimental gene therapies for PD have aimed to increase the expression of growth factors or enzymes involved in dopamine synthesis, like tyrosine hydroxylase.393 The one-time delivery of genes circumvents the recurrent invasive administration required to administer some peptides and proteins to the brain.394 MicroRNAs are an emerging PD gene therapy platform that may serve as an alternative to viral vectors.395

Notes and references

Notes

Citations

Works cited

Books

Journal articles

Web sources

News publications

References

  1. Ramesh & Arachchige 2023, pp. 200–201, 203. - Ramesh SD, Arachchige AS (2023). "Depletion of dopamine in Parkinson's disease and relevant therapeutic options: A review of the literature". AIMS Neuroscience. 10 (3): 200–231. doi:10.3934/Neuroscience.2023017. PMC 10567584. PMID 37841347. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567584

  2. Calabresi et al. 2023, pp. 1, 5. - Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V (2023). "Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction". Cell Death & Disease. 14 (3): 176. doi:10.1038/s41419-023-05672-9. PMC 9977911. PMID 36859484. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977911

  3. National Institute of Neurological Disorders and Stroke. - "Parkinson's Disease". National Institute of Neurological Disorders and Stroke. Retrieved 2 September 2024. https://www.ninds.nih.gov/health-information/disorders/parkinsons-disease#:~:text=Parkinson's%20disease%20(PD)%20is%20movement,the%20body%2C%20or%20impaired%20balance.

  4. Wallace et al. 2022, p. 149. - Wallace ER, Segerstrom SC, van Horne CG, Schmitt FA, Koehl LM (2022). "Meta-Analysis of Cognition in Parkinson's Disease Mild Cognitive Impairment and Dementia Progression". Neuropsychology Review. 32 (1): 149–160. doi:10.1007/s11065-021-09502-7. PMID 33860906. https://doi.org/10.1007%2Fs11065-021-09502-7

  5. Hansen et al. 2019, p. 635. - Hansen D, Ling H, Lashley T, Holton JL, Warner TT (April 2019). "Review: Clinical, neuropathological and genetic features of Lewy body dementias". Neuropathology and Applied Neurobiology. 45 (7): 635–654. doi:10.1111/nan.12554. PMID 30977926. https://doi.org/10.1111%2Fnan.12554

  6. Bhattacharyya 2017, p. 7. - Bhattacharyya KB (2017). "Chapter One – Hallmarks of Clinical Aspects of Parkinson's Disease Through Centuries". In Bhatia KP, Chaudhuri KR, Stamelou M (eds.). Parkinson's Disease. International Review of Neurobiology. pp. 1–23.

  7. Stanford University School Medicine. - "Symptoms of PD". Stanford Parkinson's Community Outreach. Stanford University School Medicine. Retrieved 2 September 2024. https://med.stanford.edu/parkinsons/symptoms-PD.html

  8. Bologna, Truong & Jankovic 2022, pp. 1–6. - Bologna M, Truong D, Jankovic J (2022). "The etiopathogenetic and pathophysiological spectrum of parkinsonism". Journal of the Neurological Sciences. 433: 1–8. doi:10.1016/j.jns.2021.120012. PMID 34642022. https://doi.org/10.1016%2Fj.jns.2021.120012

  9. Leta et al. 2022, p. 1122. - Leta V, Urso D, Batzu L, Lau YH, Mathew D, Boura I, et al. (2022). "Viruses, parkinsonism and Parkinson's disease: the past, present and future". Journal of Neural Transmission. 129 (9): 1119–1132. doi:10.1007/s00702-022-02536-y. PMC 9422946. PMID 36036863. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9422946

  10. Langston 2017, p. S11. - Langston JW (March 2017). "The MPTP Story". Journal of Parkinson's Disease. 7 (1): S11 – S19. doi:10.3233/JPD-179006. PMC 5345642. PMID 28282815. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345642

  11. Prajjwal et al. 2024, pp. 1–3. - Prajjwal P, Kolanu ND, Reddy YB, Ahmed A, Marsool MD, Santoshi K, et al. (2024). "Association of Parkinson's disease to Parkinson's plus syndromes, Lewy body dementia, and Alzheimer's dementia". Health Science Reports. 7 (4): e2019. doi:10.1002/hsr2.2019. PMC 10982460. PMID 38562616. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982460

  12. Olfatia, Shoeibia & Litvanb 2019, p. 101. - Olfatia N, Shoeibia A, Litvanb I (2019). "Progress in the treatment of Parkinson-Plus syndromes". Parkinsonism & Related Disorders. 59: 101–110. doi:10.1016/j.parkreldis.2018.10.006. PMID 30314846. https://doi.org/10.1016%2Fj.parkreldis.2018.10.006

  13. National Institute of Neurological Disorders and Stroke. - "Parkinson's Disease". National Institute of Neurological Disorders and Stroke. Retrieved 2 September 2024. https://www.ninds.nih.gov/health-information/disorders/parkinsons-disease#:~:text=Parkinson's%20disease%20(PD)%20is%20movement,the%20body%2C%20or%20impaired%20balance.

  14. Abusrair, Elsekaily & Bohlega 2022, p. 2. - Abusrair AH, Elsekaily W, Bohlega S (13 September 2022). "Tremor in Parkinson's Disease: From Pathophysiology to Advanced Therapies". Tremor and Other Hyperkinetic Movements. 12 (1): 29. doi:10.5334/tohm.712. PMC 9504742. PMID 36211804. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504742

  15. Abusrair, Elsekaily & Bohlega 2022, p. 2. - Abusrair AH, Elsekaily W, Bohlega S (13 September 2022). "Tremor in Parkinson's Disease: From Pathophysiology to Advanced Therapies". Tremor and Other Hyperkinetic Movements. 12 (1): 29. doi:10.5334/tohm.712. PMC 9504742. PMID 36211804. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504742

  16. Moustafa et al. 2016, p. 730. - Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. (September 2016). "Motor symptoms in Parkinson's disease: A unified framework". Neuroscience & Biobehavioral Reviews. 68: 727–740. doi:10.1016/j.neubiorev.2016.07.010. PMID 27422450. https://discovery.ucl.ac.uk/id/eprint/1511483/

  17. Abusrair, Elsekaily & Bohlega 2022, p. 2. - Abusrair AH, Elsekaily W, Bohlega S (13 September 2022). "Tremor in Parkinson's Disease: From Pathophysiology to Advanced Therapies". Tremor and Other Hyperkinetic Movements. 12 (1): 29. doi:10.5334/tohm.712. PMC 9504742. PMID 36211804. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504742

  18. Moustafa et al. 2016, p. 730. - Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. (September 2016). "Motor symptoms in Parkinson's disease: A unified framework". Neuroscience & Biobehavioral Reviews. 68: 727–740. doi:10.1016/j.neubiorev.2016.07.010. PMID 27422450. https://discovery.ucl.ac.uk/id/eprint/1511483/

  19. Moustafa et al. 2016, p. 730. - Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. (September 2016). "Motor symptoms in Parkinson's disease: A unified framework". Neuroscience & Biobehavioral Reviews. 68: 727–740. doi:10.1016/j.neubiorev.2016.07.010. PMID 27422450. https://discovery.ucl.ac.uk/id/eprint/1511483/

  20. Abusrair, Elsekaily & Bohlega 2022, p. 4. - Abusrair AH, Elsekaily W, Bohlega S (13 September 2022). "Tremor in Parkinson's Disease: From Pathophysiology to Advanced Therapies". Tremor and Other Hyperkinetic Movements. 12 (1): 29. doi:10.5334/tohm.712. PMC 9504742. PMID 36211804. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504742

  21. Sveinbjornsdottir 2016, p. 319. - Sveinbjornsdottir S (October 2016). "The clinical symptoms of Parkinson's disease". Journal of Neurochemistry. 139 (Suppl 1): 318–324. doi:10.1111/jnc.13691. PMID 27401947. https://doi.org/10.1111%2Fjnc.13691

  22. Bologna et al. 2019, pp. 727–729. - Bologna M, Paparella G, Fasano A, Hallett M, Berardelli A (December 2019). "Evolving concepts on bradykinesia". Brain. 143 (3): 727–750. doi:10.1093/brain/awz344. PMC 8205506. PMID 31834375. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205506

  23. Sveinbjornsdottir 2016, p. 319. - Sveinbjornsdottir S (October 2016). "The clinical symptoms of Parkinson's disease". Journal of Neurochemistry. 139 (Suppl 1): 318–324. doi:10.1111/jnc.13691. PMID 27401947. https://doi.org/10.1111%2Fjnc.13691

  24. Moustafa et al. 2016, p. 728. - Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. (September 2016). "Motor symptoms in Parkinson's disease: A unified framework". Neuroscience & Biobehavioral Reviews. 68: 727–740. doi:10.1016/j.neubiorev.2016.07.010. PMID 27422450. https://discovery.ucl.ac.uk/id/eprint/1511483/

  25. Palakurthi & Burugupally 2019, pp. 1–2. - Palakurthi B, Burugupally SP (September 2019). "Postural Instability in Parkinson's Disease: A Review". Brain Sciences. 9 (239): 239. doi:10.3390/brainsci9090239. PMC 6770017. PMID 31540441. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770017

  26. Palakurthi & Burugupally 2019, pp. 1, 4. - Palakurthi B, Burugupally SP (September 2019). "Postural Instability in Parkinson's Disease: A Review". Brain Sciences. 9 (239): 239. doi:10.3390/brainsci9090239. PMC 6770017. PMID 31540441. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770017

  27. Moustafa et al. 2016, pp. 727–728. - Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. (September 2016). "Motor symptoms in Parkinson's disease: A unified framework". Neuroscience & Biobehavioral Reviews. 68: 727–740. doi:10.1016/j.neubiorev.2016.07.010. PMID 27422450. https://discovery.ucl.ac.uk/id/eprint/1511483/

  28. Moustafa et al. 2016, p. 731. - Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. (September 2016). "Motor symptoms in Parkinson's disease: A unified framework". Neuroscience & Biobehavioral Reviews. 68: 727–740. doi:10.1016/j.neubiorev.2016.07.010. PMID 27422450. https://discovery.ucl.ac.uk/id/eprint/1511483/

  29. Mirelman et al. 2019, p. 1. - Mirelman A, Bonato P, Camicioli R, Ellis TD, Giladi N, Hamilton JL, et al. (April 2019). "Gait impairments in Parkinson's disease". Lancet Neurology. 17 (7): 697–708. doi:10.1016/S1474-4422(19)30044-4. PMID 30975519. https://doi.org/10.1016%2FS1474-4422%2819%2930044-4

  30. Moustafa et al. 2016, p. 734. - Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. (September 2016). "Motor symptoms in Parkinson's disease: A unified framework". Neuroscience & Biobehavioral Reviews. 68: 727–740. doi:10.1016/j.neubiorev.2016.07.010. PMID 27422450. https://discovery.ucl.ac.uk/id/eprint/1511483/

  31. Moustafa et al. 2016, p. 732. - Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. (September 2016). "Motor symptoms in Parkinson's disease: A unified framework". Neuroscience & Biobehavioral Reviews. 68: 727–740. doi:10.1016/j.neubiorev.2016.07.010. PMID 27422450. https://discovery.ucl.ac.uk/id/eprint/1511483/

  32. Moustafa et al. 2016, p. 733. - Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. (September 2016). "Motor symptoms in Parkinson's disease: A unified framework". Neuroscience & Biobehavioral Reviews. 68: 727–740. doi:10.1016/j.neubiorev.2016.07.010. PMID 27422450. https://discovery.ucl.ac.uk/id/eprint/1511483/

  33. Aarslanda & Krambergera 2015, pp. 660, 662. - Aarslanda D, Krambergera MG (2015). "Neuropsychiatric Symptoms in Parkinson's Disease". Journal of Personalized Medicine. 5 (3): 659–667. doi:10.3233/JPD-150604. PMID 26406147. https://doi.org/10.3233%2FJPD-150604

  34. Aarslanda & Krambergera 2015, pp. 659–660. - Aarslanda D, Krambergera MG (2015). "Neuropsychiatric Symptoms in Parkinson's Disease". Journal of Personalized Medicine. 5 (3): 659–667. doi:10.3233/JPD-150604. PMID 26406147. https://doi.org/10.3233%2FJPD-150604

  35. Weintraub & Mamikonyan 2019, sec. "Non-motor fluctuations". - Weintraub D, Mamikonyan E (September 2019). "The Neuropsychiatry of Parkinson Disease: A Perfect Storm". Am J Geriatr Psychiatry. 27 (9): 998–1018. doi:10.1016/j.jagp.2019.03.002. PMC 7015280. PMID 31006550. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015280

  36. Aarslanda & Krambergera 2015, p. 660. - Aarslanda D, Krambergera MG (2015). "Neuropsychiatric Symptoms in Parkinson's Disease". Journal of Personalized Medicine. 5 (3): 659–667. doi:10.3233/JPD-150604. PMID 26406147. https://doi.org/10.3233%2FJPD-150604

  37. Biundo, Weis & Antonini 2016, p. 1. - Biundo R, Weis L, Antonini A (September 2016). "Cognitive decline in Parkinson's disease: the complex picture". npj Parkinson's Disease. 2 (16018): 16018. doi:10.1038/npjparkd.2016.18. PMC 5516581. PMID 28725699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516581

  38. Biundo, Weis & Antonini 2016, p. 1. - Biundo R, Weis L, Antonini A (September 2016). "Cognitive decline in Parkinson's disease: the complex picture". npj Parkinson's Disease. 2 (16018): 16018. doi:10.1038/npjparkd.2016.18. PMC 5516581. PMID 28725699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516581

  39. Gonzalez-Latapi et al. 2021, p. 74. - Gonzalez-Latapi P, Bayram E, Litvan I, Marras C (May 2021). "Cognitive Impairment in Parkinson's Disease: Epidemiology, Clinical Profile, Protective and Risk Factors". Behavioral Sciences. 11 (5): 74. doi:10.3390/bs11050074. PMC 8152515. PMID 34068064. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152515

  40. Gonzalez-Latapi et al. 2021, p. 74. - Gonzalez-Latapi P, Bayram E, Litvan I, Marras C (May 2021). "Cognitive Impairment in Parkinson's Disease: Epidemiology, Clinical Profile, Protective and Risk Factors". Behavioral Sciences. 11 (5): 74. doi:10.3390/bs11050074. PMC 8152515. PMID 34068064. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152515

  41. Palma & Kaufmann 2018, pp. 372–373. - Palma JA, Kaufmann H (March 2018). "Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies". Movement Disorders. 33 (3): 372–390. doi:10.1002/mds.27344. PMC 5844369. PMID 29508455. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844369

  42. Pfeiffer 2020, p. 1464. - Pfeiffer RF (October 2020). "Autonomic Dysfunction in Parkinson's Disease". Neurotherapeutics. 17 (4): 1464–1479. doi:10.1007/s13311-020-00897-4. PMC 7851208. PMID 32789741. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851208

  43. Palma & Kaufmann 2018, p. 373. - Palma JA, Kaufmann H (March 2018). "Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies". Movement Disorders. 33 (3): 372–390. doi:10.1002/mds.27344. PMC 5844369. PMID 29508455. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844369

  44. Palma & Kaufmann 2018, p. 373. - Palma JA, Kaufmann H (March 2018). "Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies". Movement Disorders. 33 (3): 372–390. doi:10.1002/mds.27344. PMC 5844369. PMID 29508455. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844369

  45. Palma & Kaufmann 2018, p. 373. - Palma JA, Kaufmann H (March 2018). "Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies". Movement Disorders. 33 (3): 372–390. doi:10.1002/mds.27344. PMC 5844369. PMID 29508455. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844369

  46. Palma & Kaufmann 2020, sec. "Synopsis", "Epidemiology", "Approach to the patient with orthostatic hypotension". - Palma JA, Kaufmann H (February 2020). "Orthostatic Hypotension in Parkinson Disease". Clin Geriatr Med. 36 (1): 53–67. doi:10.1016/j.cger.2019.09.002. PMC 7029426. PMID 31733702. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029426

  47. Pfeiffer 2020, pp. 1465–1467. - Pfeiffer RF (October 2020). "Autonomic Dysfunction in Parkinson's Disease". Neurotherapeutics. 17 (4): 1464–1479. doi:10.1007/s13311-020-00897-4. PMC 7851208. PMID 32789741. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851208

  48. Pfeiffer 2020, p. 1468. - Pfeiffer RF (October 2020). "Autonomic Dysfunction in Parkinson's Disease". Neurotherapeutics. 17 (4): 1464–1479. doi:10.1007/s13311-020-00897-4. PMC 7851208. PMID 32789741. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851208

  49. Pfeiffer 2020, pp. 1471–1473. - Pfeiffer RF (October 2020). "Autonomic Dysfunction in Parkinson's Disease". Neurotherapeutics. 17 (4): 1464–1479. doi:10.1007/s13311-020-00897-4. PMC 7851208. PMID 32789741. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851208

  50. Zhu et al. 2016, p. 685. - Zhu M, Li M, Ye D, Jiang W, Lei T, Shu K (March 2016). "Sensory symptoms in Parkinson's disease: Clinical features, pathophysiology, and treatment". Journal of Neuroscience Research. 94 (8): 685–692. doi:10.1002/jnr.23729. PMID 26948282. https://doi.org/10.1002%2Fjnr.23729

  51. Zhu et al. 2016, p. 685. - Zhu M, Li M, Ye D, Jiang W, Lei T, Shu K (March 2016). "Sensory symptoms in Parkinson's disease: Clinical features, pathophysiology, and treatment". Journal of Neuroscience Research. 94 (8): 685–692. doi:10.1002/jnr.23729. PMID 26948282. https://doi.org/10.1002%2Fjnr.23729

  52. Corrà et al. 2023, pp. 225–226. - Corrà MF, Vila-Chã N, Sardoeira A, Hansen C, Sousa AP, Reis I, et al. (January 2023). "Peripheral neuropathy in Parkinson's disease: prevalence and functional impact on gait and balance". Brain. 146 (1): 225–236. doi:10.1093/brain/awac026. PMC 9825570. PMID 35088837. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825570

  53. Zhu et al. 2016, p. 688. - Zhu M, Li M, Ye D, Jiang W, Lei T, Shu K (March 2016). "Sensory symptoms in Parkinson's disease: Clinical features, pathophysiology, and treatment". Journal of Neuroscience Research. 94 (8): 685–692. doi:10.1002/jnr.23729. PMID 26948282. https://doi.org/10.1002%2Fjnr.23729

  54. Zhu et al. 2016, p. 687. - Zhu M, Li M, Ye D, Jiang W, Lei T, Shu K (March 2016). "Sensory symptoms in Parkinson's disease: Clinical features, pathophysiology, and treatment". Journal of Neuroscience Research. 94 (8): 685–692. doi:10.1002/jnr.23729. PMID 26948282. https://doi.org/10.1002%2Fjnr.23729

  55. Weil et al. 2016, pp. 2828, 2831–2832. - Weil RS, Schrag AE, Warren JD, Crutch SJ, Lees AJ, Morris HR (July 2016). "Visual dysfunction in Parkinson's disease". Brain. 146 (139): 2827–2843. doi:10.1093/brain/aww175. PMC 5091042. PMID 27412389. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091042

  56. Stefani & Högl 2020, p. 121. - Stefani A, Högl B (January 2020). "Sleep in Parkinson's disease". Neuropsychopharmacology. 45 (1): 121–128. doi:10.1038/s41386-019-0448-y. PMC 6879568. PMID 31234200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879568

  57. Dodet et al. 2024, p. 1. - Dodet P, Houot M, Leu-Semenescu S, Corvol JC, Lehéricy S, Mangone G, et al. (February 2024). "Sleep disorders in Parkinson's disease, an early and multiple problem". npj Parkinson's Disease. 10 (1): 46. doi:10.1038/s41531-024-00642-0. PMC 10904863. PMID 38424131. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904863

  58. Bollu & Sahota 2017, pp. 381–382. - Bollu PC, Sahota P (2017). "Sleep and Parkinson Disease". Missouri Medicine. 114 (5): 381–386. PMC 6140184. PMID 30228640. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140184

  59. Niemann, Billnitzer & Jankovic 2021, p. 61. - Niemann N, Billnitzer A, Jankovic J (January 2021). "Parkinson's disease and skin". Parkinsonism & Related Disorders. 82: 61–76. doi:10.1016/j.parkreldis.2020.11.017. PMID 33248395. https://doi.org/10.1016%2Fj.parkreldis.2020.11.017

  60. Almikhlafi 2024, p. 7. - Almikhlafi MA (January 2024). "A review of the gastrointestinal, olfactory, and skin abnormalities in patients with Parkinson's disease". Neurosciences. 29 (1): 4–9. doi:10.17712/nsj.2024.1.20230062 (inactive 1 November 2024). PMC 10827020. PMID 38195133. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827020

  61. Morris et al. 2024. - Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (January 2024). "The pathogenesis of Parkinson's disease". Lancet. 403 (10423): 293–304. doi:10.1016/s0140-6736(23)01478-2. PMID 38245249. https://discovery.ucl.ac.uk/id/eprint/10189143

  62. Morris et al. 2024. - Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (January 2024). "The pathogenesis of Parkinson's disease". Lancet. 403 (10423): 293–304. doi:10.1016/s0140-6736(23)01478-2. PMID 38245249. https://discovery.ucl.ac.uk/id/eprint/10189143

  63. Toffoli, Vieira & Schapira 2020, p. 1. - Toffoli M, Vieira SR, Schapira AH (June 2020). "Genetic causes of PD: A pathway to disease modification". Neuropharmacology. 170: 1–13. doi:10.1016/j.neuropharm.2020.108022. PMID 32119885. https://discovery.ucl.ac.uk/id/eprint/10095601/

  64. Toffoli, Vieira & Schapira 2020, p. 1. - Toffoli M, Vieira SR, Schapira AH (June 2020). "Genetic causes of PD: A pathway to disease modification". Neuropharmacology. 170: 1–13. doi:10.1016/j.neuropharm.2020.108022. PMID 32119885. https://discovery.ucl.ac.uk/id/eprint/10095601/

  65. Morris et al. 2024. - Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (January 2024). "The pathogenesis of Parkinson's disease". Lancet. 403 (10423): 293–304. doi:10.1016/s0140-6736(23)01478-2. PMID 38245249. https://discovery.ucl.ac.uk/id/eprint/10189143

  66. Brundin & Melki 2017, p. 9808. - Brundin P, Melki R (October 2017). "Prying into the Prion Hypothesis for Parkinson's Disease". Journal of Neuroscience. 37 (41): 9808–9818. doi:10.1523/JNEUROSCI.1788-16.2017. PMC 5637113. PMID 29021298. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637113

  67. Morris et al. 2024. - Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (January 2024). "The pathogenesis of Parkinson's disease". Lancet. 403 (10423): 293–304. doi:10.1016/s0140-6736(23)01478-2. PMID 38245249. https://discovery.ucl.ac.uk/id/eprint/10189143

  68. Morris et al. 2024. - Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (January 2024). "The pathogenesis of Parkinson's disease". Lancet. 403 (10423): 293–304. doi:10.1016/s0140-6736(23)01478-2. PMID 38245249. https://discovery.ucl.ac.uk/id/eprint/10189143

  69. Brundin & Melki 2017, p. 9808. - Brundin P, Melki R (October 2017). "Prying into the Prion Hypothesis for Parkinson's Disease". Journal of Neuroscience. 37 (41): 9808–9818. doi:10.1523/JNEUROSCI.1788-16.2017. PMC 5637113. PMID 29021298. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637113

  70. Morris et al. 2024. - Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (January 2024). "The pathogenesis of Parkinson's disease". Lancet. 403 (10423): 293–304. doi:10.1016/s0140-6736(23)01478-2. PMID 38245249. https://discovery.ucl.ac.uk/id/eprint/10189143

  71. Toffoli, Vieira & Schapira 2020, p. 2. - Toffoli M, Vieira SR, Schapira AH (June 2020). "Genetic causes of PD: A pathway to disease modification". Neuropharmacology. 170: 1–13. doi:10.1016/j.neuropharm.2020.108022. PMID 32119885. https://discovery.ucl.ac.uk/id/eprint/10095601/

  72. Salles, Tirapegui & Chaná-Cuevas 2024, p. 2. - Salles PA, Tirapegui JM, Chaná-Cuevas P (22 March 2024). "Genetics of Parkinson's disease: Dominant forms and GBA". Neurology Perspectives. 4 (3): 100153. doi:10.1016/j.neurop.2024.100153. https://doi.org/10.1016%2Fj.neurop.2024.100153

  73. Morris et al. 2024. - Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (January 2024). "The pathogenesis of Parkinson's disease". Lancet. 403 (10423): 293–304. doi:10.1016/s0140-6736(23)01478-2. PMID 38245249. https://discovery.ucl.ac.uk/id/eprint/10189143

  74. Salles, Tirapegui & Chaná-Cuevas 2024, p. 2. - Salles PA, Tirapegui JM, Chaná-Cuevas P (22 March 2024). "Genetics of Parkinson's disease: Dominant forms and GBA". Neurology Perspectives. 4 (3): 100153. doi:10.1016/j.neurop.2024.100153. https://doi.org/10.1016%2Fj.neurop.2024.100153

  75. Farrow et al. 2024, p. 1. - Farrow SL, Gokuladhas S, Schierding W, Pudjihartono M, Perry JK, Cooper AA, et al. (October 2024). "Identification of 27 allele-specific regulatory variants in Parkinson's disease using a massively parallel reporter assay". npj Parkinson's Disease. 10 (1): 44. doi:10.1038/s41531-024-00659-5. PMC 10899198. PMID 38413607. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899198

  76. Morris et al. 2024. - Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (January 2024). "The pathogenesis of Parkinson's disease". Lancet. 403 (10423): 293–304. doi:10.1016/s0140-6736(23)01478-2. PMID 38245249. https://discovery.ucl.ac.uk/id/eprint/10189143

  77. Bandres-Ciga et al. 2020, p. 2. - Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB (April 2020). "Genetics of Parkinson's disease: An introspection of its journey towards precision medicine". Neurobiology of Disease. 137: 1–9. doi:10.1016/j.nbd.2020.104782. PMC 7064061. PMID 31991247. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064061

  78. Tanner & Ostrem 2024. - Tanner CM, Ostrem JL (August 2024). "Parkinson's Disease". New England Journal of Medicine. 391 (5): 442–452. doi:10.1056/NEJMra2401857. PMID 39083773. https://doi.org/10.1056%2FNEJMra2401857

  79. Toffoli, Vieira & Schapira 2020, p. 1. - Toffoli M, Vieira SR, Schapira AH (June 2020). "Genetic causes of PD: A pathway to disease modification". Neuropharmacology. 170: 1–13. doi:10.1016/j.neuropharm.2020.108022. PMID 32119885. https://discovery.ucl.ac.uk/id/eprint/10095601/

  80. Toffoli, Vieira & Schapira 2020, pp. 1–2. - Toffoli M, Vieira SR, Schapira AH (June 2020). "Genetic causes of PD: A pathway to disease modification". Neuropharmacology. 170: 1–13. doi:10.1016/j.neuropharm.2020.108022. PMID 32119885. https://discovery.ucl.ac.uk/id/eprint/10095601/

  81. Rossi et al. 2025, p. 1-2. - Rossi M, Schaake S, Usnich T, Boehm J, Steffen N, Schell N, et al. (February 2025). "Classification and Genotype-Phenotype Relationships of GBA1 Variants: MDSGene Systematic Review". Movement Disorders: 1–14. doi:10.1002/mds.30141. PMID 39927608. https://doi.org/10.1002%2Fmds.30141

  82. Tanner & Ostrem 2024. - Tanner CM, Ostrem JL (August 2024). "Parkinson's Disease". New England Journal of Medicine. 391 (5): 442–452. doi:10.1056/NEJMra2401857. PMID 39083773. https://doi.org/10.1056%2FNEJMra2401857

  83. De Miranda et al. 2024, p. 46. - De Miranda BR, Goldmanb SM, Millerc GW, Greenamyred JT, Dorsey ER (April 2024). "Preventing Parkinson's Disease: An Environmental Agenda". Journal of Parkinson's Disease. 12 (1): 45–68. doi:10.3233/JPD-212922. PMC 8842749. PMID 34719434. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842749

  84. Dorsey & Bloem 2024, pp. 453–454. - Dorsey ER, Bloem BR (January 2024). "Parkinson's Disease Is Predominantly an Environmental Disease". Journal of Parkinson's Disease. 14 (3): 103–115. doi:10.3233/JPD-230357. PMC 11091623. PMID 38217613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091623

  85. Dorsey & Bloem 2024, p. 454. - Dorsey ER, Bloem BR (January 2024). "Parkinson's Disease Is Predominantly an Environmental Disease". Journal of Parkinson's Disease. 14 (3): 103–115. doi:10.3233/JPD-230357. PMC 11091623. PMID 38217613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091623

  86. Bloem & Boonstra 2023, p. e948–e949. - Bloem BR, Boonstra TA (December 2023). "The inadequacy of current pesticide regulations for protecting brain health: the case of glyphosate and Parkinson's disease". The Lancet. Planetary Health. 7 (12): e948 – e949. doi:10.1016/s2542-5196(23)00255-3. PMID 37949088. https://doi.org/10.1016%2Fs2542-5196%2823%2900255-3

  87. Rietdijk et al. 2017, p. 1. - Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD (February 2017). "Exploring Braak's Hypothesis of Parkinson's Disease". Frontiers in Neurology. 8: 37. doi:10.3389/fneur.2017.00037. PMC 5304413. PMID 28243222. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304413

  88. Dorsey & Bloem 2024, pp. 453–455. - Dorsey ER, Bloem BR (January 2024). "Parkinson's Disease Is Predominantly an Environmental Disease". Journal of Parkinson's Disease. 14 (3): 103–115. doi:10.3233/JPD-230357. PMC 11091623. PMID 38217613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091623

  89. Dorsey & Bloem 2024, p. 454. - Dorsey ER, Bloem BR (January 2024). "Parkinson's Disease Is Predominantly an Environmental Disease". Journal of Parkinson's Disease. 14 (3): 103–115. doi:10.3233/JPD-230357. PMC 11091623. PMID 38217613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091623

  90. Langston 2017, p. S14. - Langston JW (March 2017). "The MPTP Story". Journal of Parkinson's Disease. 7 (1): S11 – S19. doi:10.3233/JPD-179006. PMC 5345642. PMID 28282815. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345642

  91. Dorsey & Bloem 2024, p. 454. - Dorsey ER, Bloem BR (January 2024). "Parkinson's Disease Is Predominantly an Environmental Disease". Journal of Parkinson's Disease. 14 (3): 103–115. doi:10.3233/JPD-230357. PMC 11091623. PMID 38217613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091623

  92. Dorsey & Bloem 2024, p. 454. - Dorsey ER, Bloem BR (January 2024). "Parkinson's Disease Is Predominantly an Environmental Disease". Journal of Parkinson's Disease. 14 (3): 103–115. doi:10.3233/JPD-230357. PMC 11091623. PMID 38217613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091623

  93. Santos-Lobato 2024, p. 1. - Santos-Lobato BL (April 2024). "Towards a methodological uniformization of environmental risk studies in Parkinson's disease". npj Parkinson's Disease. 10 (1): 86. doi:10.1038/s41531-024-00709-y. PMC 11024193. PMID 38632283. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024193

  94. Wu & Schekman 2024, p. 1. - Wu S, Schekman RW (September 2024). "Intercellular transmission of alpha-synuclein". Frontiers in Molecular Neuroscience. 17: 1–12. doi:10.3389/fnmol.2024.1470171. PMC 11422390. PMID 39324117. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422390

  95. Brundin & Melki 2017, p. 9809. - Brundin P, Melki R (October 2017). "Prying into the Prion Hypothesis for Parkinson's Disease". Journal of Neuroscience. 37 (41): 9808–9818. doi:10.1523/JNEUROSCI.1788-16.2017. PMC 5637113. PMID 29021298. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637113

  96. Vázquez-Vélez & Zoghbi 2021, p. 96. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  97. Dickson 2018, p. S31. - Dickson DW (January 2018). "Neuropathology of Parkinson disease". Parkinsonism and Related Disorders. 46 (S1): S30 – S33. doi:10.1016/j.parkreldis.2017.07.033. PMC 5718208. PMID 28780180. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718208

  98. Wu & Schekman 2024, pp. 1–2. - Wu S, Schekman RW (September 2024). "Intercellular transmission of alpha-synuclein". Frontiers in Molecular Neuroscience. 17: 1–12. doi:10.3389/fnmol.2024.1470171. PMC 11422390. PMID 39324117. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422390

  99. Brundin & Melki 2017, p. 9812. - Brundin P, Melki R (October 2017). "Prying into the Prion Hypothesis for Parkinson's Disease". Journal of Neuroscience. 37 (41): 9808–9818. doi:10.1523/JNEUROSCI.1788-16.2017. PMC 5637113. PMID 29021298. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637113

  100. Dorsey et al. 2024, p. 363. - Dorsey ER, De Miranda BR, Horsager J, Borghammer P (April 2024). "The Body, the Brain, the Environment, and Parkinson's Disease". Journal of Parkinson's Disease. 14 (3): 363–381. doi:10.3233/JPD-240019. PMC 11091648. PMID 38607765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091648

  101. Rietdijk et al. 2017, p. 2. - Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD (February 2017). "Exploring Braak's Hypothesis of Parkinson's Disease". Frontiers in Neurology. 8: 37. doi:10.3389/fneur.2017.00037. PMC 5304413. PMID 28243222. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304413

  102. Rietdijk et al. 2017, p. 1. - Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD (February 2017). "Exploring Braak's Hypothesis of Parkinson's Disease". Frontiers in Neurology. 8: 37. doi:10.3389/fneur.2017.00037. PMC 5304413. PMID 28243222. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304413

  103. Dorsey et al. 2024, p. 363. - Dorsey ER, De Miranda BR, Horsager J, Borghammer P (April 2024). "The Body, the Brain, the Environment, and Parkinson's Disease". Journal of Parkinson's Disease. 14 (3): 363–381. doi:10.3233/JPD-240019. PMC 11091648. PMID 38607765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091648

  104. Rietdijk et al. 2017, p. 3. - Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD (February 2017). "Exploring Braak's Hypothesis of Parkinson's Disease". Frontiers in Neurology. 8: 37. doi:10.3389/fneur.2017.00037. PMC 5304413. PMID 28243222. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304413

  105. Rietdijk et al. 2017, p. 2. - Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD (February 2017). "Exploring Braak's Hypothesis of Parkinson's Disease". Frontiers in Neurology. 8: 37. doi:10.3389/fneur.2017.00037. PMC 5304413. PMID 28243222. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304413

  106. Dorsey et al. 2024, pp. 363–364, 371–372. - Dorsey ER, De Miranda BR, Horsager J, Borghammer P (April 2024). "The Body, the Brain, the Environment, and Parkinson's Disease". Journal of Parkinson's Disease. 14 (3): 363–381. doi:10.3233/JPD-240019. PMC 11091648. PMID 38607765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091648

  107. Ascherio & Schwarzschild 2016, p. 1257. - Ascherio A, Schwarzschild MA (2016). "The epidemiology of Parkinson's disease: risk factors and prevention". Lancet Neurology. 15 (12): 1257–1272. doi:10.1016/S1474-4422(16)30230-7. PMID 27751556. https://doi.org/10.1016%2FS1474-4422%2816%2930230-7

  108. De Miranda et al. 2024, p. 46. - De Miranda BR, Goldmanb SM, Millerc GW, Greenamyred JT, Dorsey ER (April 2024). "Preventing Parkinson's Disease: An Environmental Agenda". Journal of Parkinson's Disease. 12 (1): 45–68. doi:10.3233/JPD-212922. PMC 8842749. PMID 34719434. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842749

  109. Coleman & Martin 2022, pp. 2321–2322. - Coleman C, Martin I (16 December 2022). "Unraveling Parkinson's Disease Neurodegeneration: Does Aging Hold the Clues?". Journal of Parkinson's Disease. 12 (8): 2321–2338. doi:10.3233/JPD-223363. PMC 9837701. PMID 36278358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837701

  110. Ascherio & Schwarzschild 2016, p. 1260. - Ascherio A, Schwarzschild MA (2016). "The epidemiology of Parkinson's disease: risk factors and prevention". Lancet Neurology. 15 (12): 1257–1272. doi:10.1016/S1474-4422(16)30230-7. PMID 27751556. https://doi.org/10.1016%2FS1474-4422%2816%2930230-7

  111. Delic et al. 2020, pp. 1–2. - Delic V, Beck KD, Pang KC, Citron BA (April 2020). "Biological links between traumatic brain injury and Parkinson's disease". Acta Neuropathologica Communications. 8 (1): 45. doi:10.1186/s40478-020-00924-7. PMC 7137235. PMID 32264976. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137235

  112. Ascherio & Schwarzschild 2016, p. 1259. - Ascherio A, Schwarzschild MA (2016). "The epidemiology of Parkinson's disease: risk factors and prevention". Lancet Neurology. 15 (12): 1257–1272. doi:10.1016/S1474-4422(16)30230-7. PMID 27751556. https://doi.org/10.1016%2FS1474-4422%2816%2930230-7

  113. Ascherio & Schwarzschild 2016, p. 1259. - Ascherio A, Schwarzschild MA (2016). "The epidemiology of Parkinson's disease: risk factors and prevention". Lancet Neurology. 15 (12): 1257–1272. doi:10.1016/S1474-4422(16)30230-7. PMID 27751556. https://doi.org/10.1016%2FS1474-4422%2816%2930230-7

  114. Ascherio & Schwarzschild 2016, p. 1259. - Ascherio A, Schwarzschild MA (2016). "The epidemiology of Parkinson's disease: risk factors and prevention". Lancet Neurology. 15 (12): 1257–1272. doi:10.1016/S1474-4422(16)30230-7. PMID 27751556. https://doi.org/10.1016%2FS1474-4422%2816%2930230-7

  115. Crotty & Schwarzschild 2020, p. 1. - Crotty GF, Schwarzschild MA (2020). "Chasing Protection in Parkinson's Disease: Does Exercise Reduce Risk and Progression?". Frontiers in Aging Neuroscience. 12: 186. doi:10.3389/fnagi.2020.00186. PMC 7318912. PMID 32636740. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318912

  116. Fabbri et al. 2024, p. 2. - Fabbri M, Rascol O, Foltynie T, Carroll C, Postuma RB, Porcher R, et al. (2024). "Advantages and Challenges of Platform Trials for Disease Modifying Therapies in Parkinson's Disease". Movement Disorders. 39 (9): 1468–1477. doi:10.1002/mds.29899. PMID 38925541. https://doi.org/10.1002%2Fmds.29899

  117. Crotty & Schwarzschild 2020, p. 1. - Crotty GF, Schwarzschild MA (2020). "Chasing Protection in Parkinson's Disease: Does Exercise Reduce Risk and Progression?". Frontiers in Aging Neuroscience. 12: 186. doi:10.3389/fnagi.2020.00186. PMC 7318912. PMID 32636740. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318912

  118. Ascherio & Schwarzschild 2016, p. 1262. - Ascherio A, Schwarzschild MA (2016). "The epidemiology of Parkinson's disease: risk factors and prevention". Lancet Neurology. 15 (12): 1257–1272. doi:10.1016/S1474-4422(16)30230-7. PMID 27751556. https://doi.org/10.1016%2FS1474-4422%2816%2930230-7

  119. Grotewolda & Albina 2024, pp. 1–2. - Grotewolda N, Albina RL (2024). "Update: Protective and risk factors for Parkinson disease". Parkinsonism and Related Disorders. 125: 1–12. doi:10.1016/j.parkreldis.2024.107026. PMC 11846500. PMID 38879999. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846500

  120. Ascherio & Schwarzschild 2016, p. 1259. - Ascherio A, Schwarzschild MA (2016). "The epidemiology of Parkinson's disease: risk factors and prevention". Lancet Neurology. 15 (12): 1257–1272. doi:10.1016/S1474-4422(16)30230-7. PMID 27751556. https://doi.org/10.1016%2FS1474-4422%2816%2930230-7

  121. Grotewolda & Albina 2024, p. 2. - Grotewolda N, Albina RL (2024). "Update: Protective and risk factors for Parkinson disease". Parkinsonism and Related Disorders. 125: 1–12. doi:10.1016/j.parkreldis.2024.107026. PMC 11846500. PMID 38879999. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846500

  122. Rose, Schwarzschild & Gomperts 2024, pp. 268–269. - Rose KN, Schwarzschild MS, Gomperts SN (2024). "Clearing the Smoke: What Protects Smokers from Parkinson's Disease?". Movement Disorders. 39 (2): 267–272. doi:10.1002/mds.29707. PMC 10923097. PMID 38226487. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10923097

  123. Grotewolda & Albina 2024, p. 3. - Grotewolda N, Albina RL (2024). "Update: Protective and risk factors for Parkinson disease". Parkinsonism and Related Disorders. 125: 1–12. doi:10.1016/j.parkreldis.2024.107026. PMC 11846500. PMID 38879999. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846500

  124. Grotewolda & Albina 2024, p. 3. - Grotewolda N, Albina RL (2024). "Update: Protective and risk factors for Parkinson disease". Parkinsonism and Related Disorders. 125: 1–12. doi:10.1016/j.parkreldis.2024.107026. PMC 11846500. PMID 38879999. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846500

  125. Singh, Tripathi & Singh 2021, p. 10. - Singh A, Tripathi P, Singh S (2021). "Neuroinflammatory responses in Parkinson's disease: relevance of Ibuprofen in therapeutics". Inflammopharmacology. 29 (1): 5–14. doi:10.1007/s10787-020-00764-w. PMID 33052479. https://doi.org/10.1007%2Fs10787-020-00764-w

  126. Ascherio & Schwarzschild 2016, pp. 1265–1266. - Ascherio A, Schwarzschild MA (2016). "The epidemiology of Parkinson's disease: risk factors and prevention". Lancet Neurology. 15 (12): 1257–1272. doi:10.1016/S1474-4422(16)30230-7. PMID 27751556. https://doi.org/10.1016%2FS1474-4422%2816%2930230-7

  127. Lin et al. 2024, p. 1. - Lin J, Pang D, Li C, Ou R, Yu Y, Cui Y, et al. (2024). "Calcium channel blockers and Parkinson's disease: a systematic review and meta-analysis". Therapeutic Advances in Neurological Disorders. 17: 1–8. doi:10.1177/17562864241252713. PMC 11104025. PMID 38770432. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104025

  128. Grotewolda & Albina 2024, p. 2. - Grotewolda N, Albina RL (2024). "Update: Protective and risk factors for Parkinson disease". Parkinsonism and Related Disorders. 125: 1–12. doi:10.1016/j.parkreldis.2024.107026. PMC 11846500. PMID 38879999. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846500

  129. Ascherio & Schwarzschild 2016, p. 1263. - Ascherio A, Schwarzschild MA (2016). "The epidemiology of Parkinson's disease: risk factors and prevention". Lancet Neurology. 15 (12): 1257–1272. doi:10.1016/S1474-4422(16)30230-7. PMID 27751556. https://doi.org/10.1016%2FS1474-4422%2816%2930230-7

  130. Ascherio & Schwarzschild 2016, p. 1261. - Ascherio A, Schwarzschild MA (2016). "The epidemiology of Parkinson's disease: risk factors and prevention". Lancet Neurology. 15 (12): 1257–1272. doi:10.1016/S1474-4422(16)30230-7. PMID 27751556. https://doi.org/10.1016%2FS1474-4422%2816%2930230-7

  131. Pardo-Moreno et al. 2023, p. 3. - Pardo-Moreno T, García-Morales V, Suleiman-Martos S, Rivas-Domínguez A, Mohamed-Mohamed H, Ramos-Rodríguez JJ, et al. (February 2023). "Current Treatments and New, Tentative Therapies for Parkinson's Disease". Pharmaceutics. 15 (3): 770. doi:10.3390/pharmaceutics15030770. hdl:10481/81647. PMC 10051786. PMID 36986631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051786

  132. Vázquez-Vélez & Zoghbi 2021, p. 88. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  133. Vázquez-Vélez & Zoghbi 2021, p. 88. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  134. Vázquez-Vélez & Zoghbi 2021, p. 88. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  135. Dickson 2018, p. S32. - Dickson DW (January 2018). "Neuropathology of Parkinson disease". Parkinsonism and Related Disorders. 46 (S1): S30 – S33. doi:10.1016/j.parkreldis.2017.07.033. PMC 5718208. PMID 28780180. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718208

  136. Ye et al. 2023, p. 98. - Ye H, Robak LA, Yu M, Cykowski M, Shulman JM (January 2023). "Genetics and Pathogenesis of Parkinson's Syndrome". Annual Review of Pathology: Mechanisms of Disease. 18: 95–121. doi:10.1146/annurev-pathmechdis-031521-034145. PMC 10290758. PMID 36100231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290758

  137. Ye et al. 2023, p. 98. - Ye H, Robak LA, Yu M, Cykowski M, Shulman JM (January 2023). "Genetics and Pathogenesis of Parkinson's Syndrome". Annual Review of Pathology: Mechanisms of Disease. 18: 95–121. doi:10.1146/annurev-pathmechdis-031521-034145. PMC 10290758. PMID 36100231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290758

  138. Vázquez-Vélez & Zoghbi 2021, p. 93. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  139. Henderson, Trojanowski & Lee 2019, p. 2. - Henderson MX, Trojanowski JQ, Lee VM (September 2019). "α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies". Neuroscience Letters. 709: 1–10. doi:10.1016/j.neulet.2019.134316. PMC 7014913. PMID 31170426. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014913

  140. Dickson 2018, p. S32. - Dickson DW (January 2018). "Neuropathology of Parkinson disease". Parkinsonism and Related Disorders. 46 (S1): S30 – S33. doi:10.1016/j.parkreldis.2017.07.033. PMC 5718208. PMID 28780180. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718208

  141. Ye et al. 2023, p. 96. - Ye H, Robak LA, Yu M, Cykowski M, Shulman JM (January 2023). "Genetics and Pathogenesis of Parkinson's Syndrome". Annual Review of Pathology: Mechanisms of Disease. 18: 95–121. doi:10.1146/annurev-pathmechdis-031521-034145. PMC 10290758. PMID 36100231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290758

  142. Henderson, Trojanowski & Lee 2019, p. 2. - Henderson MX, Trojanowski JQ, Lee VM (September 2019). "α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies". Neuroscience Letters. 709: 1–10. doi:10.1016/j.neulet.2019.134316. PMC 7014913. PMID 31170426. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014913

  143. Chen, Gu & Wang 2022. - Chen R, Gu X, Wang X (April 2022). "α-Synuclein in Parkinson's disease and advances in detection". Clinica Chimica Acta; International Journal of Clinical Chemistry. 529: 76–86. doi:10.1016/j.cca.2022.02.006. PMID 35176268. https://doi.org/10.1016%2Fj.cca.2022.02.006

  144. Chen, Gu & Wang 2022. - Chen R, Gu X, Wang X (April 2022). "α-Synuclein in Parkinson's disease and advances in detection". Clinica Chimica Acta; International Journal of Clinical Chemistry. 529: 76–86. doi:10.1016/j.cca.2022.02.006. PMID 35176268. https://doi.org/10.1016%2Fj.cca.2022.02.006

  145. Menšíková et al. 2022, p. 8. - Menšíková K, Matěj R, Colosimo C, Rosales R, Tučková L, Ehrmann J, et al. (January 2022). "Lewy body disease or diseases with Lewy bodies?". npj Parkinson's Disease. 8 (1): 3. doi:10.1038/s41531-021-00273-9. PMC 8748648. PMID 35013341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748648

  146. Borghammer 2018, p. 5. - Borghammer P (January 2018). "How does parkinson's disease begin? Perspectives on neuroanatomical pathways, prions, and histology". Movement Disorders. 33 (1): 48–57. doi:10.1002/mds.27138. PMID 28843014. https://doi.org/10.1002%2Fmds.27138

  147. Borghammer 2018, p. 5. - Borghammer P (January 2018). "How does parkinson's disease begin? Perspectives on neuroanatomical pathways, prions, and histology". Movement Disorders. 33 (1): 48–57. doi:10.1002/mds.27138. PMID 28843014. https://doi.org/10.1002%2Fmds.27138

  148. Vázquez-Vélez & Zoghbi 2021, p. 95. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  149. Vázquez-Vélez & Zoghbi 2021, p. 89. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  150. Menšíková et al. 2022, p. 6. - Menšíková K, Matěj R, Colosimo C, Rosales R, Tučková L, Ehrmann J, et al. (January 2022). "Lewy body disease or diseases with Lewy bodies?". npj Parkinson's Disease. 8 (1): 3. doi:10.1038/s41531-021-00273-9. PMC 8748648. PMID 35013341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748648

  151. Vázquez-Vélez & Zoghbi 2021, pp. 96–99. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  152. Vázquez-Vélez & Zoghbi 2021, pp. 96–99. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  153. Vázquez-Vélez & Zoghbi 2021, pp. 96–97. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  154. Vázquez-Vélez & Zoghbi 2021, pp. 98–99. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  155. Vázquez-Vélez & Zoghbi 2021, p. 99. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  156. Vázquez-Vélez & Zoghbi 2021, p. 100. - Vázquez-Vélez GE, Zoghbi HY (July 2021). "Parkinson's Disease Genetics and Pathophysiology". Annual Review of Neuroscience. 44: 87–108. doi:10.1146/annurev-neuro-100720-034518. PMID 34236893. https://doi.org/10.1146%2Fannurev-neuro-100720-034518

  157. Ye et al. 2023, p. 112. - Ye H, Robak LA, Yu M, Cykowski M, Shulman JM (January 2023). "Genetics and Pathogenesis of Parkinson's Syndrome". Annual Review of Pathology: Mechanisms of Disease. 18: 95–121. doi:10.1146/annurev-pathmechdis-031521-034145. PMC 10290758. PMID 36100231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290758

  158. Borsche et al. 2021, p. 45. - Borsche M, Pereira SL, Klein C, Grünewald A (February 2021). "Mitochondria and Parkinson's Disease: Clinical, Molecular, and Translational Aspects". Journal of Parkinson's Disease. 11 (1): 45–60. doi:10.3233/JPD-201981. PMC 7990451. PMID 33074190. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990451

  159. Borsche et al. 2021, p. 46, 51–53. - Borsche M, Pereira SL, Klein C, Grünewald A (February 2021). "Mitochondria and Parkinson's Disease: Clinical, Molecular, and Translational Aspects". Journal of Parkinson's Disease. 11 (1): 45–60. doi:10.3233/JPD-201981. PMC 7990451. PMID 33074190. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990451

  160. Borsche et al. 2021, p. 45. - Borsche M, Pereira SL, Klein C, Grünewald A (February 2021). "Mitochondria and Parkinson's Disease: Clinical, Molecular, and Translational Aspects". Journal of Parkinson's Disease. 11 (1): 45–60. doi:10.3233/JPD-201981. PMC 7990451. PMID 33074190. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990451

  161. Borsche et al. 2021, pp. 47–49. - Borsche M, Pereira SL, Klein C, Grünewald A (February 2021). "Mitochondria and Parkinson's Disease: Clinical, Molecular, and Translational Aspects". Journal of Parkinson's Disease. 11 (1): 45–60. doi:10.3233/JPD-201981. PMC 7990451. PMID 33074190. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990451

  162. Morris et al. 2024. - Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (January 2024). "The pathogenesis of Parkinson's disease". Lancet. 403 (10423): 293–304. doi:10.1016/s0140-6736(23)01478-2. PMID 38245249. https://discovery.ucl.ac.uk/id/eprint/10189143

  163. Morris et al. 2024. - Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (January 2024). "The pathogenesis of Parkinson's disease". Lancet. 403 (10423): 293–304. doi:10.1016/s0140-6736(23)01478-2. PMID 38245249. https://discovery.ucl.ac.uk/id/eprint/10189143

  164. Tan et al. 2020, p. 303. - Tan E, Chao Y, West A, Chan L, Poewe W, Jankovic J (April 2020). "Parkinson disease and the immune system - associations, mechanisms and therapeutics". Nature Reviews Neurology. 16 (6): 303–318. doi:10.1038/s41582-020-0344-4. PMID 32332985. https://doi.org/10.1038%2Fs41582-020-0344-4

  165. Tan et al. 2020, p. 304. - Tan E, Chao Y, West A, Chan L, Poewe W, Jankovic J (April 2020). "Parkinson disease and the immune system - associations, mechanisms and therapeutics". Nature Reviews Neurology. 16 (6): 303–318. doi:10.1038/s41582-020-0344-4. PMID 32332985. https://doi.org/10.1038%2Fs41582-020-0344-4

  166. Morris et al. 2024. - Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (January 2024). "The pathogenesis of Parkinson's disease". Lancet. 403 (10423): 293–304. doi:10.1016/s0140-6736(23)01478-2. PMID 38245249. https://discovery.ucl.ac.uk/id/eprint/10189143

  167. Armstrong & Okun 2020, p. 548. - Armstrong MJ, Okun MS (February 2020). "Diagnosis and Treatment of Parkinson Disease: A Review". JAMA. 323 (6): 548–560. doi:10.1001/jama.2019.22360. PMID 32044947. S2CID 211079287. https://doi.org/10.1001%2Fjama.2019.22360

  168. Rizzo et al. 2016, p. 1. - Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G (February 2016). "Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis". Neurology. 86 (6): 566–576. doi:10.1212/WNL.0000000000002350. PMID 26764028. https://doi.org/10.1212%2FWNL.0000000000002350

  169. Rizzo et al. 2016, p. 1. - Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G (February 2016). "Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis". Neurology. 86 (6): 566–576. doi:10.1212/WNL.0000000000002350. PMID 26764028. https://doi.org/10.1212%2FWNL.0000000000002350

  170. Ugrumov 2020, p. 997. - Ugrumov M (June 2020). "Development of early diagnosis of Parkinson's disease: Illusion or reality?". CNS Neuroscience and Therapeutics. 26 (10): 997–1009. doi:10.1111/cns.13429. PMC 7539842. PMID 32597012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539842

  171. Armstrong & Okun 2020, p. 551. - Armstrong MJ, Okun MS (February 2020). "Diagnosis and Treatment of Parkinson Disease: A Review". JAMA. 323 (6): 548–560. doi:10.1001/jama.2019.22360. PMID 32044947. S2CID 211079287. https://doi.org/10.1001%2Fjama.2019.22360

  172. Tolosa et al. 2021, p. 391. - Tolosa E, Garrido A, Scholz SW, Poewe W (May 2021). "Challenges in the diagnosis of Parkinson's disease". Lancet Neurology. 20 (5): 385–397. doi:10.1016/S1474-4422(21)00030-2. PMC 8185633. PMID 33894193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185633

  173. Armstrong & Okun 2020, pp. 551–552. - Armstrong MJ, Okun MS (February 2020). "Diagnosis and Treatment of Parkinson Disease: A Review". JAMA. 323 (6): 548–560. doi:10.1001/jama.2019.22360. PMID 32044947. S2CID 211079287. https://doi.org/10.1001%2Fjama.2019.22360

  174. Armstrong & Okun 2020, pp. 551–552. - Armstrong MJ, Okun MS (February 2020). "Diagnosis and Treatment of Parkinson Disease: A Review". JAMA. 323 (6): 548–560. doi:10.1001/jama.2019.22360. PMID 32044947. S2CID 211079287. https://doi.org/10.1001%2Fjama.2019.22360

  175. Armstrong & Okun 2020, p. 551. - Armstrong MJ, Okun MS (February 2020). "Diagnosis and Treatment of Parkinson Disease: A Review". JAMA. 323 (6): 548–560. doi:10.1001/jama.2019.22360. PMID 32044947. S2CID 211079287. https://doi.org/10.1001%2Fjama.2019.22360

  176. Rizzo et al. 2016, p. 1. - Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G (February 2016). "Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis". Neurology. 86 (6): 566–576. doi:10.1212/WNL.0000000000002350. PMID 26764028. https://doi.org/10.1212%2FWNL.0000000000002350

  177. Rizzo et al. 2016, p. 1. - Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G (February 2016). "Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis". Neurology. 86 (6): 566–576. doi:10.1212/WNL.0000000000002350. PMID 26764028. https://doi.org/10.1212%2FWNL.0000000000002350

  178. Heim et al. 2017, p. 916. - Heim B, Krismer F, De Marzi R, Seppi K (August 2017). "Magnetic resonance imaging for the diagnosis of Parkinson's disease". Journal of Neural Transmission. 124 (8): 915–964. doi:10.1007/s00702-017-1717-8. PMC 5514207. PMID 28378231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514207

  179. Rizzo et al. 2016, p. 1. - Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G (February 2016). "Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis". Neurology. 86 (6): 566–576. doi:10.1212/WNL.0000000000002350. PMID 26764028. https://doi.org/10.1212%2FWNL.0000000000002350

  180. Bidesi et al. 2021, p. 660. - Bidesi NS, Andersen IV, Windhorst AD, Shalgunov V, Herth MM (November 2021). "The role of neuroimaging in Parkinson's disease". Journal of Neurochemistry. 159 (4): 660–689. doi:10.1111/jnc.15516. PMC 9291628. PMID 34532856. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291628

  181. Heim et al. 2017, p. 916. - Heim B, Krismer F, De Marzi R, Seppi K (August 2017). "Magnetic resonance imaging for the diagnosis of Parkinson's disease". Journal of Neural Transmission. 124 (8): 915–964. doi:10.1007/s00702-017-1717-8. PMC 5514207. PMID 28378231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514207

  182. Brooks 2010, p. 597. - Brooks DJ (April 2010). "Imaging approaches to Parkinson disease". Journal of Nuclear Medicine. 51 (4): 596–609. doi:10.2967/jnumed.108.059998. PMID 20351351. https://doi.org/10.2967%2Fjnumed.108.059998

  183. Tolosa et al. 2021, p. 392. - Tolosa E, Garrido A, Scholz SW, Poewe W (May 2021). "Challenges in the diagnosis of Parkinson's disease". Lancet Neurology. 20 (5): 385–397. doi:10.1016/S1474-4422(21)00030-2. PMC 8185633. PMID 33894193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185633

  184. Heim et al. 2017, p. 916. - Heim B, Krismer F, De Marzi R, Seppi K (August 2017). "Magnetic resonance imaging for the diagnosis of Parkinson's disease". Journal of Neural Transmission. 124 (8): 915–964. doi:10.1007/s00702-017-1717-8. PMC 5514207. PMID 28378231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514207

  185. Bidesi et al. 2021, p. 665. - Bidesi NS, Andersen IV, Windhorst AD, Shalgunov V, Herth MM (November 2021). "The role of neuroimaging in Parkinson's disease". Journal of Neurochemistry. 159 (4): 660–689. doi:10.1111/jnc.15516. PMC 9291628. PMID 34532856. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291628

  186. Suwijn et al. 2015. - Suwijn SR, van Boheemen CJ, de Haan RJ, Tissingh G, Booij J, de Bie RM (2015). "The diagnostic accuracy of dopamine transporter SPECT imaging to detect nigrostriatal cell loss in patients with Parkinson's disease or clinically uncertain parkinsonism: a systematic review". EJNMMI Research. 5: 12. doi:10.1186/s13550-015-0087-1. PMC 4385258. PMID 25853018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385258

  187. Bidesi et al. 2021, pp. 664–672. - Bidesi NS, Andersen IV, Windhorst AD, Shalgunov V, Herth MM (November 2021). "The role of neuroimaging in Parkinson's disease". Journal of Neurochemistry. 159 (4): 660–689. doi:10.1111/jnc.15516. PMC 9291628. PMID 34532856. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291628

  188. Armstrong & Okun 2020, p. 552. - Armstrong MJ, Okun MS (February 2020). "Diagnosis and Treatment of Parkinson Disease: A Review". JAMA. 323 (6): 548–560. doi:10.1001/jama.2019.22360. PMID 32044947. S2CID 211079287. https://doi.org/10.1001%2Fjama.2019.22360

  189. Heim et al. 2017, p. 915. - Heim B, Krismer F, De Marzi R, Seppi K (August 2017). "Magnetic resonance imaging for the diagnosis of Parkinson's disease". Journal of Neural Transmission. 124 (8): 915–964. doi:10.1007/s00702-017-1717-8. PMC 5514207. PMID 28378231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514207

  190. Tolosa et al. 2021, p. 389. - Tolosa E, Garrido A, Scholz SW, Poewe W (May 2021). "Challenges in the diagnosis of Parkinson's disease". Lancet Neurology. 20 (5): 385–397. doi:10.1016/S1474-4422(21)00030-2. PMC 8185633. PMID 33894193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185633

  191. Caproni & Colosimo 2020, p. 21. - Caproni S, Colosimo C (February 2020). "Diagnosis and Differential Diagnosis of Parkinson Disease". Clinical Geriatric Medicine. 36 (1): 13–24. doi:10.1016/j.cger.2019.09.014. PMID 31733693. https://doi.org/10.1016%2Fj.cger.2019.09.014

  192. Tolosa et al. 2021, p. 390. - Tolosa E, Garrido A, Scholz SW, Poewe W (May 2021). "Challenges in the diagnosis of Parkinson's disease". Lancet Neurology. 20 (5): 385–397. doi:10.1016/S1474-4422(21)00030-2. PMC 8185633. PMID 33894193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185633

  193. Caproni & Colosimo 2020, pp. 15, 21. - Caproni S, Colosimo C (February 2020). "Diagnosis and Differential Diagnosis of Parkinson Disease". Clinical Geriatric Medicine. 36 (1): 13–24. doi:10.1016/j.cger.2019.09.014. PMID 31733693. https://doi.org/10.1016%2Fj.cger.2019.09.014

  194. Tolosa et al. 2021, pp. 390–391. - Tolosa E, Garrido A, Scholz SW, Poewe W (May 2021). "Challenges in the diagnosis of Parkinson's disease". Lancet Neurology. 20 (5): 385–397. doi:10.1016/S1474-4422(21)00030-2. PMC 8185633. PMID 33894193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185633

  195. Caproni & Colosimo 2020, p. 14. - Caproni S, Colosimo C (February 2020). "Diagnosis and Differential Diagnosis of Parkinson Disease". Clinical Geriatric Medicine. 36 (1): 13–24. doi:10.1016/j.cger.2019.09.014. PMID 31733693. https://doi.org/10.1016%2Fj.cger.2019.09.014

  196. Tolosa et al. 2021, p. 392. - Tolosa E, Garrido A, Scholz SW, Poewe W (May 2021). "Challenges in the diagnosis of Parkinson's disease". Lancet Neurology. 20 (5): 385–397. doi:10.1016/S1474-4422(21)00030-2. PMC 8185633. PMID 33894193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185633

  197. Tolosa et al. 2021, p. 392. - Tolosa E, Garrido A, Scholz SW, Poewe W (May 2021). "Challenges in the diagnosis of Parkinson's disease". Lancet Neurology. 20 (5): 385–397. doi:10.1016/S1474-4422(21)00030-2. PMC 8185633. PMID 33894193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185633

  198. Tolosa et al. 2021, p. 391. - Tolosa E, Garrido A, Scholz SW, Poewe W (May 2021). "Challenges in the diagnosis of Parkinson's disease". Lancet Neurology. 20 (5): 385–397. doi:10.1016/S1474-4422(21)00030-2. PMC 8185633. PMID 33894193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185633

  199. Simon, Greenberg & Aminoff 2017. - Simon RP, Greenberg D, Aminoff MJ (2017). Lange Clinical Neurology (10th ed.). McGraw-Hill. ISBN 978-1-2598-6172-7.

  200. Greenland & Barker 2018. - Greenland JC, Barker RA (2018). "Chapter 6: The Differential Diagnosis of Parkinson's Disease". In Stoker TB, Greenland JC (eds.). Parkinson's disease: Pathogenesis and Clinical Aspects. Codon Publications. pp. 109–128. doi:10.15586/codonpublications.parkinsonsdisease.2018.ch6. ISBN 978-0-9944-3816-4. PMID 30702839. S2CID 80908095. https://exonpublications.com/index.php/exon/article/view/191/348

  201. Crotty & Schwarzschild 2020, p. 1. - Crotty GF, Schwarzschild MA (2020). "Chasing Protection in Parkinson's Disease: Does Exercise Reduce Risk and Progression?". Frontiers in Aging Neuroscience. 12: 186. doi:10.3389/fnagi.2020.00186. PMC 7318912. PMID 32636740. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318912

  202. Fabbri et al. 2024, p. 2. - Fabbri M, Rascol O, Foltynie T, Carroll C, Postuma RB, Porcher R, et al. (2024). "Advantages and Challenges of Platform Trials for Disease Modifying Therapies in Parkinson's Disease". Movement Disorders. 39 (9): 1468–1477. doi:10.1002/mds.29899. PMID 38925541. https://doi.org/10.1002%2Fmds.29899

  203. Connolly & Lang 2014. - Connolly BS, Lang AE (April 2014). "Pharmacological treatment of Parkinson disease: a review". JAMA. 311 (16): 1670–1683. doi:10.1001/jama.2014.3654. PMID 24756517. S2CID 205058847. https://doi.org/10.1001%2Fjama.2014.3654

  204. de Bie et al. 2020, p. 3. - de Bie RM, Clarke CE, Espay AJ, Fox SH, Lang AE (March 2020). "Initiation of pharmacological therapy in Parkinson's disease: when, why, and how". Lancet Neurology. 19 (5): 452–461. doi:10.1016/S1474-4422(20)30036-3. PMID 32171387. https://doi.org/10.1016%2FS1474-4422%2820%2930036-3

  205. Connolly & Lang 2014. - Connolly BS, Lang AE (April 2014). "Pharmacological treatment of Parkinson disease: a review". JAMA. 311 (16): 1670–1683. doi:10.1001/jama.2014.3654. PMID 24756517. S2CID 205058847. https://doi.org/10.1001%2Fjama.2014.3654

  206. de Bie et al. 2020, pp. 1, 3. - de Bie RM, Clarke CE, Espay AJ, Fox SH, Lang AE (March 2020). "Initiation of pharmacological therapy in Parkinson's disease: when, why, and how". Lancet Neurology. 19 (5): 452–461. doi:10.1016/S1474-4422(20)30036-3. PMID 32171387. https://doi.org/10.1016%2FS1474-4422%2820%2930036-3

  207. Connolly & Lang 2014. - Connolly BS, Lang AE (April 2014). "Pharmacological treatment of Parkinson disease: a review". JAMA. 311 (16): 1670–1683. doi:10.1001/jama.2014.3654. PMID 24756517. S2CID 205058847. https://doi.org/10.1001%2Fjama.2014.3654

  208. Kobylecki 2020, p. 395. - Kobylecki C (July 2020). "Update on the diagnosis and management of Parkinson's disease". Clinical Medicine. 20 (4): 393–398. doi:10.7861/clinmed.2020-0220. PMC 7385761. PMID 32675145. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385761

  209. de Bie et al. 2020, p. 4. - de Bie RM, Clarke CE, Espay AJ, Fox SH, Lang AE (March 2020). "Initiation of pharmacological therapy in Parkinson's disease: when, why, and how". Lancet Neurology. 19 (5): 452–461. doi:10.1016/S1474-4422(20)30036-3. PMID 32171387. https://doi.org/10.1016%2FS1474-4422%2820%2930036-3

  210. Limousin & Foltynie 2019, p. 234. - Limousin P, Foltynie T (April 2019). "Long-term outcomes of deep brain stimulation in Parkinson disease". Nature Reviews Neurology. 14 (4): 234–242. doi:10.1038/s41582-019-0145-9. PMID 30778210. https://discovery.ucl.ac.uk/id/eprint/10068818/

  211. Bronstein et al. 2011, p. 169. - Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. (February 2011). "Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues". Archives of Neurology. 68 (2): 165. doi:10.1001/archneurol.2010.260. PMC 4523130. PMID 20937936. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523130

  212. de Bie et al. 2020, pp. 1, 3. - de Bie RM, Clarke CE, Espay AJ, Fox SH, Lang AE (March 2020). "Initiation of pharmacological therapy in Parkinson's disease: when, why, and how". Lancet Neurology. 19 (5): 452–461. doi:10.1016/S1474-4422(20)30036-3. PMID 32171387. https://doi.org/10.1016%2FS1474-4422%2820%2930036-3

  213. Tambasco, Romoli & Calabresi 2018, p. 1239. - Tambasco N, Romoli M, Calabresi P (October 2018). "Levodopa in Parkinson's Disease: Current Status and Future Developments". Current Neuropharmacology. 16 (8): 1239–1252. doi:10.2174/1570159X15666170510143821. PMC 6187751. PMID 28494719. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187751

  214. LeWitt & Fahn 2016, p. S5-S6. - LeWitt PA, Fahn S (April 2016). "Levodopa therapy for Parkinson disease: A look backward and forward". Neurology. 86 (14): S3 – S12. doi:10.1212/WNL.0000000000002509. PMC 6187751. PMID 28494719. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187751

  215. Tambasco, Romoli & Calabresi 2018, pp. 1239–1240. - Tambasco N, Romoli M, Calabresi P (October 2018). "Levodopa in Parkinson's Disease: Current Status and Future Developments". Current Neuropharmacology. 16 (8): 1239–1252. doi:10.2174/1570159X15666170510143821. PMC 6187751. PMID 28494719. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187751

  216. Tambasco, Romoli & Calabresi 2018, p. 1240. - Tambasco N, Romoli M, Calabresi P (October 2018). "Levodopa in Parkinson's Disease: Current Status and Future Developments". Current Neuropharmacology. 16 (8): 1239–1252. doi:10.2174/1570159X15666170510143821. PMC 6187751. PMID 28494719. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187751

  217. Leta et al. 2023, p. 1466. - Leta V, Klingelhoefer L, Longardner K, Campagnolo M, Levent HÇ, Aureli F, et al. (May 2023). "Gastrointestinal barriers to levodopa transport and absorption in Parkinson's disease". European Journal of Neurology. 30 (5): 1465–1480. doi:10.1111/ene.15734. hdl:11577/3511466. PMID 36757008. https://doi.org/10.1111%2Fene.15734

  218. Leta et al. 2023, pp. 1466–1468. - Leta V, Klingelhoefer L, Longardner K, Campagnolo M, Levent HÇ, Aureli F, et al. (May 2023). "Gastrointestinal barriers to levodopa transport and absorption in Parkinson's disease". European Journal of Neurology. 30 (5): 1465–1480. doi:10.1111/ene.15734. hdl:11577/3511466. PMID 36757008. https://doi.org/10.1111%2Fene.15734

  219. Tambasco, Romoli & Calabresi 2018, p. 1241. - Tambasco N, Romoli M, Calabresi P (October 2018). "Levodopa in Parkinson's Disease: Current Status and Future Developments". Current Neuropharmacology. 16 (8): 1239–1252. doi:10.2174/1570159X15666170510143821. PMC 6187751. PMID 28494719. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187751

  220. These inhibitors do not cross the blood brain barrier and thus do not prevent levodopa metabolism there.[158] /wiki/Blood_brain_barrier

  221. de Bie et al. 2020, pp. 1, 3–4. - de Bie RM, Clarke CE, Espay AJ, Fox SH, Lang AE (March 2020). "Initiation of pharmacological therapy in Parkinson's disease: when, why, and how". Lancet Neurology. 19 (5): 452–461. doi:10.1016/S1474-4422(20)30036-3. PMID 32171387. https://doi.org/10.1016%2FS1474-4422%2820%2930036-3

  222. Jing et al. 2023, p. 1226. - Jing X, Yang H, Taximaimaiti R, Wang X (2023). "Advances in the Therapeutic Use of Non-Ergot Dopamine Agonists in the Treatment of Motor and Non-Motor Symptoms of Parkinson's Disease". Current Neuropharmacology. 21 (5): 1224–1240. doi:10.2174/1570159X20666220915091022. PMC 10286583. PMID 36111769. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286583

  223. Jing et al. 2023, p. 1226. - Jing X, Yang H, Taximaimaiti R, Wang X (2023). "Advances in the Therapeutic Use of Non-Ergot Dopamine Agonists in the Treatment of Motor and Non-Motor Symptoms of Parkinson's Disease". Current Neuropharmacology. 21 (5): 1224–1240. doi:10.2174/1570159X20666220915091022. PMC 10286583. PMID 36111769. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286583

  224. Kobylecki 2020, p. 396. - Kobylecki C (July 2020). "Update on the diagnosis and management of Parkinson's disease". Clinical Medicine. 20 (4): 393–398. doi:10.7861/clinmed.2020-0220. PMC 7385761. PMID 32675145. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385761

  225. Kobylecki 2020, p. 395. - Kobylecki C (July 2020). "Update on the diagnosis and management of Parkinson's disease". Clinical Medicine. 20 (4): 393–398. doi:10.7861/clinmed.2020-0220. PMC 7385761. PMID 32675145. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385761

  226. Kobylecki 2020, p. 395. - Kobylecki C (July 2020). "Update on the diagnosis and management of Parkinson's disease". Clinical Medicine. 20 (4): 393–398. doi:10.7861/clinmed.2020-0220. PMC 7385761. PMID 32675145. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385761

  227. de Bie et al. 2020, p. 1. - de Bie RM, Clarke CE, Espay AJ, Fox SH, Lang AE (March 2020). "Initiation of pharmacological therapy in Parkinson's disease: when, why, and how". Lancet Neurology. 19 (5): 452–461. doi:10.1016/S1474-4422(20)30036-3. PMID 32171387. https://doi.org/10.1016%2FS1474-4422%2820%2930036-3

  228. de Bie et al. 2020, p. 1. - de Bie RM, Clarke CE, Espay AJ, Fox SH, Lang AE (March 2020). "Initiation of pharmacological therapy in Parkinson's disease: when, why, and how". Lancet Neurology. 19 (5): 452–461. doi:10.1016/S1474-4422(20)30036-3. PMID 32171387. https://doi.org/10.1016%2FS1474-4422%2820%2930036-3

  229. Robakis & Fahn 2015, pp. 433–434. - Robakis D, Fahn S (June 2015). "Defining the Role of the Monoamine Oxidase-B Inhibitors for Parkinson's Disease". CNS Drugs. 29 (6): 433–441. doi:10.1007/s40263-015-0249-8. PMID 26164425. https://doi.org/10.1007%2Fs40263-015-0249-8

  230. Robakis & Fahn 2015, p. 433. - Robakis D, Fahn S (June 2015). "Defining the Role of the Monoamine Oxidase-B Inhibitors for Parkinson's Disease". CNS Drugs. 29 (6): 433–441. doi:10.1007/s40263-015-0249-8. PMID 26164425. https://doi.org/10.1007%2Fs40263-015-0249-8

  231. Armstrong & Okun 2020. - Armstrong MJ, Okun MS (February 2020). "Diagnosis and Treatment of Parkinson Disease: A Review". JAMA. 323 (6): 548–560. doi:10.1001/jama.2019.22360. PMID 32044947. S2CID 211079287. https://doi.org/10.1001%2Fjama.2019.22360

  232. Robakis & Fahn 2015, p. 435. - Robakis D, Fahn S (June 2015). "Defining the Role of the Monoamine Oxidase-B Inhibitors for Parkinson's Disease". CNS Drugs. 29 (6): 433–441. doi:10.1007/s40263-015-0249-8. PMID 26164425. https://doi.org/10.1007%2Fs40263-015-0249-8

  233. Tanner & Ostrem 2024. - Tanner CM, Ostrem JL (August 2024). "Parkinson's Disease". New England Journal of Medicine. 391 (5): 442–452. doi:10.1056/NEJMra2401857. PMID 39083773. https://doi.org/10.1056%2FNEJMra2401857

  234. The National Collaborating Centre for Chronic Conditions. - The National Collaborating Centre for Chronic Conditions, ed. (2006). "Non-motor features of Parkinson's disease". Parkinson's Disease. London: Royal College of Physicians. pp. 113–133. ISBN 978-1-8601-6283-1. Archived from the original on 24 September 2010. http://guidance.nice.org.uk/CG35/Guidance/pdf/English

  235. Seppi et al. 2019, pp. 183, 185, 188. - Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S, et al. (February 2019). "Update on treatments for nonmotor symptoms of Parkinson's disease—an evidence-based medicine review". Movement Disorders. 34 (2): 180–198. doi:10.1002/mds.27602. PMC 6916382. PMID 30653247. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916382

  236. Tanner & Ostrem 2024. - Tanner CM, Ostrem JL (August 2024). "Parkinson's Disease". New England Journal of Medicine. 391 (5): 442–452. doi:10.1056/NEJMra2401857. PMID 39083773. https://doi.org/10.1056%2FNEJMra2401857

  237. Elbers et al. 2015. - Elbers RG, Verhoef J, van Wegen EE, Berendse HW, Kwakkel G (October 2015). "Interventions for fatigue in Parkinson's disease". The Cochrane Database of Systematic Reviews (Review). 2015 (10): CD010925. doi:10.1002/14651858.CD010925.pub2. PMC 9240814. PMID 26447539. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240814

  238. Lozano, Tam & Lozano 2018, pp. 1–2. sfn error: no target: CITEREFLozanoTamLozano2018 (help)

  239. Lozano, Tam & Lozano 2018, p. 2. sfn error: no target: CITEREFLozanoTamLozano2018 (help)

  240. Bronstein et al. 2011, p. 165. - Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. (February 2011). "Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues". Archives of Neurology. 68 (2): 165. doi:10.1001/archneurol.2010.260. PMC 4523130. PMID 20937936. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523130

  241. Bronstein et al. 2011, p. 165. - Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. (February 2011). "Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues". Archives of Neurology. 68 (2): 165. doi:10.1001/archneurol.2010.260. PMC 4523130. PMID 20937936. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523130

  242. Lozano, Tam & Lozano 2018, p. 6. sfn error: no target: CITEREFLozanoTamLozano2018 (help)

  243. Moosa et al. 2019, pp. 1244–1249. sfn error: no target: CITEREFMoosaMartínez-FernándezEliasDel_Alamo2019 (help)

  244. Limousin & Foltynie 2019, p. 234. - Limousin P, Foltynie T (April 2019). "Long-term outcomes of deep brain stimulation in Parkinson disease". Nature Reviews Neurology. 14 (4): 234–242. doi:10.1038/s41582-019-0145-9. PMID 30778210. https://discovery.ucl.ac.uk/id/eprint/10068818/

  245. Limousin & Foltynie 2019, p. 234. - Limousin P, Foltynie T (April 2019). "Long-term outcomes of deep brain stimulation in Parkinson disease". Nature Reviews Neurology. 14 (4): 234–242. doi:10.1038/s41582-019-0145-9. PMID 30778210. https://discovery.ucl.ac.uk/id/eprint/10068818/

  246. Bronstein et al. 2011, p. 168. - Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. (February 2011). "Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues". Archives of Neurology. 68 (2): 165. doi:10.1001/archneurol.2010.260. PMC 4523130. PMID 20937936. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523130

  247. Bronstein et al. 2011, p. 169. - Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. (February 2011). "Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues". Archives of Neurology. 68 (2): 165. doi:10.1001/archneurol.2010.260. PMC 4523130. PMID 20937936. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523130

  248. Bronstein et al. 2011, p. 166. - Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. (February 2011). "Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues". Archives of Neurology. 68 (2): 165. doi:10.1001/archneurol.2010.260. PMC 4523130. PMID 20937936. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523130

  249. Tofani et al. 2020, p. 891. - Tofani M, Ranieri A, Fabbrini G, Berardi A, Pelosin E, Valente D, et al. (October 2020). "Efficacy of Occupational Therapy Interventions on Quality of Life in Patients with Parkinson's Disease: A Systematic Review and Meta-Analysis". Movement Disorders. 7 (8): 891–901. doi:10.1002/mdc3.13089. PMC 7604677. PMID 33163559. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604677

  250. Ernst et al. 2023. - Ernst M, Folkerts AK, Gollan R, Lieker E, Caro-Valenzuela J, Adams A, et al. (1 January 2023). "Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis". The Cochrane Database of Systematic Reviews. 2024 (4): CD013856. doi:10.1002/14651858.CD013856.pub3. PMC 9815433. PMID 38588457. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815433

  251. Crotty & Schwarzschild 2020, pp. 1–2. - Crotty GF, Schwarzschild MA (2020). "Chasing Protection in Parkinson's Disease: Does Exercise Reduce Risk and Progression?". Frontiers in Aging Neuroscience. 12: 186. doi:10.3389/fnagi.2020.00186. PMC 7318912. PMID 32636740. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318912

  252. Ahlskog 2011, p. 292. - Ahlskog JE (July 2011). "Does vigorous exercise have a neuroprotective effect in Parkinson disease?". Neurology. 77 (3): 288–294. doi:10.1212/wnl.0b013e318225ab66. PMC 3136051. PMID 21768599. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136051

  253. Ernst et al. 2023. - Ernst M, Folkerts AK, Gollan R, Lieker E, Caro-Valenzuela J, Adams A, et al. (1 January 2023). "Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis". The Cochrane Database of Systematic Reviews. 2024 (4): CD013856. doi:10.1002/14651858.CD013856.pub3. PMC 9815433. PMID 38588457. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815433

  254. Ahlskog 2011, p. 292. - Ahlskog JE (July 2011). "Does vigorous exercise have a neuroprotective effect in Parkinson disease?". Neurology. 77 (3): 288–294. doi:10.1212/wnl.0b013e318225ab66. PMC 3136051. PMID 21768599. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136051

  255. Costa et al. 2024. - Costa V, Prati JM, de Oliveira BS, Brito TS, da Rocha F, Gianlorenço T, et al. (November 2024). "Physical Exercise for Treating the Anxiety and Depression Symptoms of Parkinson's Disease: Systematic Review and Meta-Analysis". Journal of Geriatric Psychiatry and Neurology. 37 (6): 415–435. doi:10.1177/08919887241237223. ISSN 0891-9887. PMID 38445606. https://journals.sagepub.com/doi/10.1177/08919887241237223

  256. Ramazzina, Bernazzoli & Costantino 2017, pp. 620–623. - Ramazzina I, Bernazzoli B, Costantino C (March 2017). "Systematic review on strength training in Parkinson's disease: an unsolved question". Clinical Interventions in Aging. 12: 619–628. doi:10.2147/CIA.S131903. PMC 5384725. PMID 28408811. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384725

  257. Osborne et al. 2022, pp. 3, 7–10, 14. - Osborne JA, Botkin R, Colon-Semenza C, DeAngelis TR, Gallardo OG, Kosakowski H, et al. (April 2022). "Physical Therapist Management of Parkinson Disease: A Clinical Practice Guideline From the American Physical Therapy Association". Phys Ther. 102 (4). doi:10.1093/ptj/pzab302. PMC 9046970. PMID 34963139. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046970

  258. O'Sullivan & Schmitz 2007, pp. 873, 876. - O'Sullivan SB, Schmitz TJ (2007). "Parkinson's Disease". Physical Rehabilitation (5th ed.). F.A. Davis. ISBN 978-0-8036-1247-1.

  259. O'Sullivan & Schmitz 2007, p. 880. - O'Sullivan SB, Schmitz TJ (2007). "Parkinson's Disease". Physical Rehabilitation (5th ed.). F.A. Davis. ISBN 978-0-8036-1247-1.

  260. O'Sullivan & Schmitz 2007, p. 879. - O'Sullivan SB, Schmitz TJ (2007). "Parkinson's Disease". Physical Rehabilitation (5th ed.). F.A. Davis. ISBN 978-0-8036-1247-1.

  261. Okada et al. 2021, pp. 1619–1620, 1624–1625. - Okada Y, Ohtsuka H, Kamata N, Yamamoto S, Sawada M, Nakamura J, et al. (2021). "Effectiveness of Long-Term Physiotherapy in Parkinson's Disease: A Systematic Review and Meta-Analysis". J Parkinsons Dis. 11 (4): 1619–1630. doi:10.3233/JPD-212782. PMC 8609713. PMID 34366377. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609713

  262. McDonnell et al. 2018, pp. 607–609. - McDonnell MN, Rischbieth B, Schammer TT, Seaforth C, Shaw AJ, Phillips AC (May 2018). "Lee Silverman Voice Treatment (LSVT)-BIG to improve motor function in people with Parkinson's disease: a systematic review and meta-analysis". Clinical Rehabilitation. 32 (5): 607–618. doi:10.1177/0269215517734385. PMID 28980476. https://doi.org/10.1177%2F0269215517734385

  263. Tofani et al. 2020, pp. 891, 900. - Tofani M, Ranieri A, Fabbrini G, Berardi A, Pelosin E, Valente D, et al. (October 2020). "Efficacy of Occupational Therapy Interventions on Quality of Life in Patients with Parkinson's Disease: A Systematic Review and Meta-Analysis". Movement Disorders. 7 (8): 891–901. doi:10.1002/mdc3.13089. PMC 7604677. PMID 33163559. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604677

  264. Lister 2020, pp. 99–100. - Lister T (May 2020). "Nutrition and Lifestyle Interventions for Managing Parkinson's Disease: A Narrative Review". Journal of Movement Disorders. 13 (2): 97–104. doi:10.14802/jmd.20006. PMC 7280935. PMID 32498495. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7280935

  265. Barichella, Cereda & Pezzoli 2009, pp. 1888. - Barichella M, Cereda E, Pezzoli G (October 2009). "Major nutritional issues in the management of Parkinson's disease". Movement Disorders. 24 (13): 1881–1892. doi:10.1002/mds.22705. hdl:2434/67795. PMID 19691125. https://doi.org/10.1002%2Fmds.22705

  266. Barichella, Cereda & Pezzoli 2009, pp. 1888. - Barichella M, Cereda E, Pezzoli G (October 2009). "Major nutritional issues in the management of Parkinson's disease". Movement Disorders. 24 (13): 1881–1892. doi:10.1002/mds.22705. hdl:2434/67795. PMID 19691125. https://doi.org/10.1002%2Fmds.22705

  267. Barichella, Cereda & Pezzoli 2009, pp. 1887. - Barichella M, Cereda E, Pezzoli G (October 2009). "Major nutritional issues in the management of Parkinson's disease". Movement Disorders. 24 (13): 1881–1892. doi:10.1002/mds.22705. hdl:2434/67795. PMID 19691125. https://doi.org/10.1002%2Fmds.22705

  268. Pasricha, Guerrero-Lopez & Kuo 2024, p. 212. - Pasricha TS, Guerrero-Lopez IL, Kuo B (March 2024). "Management of Gastrointestinal Symptoms in Parkinson's Disease: A Comprehensive Review of Clinical Presentation, Workup, and Treatment". Movement Disorders. 58 (3): 211–220. doi:10.1097/MCG.0000000000001961. PMC 10855995. PMID 38260966. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855995

  269. Pasricha, Guerrero-Lopez & Kuo 2024, p. 216. - Pasricha TS, Guerrero-Lopez IL, Kuo B (March 2024). "Management of Gastrointestinal Symptoms in Parkinson's Disease: A Comprehensive Review of Clinical Presentation, Workup, and Treatment". Movement Disorders. 58 (3): 211–220. doi:10.1097/MCG.0000000000001961. PMC 10855995. PMID 38260966. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855995

  270. Ghoche 2012, pp. S2–S3. - Ghoche R (December 2012). "The conceptual framework of palliative care applied to advanced Parkinson's disease". Parkinsonism & Related Disorders. 18 (Suppl 3): S2 – S5. doi:10.1016/j.parkreldis.2012.06.012. PMID 22771241. https://doi.org/10.1016%2Fj.parkreldis.2012.06.012

  271. Wilcox 2010, p. 26. - Wilcox SK (January 2010). "Extending palliative care to patients with Parkinson's disease". British Journal of Hospital Medicine. 71 (1): 26–30. doi:10.12968/hmed.2010.71.1.45969. PMID 20081638. https://doi.org/10.12968%2Fhmed.2010.71.1.45969

  272. Ferrell et al. 2007, p. 741. - Ferrell B, Connor SR, Cordes A, Dahlin CM, Fine PG, Hutton N, et al. (June 2007). "The national agenda for quality palliative care: the National Consensus Project and the National Quality Forum". Journal of Pain and Symptom Management. 33 (6): 737–744. doi:10.1016/j.jpainsymman.2007.02.024. PMID 17531914. https://doi.org/10.1016%2Fj.jpainsymman.2007.02.024

  273. Ghoche 2012, pp. S2–S3. - Ghoche R (December 2012). "The conceptual framework of palliative care applied to advanced Parkinson's disease". Parkinsonism & Related Disorders. 18 (Suppl 3): S2 – S5. doi:10.1016/j.parkreldis.2012.06.012. PMID 22771241. https://doi.org/10.1016%2Fj.parkreldis.2012.06.012

  274. Ghoche 2012, p. S3. - Ghoche R (December 2012). "The conceptual framework of palliative care applied to advanced Parkinson's disease". Parkinsonism & Related Disorders. 18 (Suppl 3): S2 – S5. doi:10.1016/j.parkreldis.2012.06.012. PMID 22771241. https://doi.org/10.1016%2Fj.parkreldis.2012.06.012

  275. Casey 2013, pp. 20–22. - Casey G (August 2013). "Parkinson's disease: a long and difficult journey". Nursing New Zealand. 19 (7): 20–24. PMID 24195263. https://pubmed.ncbi.nlm.nih.gov/24195263

  276. Bernat & Beresford 2013, pp. 135, 137, 138. - Bernat JL, Beresford R (2013). Ethical and Legal Issues in Neurology. Newnes. ISBN 978-0-444-53504-7. https://books.google.com/books?id=YTY3AAAAQBAJ

  277. Corcoran & Kluger 2023, p. 956. - Corcoran J, Kluger BM (September 2023). "Prognosis in chronic progressive neurologic disease: a narrative review". Annals of Palliative Medicine. 12 (5): 952–962. doi:10.21037/apm-22-1338. PMID 37691335. https://doi.org/10.21037%2Fapm-22-1338

  278. Fereshtehnejad et al. 2017, p. 1967. - Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB (July 2017). "Clinical criteria for subtyping Parkinson's disease: biomarkers and longitudinal progression". Brain. 140 (7): 1959–1976. doi:10.1093/brain/awx118. PMID 28549077. https://doi.org/10.1093%2Fbrain%2Fawx118

  279. Defined as the onset of development of recurrent falls, wheelchair dependence, dementia, or facility placement.[201]

  280. Corcoran & Kluger 2023, p. 956. - Corcoran J, Kluger BM (September 2023). "Prognosis in chronic progressive neurologic disease: a narrative review". Annals of Palliative Medicine. 12 (5): 952–962. doi:10.21037/apm-22-1338. PMID 37691335. https://doi.org/10.21037%2Fapm-22-1338

  281. Tolosa et al. 2021, p. 385. - Tolosa E, Garrido A, Scholz SW, Poewe W (May 2021). "Challenges in the diagnosis of Parkinson's disease". Lancet Neurology. 20 (5): 385–397. doi:10.1016/S1474-4422(21)00030-2. PMC 8185633. PMID 33894193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185633

  282. Dommershuijsen et al. 2023, pp. 2–3. - Dommershuijsen LJ, Darweesh SK, Ben-Shlomo Y, Kluger BM, Bloem BR (October 2023). "The elephant in the room: critical reflections on mortality rates among individuals with Parkinson's disease". npj Parkinson's Disease. 9 (1): 145. doi:10.1038/s41531-023-00588-9. PMC 10587193. PMID 37857675. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587193

  283. Corcoran & Kluger 2023, p. 956. - Corcoran J, Kluger BM (September 2023). "Prognosis in chronic progressive neurologic disease: a narrative review". Annals of Palliative Medicine. 12 (5): 952–962. doi:10.21037/apm-22-1338. PMID 37691335. https://doi.org/10.21037%2Fapm-22-1338

  284. Murueta-Goyena, Muiño & Gómez-Esteban 2017, p. 26. - Murueta-Goyena A, Muiño O, Gómez-Esteban JC (March 2017). "Dementia in Parkinson's disease". Journal of the Neurological Sciences. 374: 26–31. doi:10.1016/j.jns.2017.01.012. PMID 28088312. https://doi.org/10.1016%2Fj.jns.2017.01.012

  285. Murueta-Goyena, Muiño & Gómez-Esteban 2017, p. 27. - Murueta-Goyena A, Muiño O, Gómez-Esteban JC (March 2017). "Dementia in Parkinson's disease". Journal of the Neurological Sciences. 374: 26–31. doi:10.1016/j.jns.2017.01.012. PMID 28088312. https://doi.org/10.1016%2Fj.jns.2017.01.012

  286. Caballol, Martí & Tolosa 2007, p. S358. - Caballol N, Martí MJ, Tolosa E (September 2007). "Cognitive dysfunction and dementia in Parkinson disease". Mov. Disord. 22 (Suppl 17): S358–66. doi:10.1002/mds.21677. PMID 18175397. S2CID 3229727. https://doi.org/10.1002%2Fmds.21677

  287. Murueta-Goyena, Muiño & Gómez-Esteban 2024, p. 395. - Murueta-Goyena A, Muiño O, Gómez-Esteban JC (April 2024). "Prognostic factors for falls in Parkinson's disease: a systematic review". Acta Neurologica Belgica. 124 (2): 395–406. doi:10.1007/s13760-023-02428-2. PMC 10965733. PMID 38015306. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965733

  288. Atalar, Oguz & Genc 2023, p. 163. - Atalar MS, Oguz O, Genc G (2023). "Hypokinetic Dysarthria in Parkinson's Disease: A Narrative Review". The Medical Bulletin of Sisle Etfal Hospital. 57 (2): 163–170. doi:10.14744/SEMB.2023.29560. PMC 10600629. PMID 37899809. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600629

  289. Chua et al. 2024, p. 1. - Chua WY, Wang JD, Chan CK, Chan L, Tan E (September 2024). "Risk of aspiration pneumonia and hospital mortality in Parkinson disease: A systematic review and meta-analysis". European Journal of Neurology. 31 (12): e16449. doi:10.1111/ene.16449. PMC 11555015. PMID 39236309. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555015

  290. Ben-Shlomo et al. 2024, p. 283. - Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, Luciano MS, Tanner C (2024). "The epidemiology of Parkinson's disease". The Lancet. 403 (10423): 283–292. doi:10.1016/S0140-6736(23)01419-8. PMC 11123577. PMID 38245248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123577

  291. Varden, Walker & O'Callaghan 2024, p. 1. - Varden R, Walker R, O'Callaghan A (2024). "No trend to rising rates: A review of Parkinson's prevalence studies in the United Kingdom". Parkinsonism & Related Disorders. 128: 1–6. doi:10.1016/j.parkreldis.2024.107015. PMID 38876845. https://doi.org/10.1016%2Fj.parkreldis.2024.107015

  292. Zhu et al. 2024, p. e464. - Zhu J, Cui Y, Zhang J, Yan R, Su D, Zhao D, et al. (2024). "Temporal trends in the prevalence of Parkinson's disease from 1980 to 2023: a systematic review and meta-analysis". The Lancet: Healthy Longetivity. 5: e464 – e479. doi:10.1016/j.parkreldis.2024.107015. PMID 38876845. https://doi.org/10.1016%2Fj.parkreldis.2024.107015

  293. Ben-Shlomo et al. 2024, p. 286. - Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, Luciano MS, Tanner C (2024). "The epidemiology of Parkinson's disease". The Lancet. 403 (10423): 283–292. doi:10.1016/S0140-6736(23)01419-8. PMC 11123577. PMID 38245248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123577

  294. Deliz, Tanner & Gonzalez-Latapi 2024, p. 166. - Deliz JR, Tanner CM, Gonzalez-Latapi P (2024). "Epidemiology of Parkinson's Disease: An Update". Current Neurology and Neuroscience Reports. 24 (6): 163–179. doi:10.1007/s11910-024-01339-w. PMID 38642225. https://doi.org/10.1007%2Fs11910-024-01339-w

  295. Ben-Shlomo et al. 2024, p. 284. - Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, Luciano MS, Tanner C (2024). "The epidemiology of Parkinson's disease". The Lancet. 403 (10423): 283–292. doi:10.1016/S0140-6736(23)01419-8. PMC 11123577. PMID 38245248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123577

  296. Dorsey et al. 2018, p. S4. - Dorsey ER, Sherer T, Okun MS, Bloem BR (2018). "The Emerging Evidence of the Parkinson Pandemic". Journal of Parkinson's Disease. 8 (s1): S3 – S8. doi:10.3233/JPD-181474. PMC 6311367. PMID 30584159. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311367

  297. Ben-Shlomo et al. 2024, p. 284. - Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, Luciano MS, Tanner C (2024). "The epidemiology of Parkinson's disease". The Lancet. 403 (10423): 283–292. doi:10.1016/S0140-6736(23)01419-8. PMC 11123577. PMID 38245248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123577

  298. Ben-Shlomo et al. 2024, p. 286. - Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, Luciano MS, Tanner C (2024). "The epidemiology of Parkinson's disease". The Lancet. 403 (10423): 283–292. doi:10.1016/S0140-6736(23)01419-8. PMC 11123577. PMID 38245248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123577

  299. Deliz, Tanner & Gonzalez-Latapi 2024, p. 165. - Deliz JR, Tanner CM, Gonzalez-Latapi P (2024). "Epidemiology of Parkinson's Disease: An Update". Current Neurology and Neuroscience Reports. 24 (6): 163–179. doi:10.1007/s11910-024-01339-w. PMID 38642225. https://doi.org/10.1007%2Fs11910-024-01339-w

  300. Ben-Shlomo et al. 2024, p. 285. - Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, Luciano MS, Tanner C (2024). "The epidemiology of Parkinson's disease". The Lancet. 403 (10423): 283–292. doi:10.1016/S0140-6736(23)01419-8. PMC 11123577. PMID 38245248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123577

  301. Li et al. 2019, p. 1. - Li G, Ma J, Cui S, He Y, Xiao Q, Liu J, et al. (2019). "Parkinson's disease in China: a forty-year growing track of bedside work". Translational Neurodegeneration. 8 (1): 22. doi:10.1186/s40035-019-0162-z. PMC 6668186. PMID 31384434. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668186

  302. Ben-Shlomo et al. 2024, p. 285. - Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, Luciano MS, Tanner C (2024). "The epidemiology of Parkinson's disease". The Lancet. 403 (10423): 283–292. doi:10.1016/S0140-6736(23)01419-8. PMC 11123577. PMID 38245248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123577

  303. Ben-Shlomo et al. 2024, p. 285. - Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, Luciano MS, Tanner C (2024). "The epidemiology of Parkinson's disease". The Lancet. 403 (10423): 283–292. doi:10.1016/S0140-6736(23)01419-8. PMC 11123577. PMID 38245248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123577

  304. Ben-Shlomo et al. 2024, p. 285. - Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, Luciano MS, Tanner C (2024). "The epidemiology of Parkinson's disease". The Lancet. 403 (10423): 283–292. doi:10.1016/S0140-6736(23)01419-8. PMC 11123577. PMID 38245248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123577

  305. Deliz, Tanner & Gonzalez-Latapi 2024, p. 165. - Deliz JR, Tanner CM, Gonzalez-Latapi P (2024). "Epidemiology of Parkinson's Disease: An Update". Current Neurology and Neuroscience Reports. 24 (6): 163–179. doi:10.1007/s11910-024-01339-w. PMID 38642225. https://doi.org/10.1007%2Fs11910-024-01339-w

  306. Deliz, Tanner & Gonzalez-Latapi 2024, pp. 164–165. - Deliz JR, Tanner CM, Gonzalez-Latapi P (2024). "Epidemiology of Parkinson's Disease: An Update". Current Neurology and Neuroscience Reports. 24 (6): 163–179. doi:10.1007/s11910-024-01339-w. PMID 38642225. https://doi.org/10.1007%2Fs11910-024-01339-w

  307. Deliz, Tanner & Gonzalez-Latapi 2024, pp. 164–165. - Deliz JR, Tanner CM, Gonzalez-Latapi P (2024). "Epidemiology of Parkinson's Disease: An Update". Current Neurology and Neuroscience Reports. 24 (6): 163–179. doi:10.1007/s11910-024-01339-w. PMID 38642225. https://doi.org/10.1007%2Fs11910-024-01339-w

  308. Goetz 2011, pp. 1–2. - Goetz CG (2011). "The history of Parkinson's disease: early clinical descriptions and neurological therapies". Cold Spring Harbor Perspectives in Medicine. 1 (1): a008862. doi:10.1101/cshperspect.a008862. PMC 3234454. PMID 22229124. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234454

  309. Lees 2007, p. S327. - Lees AJ (2007). "Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday". Movement Disorders. 22 (S17): S327 – S334. doi:10.1002/mds.21684. PMID 18175393. https://doi.org/10.1002%2Fmds.21684

  310. Goetz 2011, p. 2. - Goetz CG (2011). "The history of Parkinson's disease: early clinical descriptions and neurological therapies". Cold Spring Harbor Perspectives in Medicine. 1 (1): a008862. doi:10.1101/cshperspect.a008862. PMC 3234454. PMID 22229124. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234454

  311. Louis 1997, p. 1069. - Louis ED (1997). "The shaking palsy, the first forty-five years: a journey through the British literature". Movement Disorders. 12 (6): 1068–1072. doi:10.1002/mds.870120638. PMID 9399240. https://doi.org/10.1002%2Fmds.870120638

  312. Lees 2007, p. S328. - Lees AJ (2007). "Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday". Movement Disorders. 22 (S17): S327 – S334. doi:10.1002/mds.21684. PMID 18175393. https://doi.org/10.1002%2Fmds.21684

  313. Louis 1997, p. 1069. - Louis ED (1997). "The shaking palsy, the first forty-five years: a journey through the British literature". Movement Disorders. 12 (6): 1068–1072. doi:10.1002/mds.870120638. PMID 9399240. https://doi.org/10.1002%2Fmds.870120638

  314. Goetz 2011, p. 2. - Goetz CG (2011). "The history of Parkinson's disease: early clinical descriptions and neurological therapies". Cold Spring Harbor Perspectives in Medicine. 1 (1): a008862. doi:10.1101/cshperspect.a008862. PMC 3234454. PMID 22229124. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234454

  315. Lees 2007, p. S328. - Lees AJ (2007). "Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday". Movement Disorders. 22 (S17): S327 – S334. doi:10.1002/mds.21684. PMID 18175393. https://doi.org/10.1002%2Fmds.21684

  316. Goetz 2011, p. 2. - Goetz CG (2011). "The history of Parkinson's disease: early clinical descriptions and neurological therapies". Cold Spring Harbor Perspectives in Medicine. 1 (1): a008862. doi:10.1101/cshperspect.a008862. PMC 3234454. PMID 22229124. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234454

  317. Lees 2007, p. S328. - Lees AJ (2007). "Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday". Movement Disorders. 22 (S17): S327 – S334. doi:10.1002/mds.21684. PMID 18175393. https://doi.org/10.1002%2Fmds.21684

  318. Lees 2007, p. S329. - Lees AJ (2007). "Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday". Movement Disorders. 22 (S17): S327 – S334. doi:10.1002/mds.21684. PMID 18175393. https://doi.org/10.1002%2Fmds.21684

  319. Bereczki 2010, p. 290. - Bereczki D (2010). "The description of all four cardinal signs of Parkinson's disease in a Hungarian medical text published in 1690". Parkinsonism & Related Disorders. 16 (4): 290–293. doi:10.1016/j.parkreldis.2009.11.006. PMID 19948422. https://doi.org/10.1016%2Fj.parkreldis.2009.11.006

  320. Lees 2007, p. S328. - Lees AJ (2007). "Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday". Movement Disorders. 22 (S17): S327 – S334. doi:10.1002/mds.21684. PMID 18175393. https://doi.org/10.1002%2Fmds.21684

  321. Lees 2007, p. S328. - Lees AJ (2007). "Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday". Movement Disorders. 22 (S17): S327 – S334. doi:10.1002/mds.21684. PMID 18175393. https://doi.org/10.1002%2Fmds.21684

  322. Blonder 2018, pp. 3–4. - Blonder LX (2018). "Historical and cross-cultural perspectives on Parkinson's disease". Journal of Complementary and Integrative Medicine. 15 (3): 1–15. doi:10.1515/jcim-2016-0065. PMID 29738310. https://doi.org/10.1515%2Fjcim-2016-0065

  323. Blonder 2018, pp. 3–4. - Blonder LX (2018). "Historical and cross-cultural perspectives on Parkinson's disease". Journal of Complementary and Integrative Medicine. 15 (3): 1–15. doi:10.1515/jcim-2016-0065. PMID 29738310. https://doi.org/10.1515%2Fjcim-2016-0065

  324. Bereczki 2010, pp. 290–293. - Bereczki D (2010). "The description of all four cardinal signs of Parkinson's disease in a Hungarian medical text published in 1690". Parkinsonism & Related Disorders. 16 (4): 290–293. doi:10.1016/j.parkreldis.2009.11.006. PMID 19948422. https://doi.org/10.1016%2Fj.parkreldis.2009.11.006

  325. Blonder 2018, p. 3. - Blonder LX (2018). "Historical and cross-cultural perspectives on Parkinson's disease". Journal of Complementary and Integrative Medicine. 15 (3): 1–15. doi:10.1515/jcim-2016-0065. PMID 29738310. https://doi.org/10.1515%2Fjcim-2016-0065

  326. Sousa-Santos, Pozzobon & Teixeira 2024, pp. 1–2. - Sousa-Santos PE, Pozzobon PM, Teixeira IL (2024). "Frederic Lewy: how the two World Wars changed his life, work, and name". Arquivos de Neuro-Psiquiatri. 82 (3): 001–002. doi:10.1055/s-0044-1779692. PMC 10927365. PMID 38467394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927365

  327. Lees 2007, p. S331. - Lees AJ (2007). "Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday". Movement Disorders. 22 (S17): S327 – S334. doi:10.1002/mds.21684. PMID 18175393. https://doi.org/10.1002%2Fmds.21684

  328. Fahn 2008, p. S500–S501, S504–S505. - Fahn S (2008). "The history of dopamine and levodopa in the treatment of Parkinson's disease". Movement Disorders. 23 (S3): S497 – S508. doi:10.1002/mds.22028. PMID 18781671. https://doi.org/10.1002%2Fmds.22028

  329. Polymeropoulos et al. 1997. - Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. (June 1997). "Mutation in the alpha-synuclein gene identified in families with Parkinson's disease". Science. 276 (5321): 2045–2047. doi:10.1126/science.276.5321.2045. PMID 9197268. https://doi.org/10.1126%2Fscience.276.5321.2045

  330. Schulz-Schaeffer 2010, p. 131. - Schulz-Schaeffer WJ (2010). "The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia". Acta Neuropathologica. 120 (2): 131–143. doi:10.1007/s00401-010-0711-0. PMC 2892607. PMID 20563819. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892607

  331. Lanska 2010, p. 507. - Lanska DJ (2010). "Chapter 33: The history of movement disorders". Handbook of Clinical Neurology. 3. Vol. 95. History of Neurology. pp. 501–546. doi:10.1016/S0072-9752(08)02133-7. ISBN 978-0-444-52009-8. PMID 19892136. https://doi.org/10.1016%2FS0072-9752%2808%2902133-7

  332. Guridi & Lozano 1997, pp. 1180–1183. - Guridi J, Lozano AM (1997). "A brief history of pallidotomy". Neurosurgery. 41 (5): 1169–1180. doi:10.1097/00006123-199711000-00029. PMID 9361073. https://doi.org/10.1097%2F00006123-199711000-00029

  333. Fahn 2008, p. S497. - Fahn S (2008). "The history of dopamine and levodopa in the treatment of Parkinson's disease". Movement Disorders. 23 (S3): S497 – S508. doi:10.1002/mds.22028. PMID 18781671. https://doi.org/10.1002%2Fmds.22028

  334. Fahn 2008, p. S501. - Fahn S (2008). "The history of dopamine and levodopa in the treatment of Parkinson's disease". Movement Disorders. 23 (S3): S497 – S508. doi:10.1002/mds.22028. PMID 18781671. https://doi.org/10.1002%2Fmds.22028

  335. Coffey 2009, pp. 209–210. - Coffey RJ (2009). "Deep brain stimulation devices: a brief technical history and review". Artificial Organs. 33 (3): 208–220. doi:10.1111/j.1525-1594.2008.00620.x. PMID 18684199. https://doi.org/10.1111%2Fj.1525-1594.2008.00620.x

  336. Prenger et al. 2020, p. 2. - Prenger MT, Madray R, Van Hedger K, Anello M, MacDonald PA (2020). "Social Symptoms of Parkinson's Disease". Parkinson's Disease. 2020: 8846544. doi:10.1155/2020/8846544. PMC 7790585. PMID 33489081. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790585

  337. Crooks et al. 2023, p. 2,7. - Crooks S, Carter G, Wilson CB, Wynne L, Stark P, Doumas M, et al. (2023). "Exploring public perceptions and awareness of Parkinson's disease: A scoping review". PLOS ONE. 18 (9): e0291357. Bibcode:2023PLoSO..1891357C. doi:10.1371/journal.pone.0291357. PMC 10503766. PMID 37713383. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503766

  338. Crooks et al. 2023, p. 2. - Crooks S, Carter G, Wilson CB, Wynne L, Stark P, Doumas M, et al. (2023). "Exploring public perceptions and awareness of Parkinson's disease: A scoping review". PLOS ONE. 18 (9): e0291357. Bibcode:2023PLoSO..1891357C. doi:10.1371/journal.pone.0291357. PMC 10503766. PMID 37713383. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503766

  339. Schiess et al. 2022, p. 931. - Schiess N, Cataldi R, Okun MS, Fothergill-Misbah N, Dorsey ER, Bloem BR, et al. (September 2022). "Six Action Steps to Address Global Disparities in Parkinson Disease: A World Health Organization Priority" (PDF). JAMA. 79 (9): 929–936. doi:10.1001/jamaneurol.2022.1783. hdl:10576/33335. PMID 35816299. https://repository.ubn.ru.nl//bitstream/handle/2066/282658/282658.pdf

  340. Schiess et al. 2022, p. 931. - Schiess N, Cataldi R, Okun MS, Fothergill-Misbah N, Dorsey ER, Bloem BR, et al. (September 2022). "Six Action Steps to Address Global Disparities in Parkinson Disease: A World Health Organization Priority" (PDF). JAMA. 79 (9): 929–936. doi:10.1001/jamaneurol.2022.1783. hdl:10576/33335. PMID 35816299. https://repository.ubn.ru.nl//bitstream/handle/2066/282658/282658.pdf

  341. Yang et al. 2020, p. 1. - Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, et al. (July 2020). "Current and projected future economic burden of Parkinson's disease in the U.S." npj Parkinson's Disease. 6: 15. doi:10.1038/s41531-020-0117-1. PMC 7347582. PMID 32665974. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347582

  342. Schiess et al. 2022, p. 933. - Schiess N, Cataldi R, Okun MS, Fothergill-Misbah N, Dorsey ER, Bloem BR, et al. (September 2022). "Six Action Steps to Address Global Disparities in Parkinson Disease: A World Health Organization Priority" (PDF). JAMA. 79 (9): 929–936. doi:10.1001/jamaneurol.2022.1783. hdl:10576/33335. PMID 35816299. https://repository.ubn.ru.nl//bitstream/handle/2066/282658/282658.pdf

  343. Yang et al. 2020, p. 1. - Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, et al. (July 2020). "Current and projected future economic burden of Parkinson's disease in the U.S." npj Parkinson's Disease. 6: 15. doi:10.1038/s41531-020-0117-1. PMC 7347582. PMID 32665974. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347582

  344. Schiess et al. 2022, p. 929. - Schiess N, Cataldi R, Okun MS, Fothergill-Misbah N, Dorsey ER, Bloem BR, et al. (September 2022). "Six Action Steps to Address Global Disparities in Parkinson Disease: A World Health Organization Priority" (PDF). JAMA. 79 (9): 929–936. doi:10.1001/jamaneurol.2022.1783. hdl:10576/33335. PMID 35816299. https://repository.ubn.ru.nl//bitstream/handle/2066/282658/282658.pdf

  345. Yang et al. 2020, p. 1. - Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, et al. (July 2020). "Current and projected future economic burden of Parkinson's disease in the U.S." npj Parkinson's Disease. 6: 15. doi:10.1038/s41531-020-0117-1. PMC 7347582. PMID 32665974. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347582

  346. Schiess et al. 2022, p. 930. - Schiess N, Cataldi R, Okun MS, Fothergill-Misbah N, Dorsey ER, Bloem BR, et al. (September 2022). "Six Action Steps to Address Global Disparities in Parkinson Disease: A World Health Organization Priority" (PDF). JAMA. 79 (9): 929–936. doi:10.1001/jamaneurol.2022.1783. hdl:10576/33335. PMID 35816299. https://repository.ubn.ru.nl//bitstream/handle/2066/282658/282658.pdf

  347. Schiess et al. 2022, p. 933. - Schiess N, Cataldi R, Okun MS, Fothergill-Misbah N, Dorsey ER, Bloem BR, et al. (September 2022). "Six Action Steps to Address Global Disparities in Parkinson Disease: A World Health Organization Priority" (PDF). JAMA. 79 (9): 929–936. doi:10.1001/jamaneurol.2022.1783. hdl:10576/33335. PMID 35816299. https://repository.ubn.ru.nl//bitstream/handle/2066/282658/282658.pdf

  348. Lees 2007, pp. S327–S334. - Lees AJ (2007). "Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday". Movement Disorders. 22 (S17): S327 – S334. doi:10.1002/mds.21684. PMID 18175393. https://doi.org/10.1002%2Fmds.21684

  349. GlaxoSmithKline. - "Parkinson's – 'the shaking palsy'". GlaxoSmithKline. 1 April 2009. Archived from the original on 14 May 2011. https://web.archive.org/web/20110514151652/http://www.gsk.com/infocus/parkinsons.htm

  350. National Parkinson Foundation. - "National Parkinson Foundation – Mission". Archived from the original on 21 December 2010. Retrieved 28 March 2011. https://web.archive.org/web/20101221103201/http://parkinson.org/About-Us/Mission

  351. Time 1960. - "Education: Joy in Giving". Time. 18 January 1960. Archived from the original on 20 February 2011. Retrieved 2 April 2011. https://web.archive.org/web/20110220012106/http://www.time.com/time/magazine/article/0,9171,828597,00.html

  352. Parkinson's Disease Foundation. - "About PDF". Parkinson's Disease Foundation. Archived from the original on 15 May 2011. Retrieved 24 July 2016. https://web.archive.org/web/20110515204903/http://www.pdf.org/en/about_pdf

  353. American Parkinson Disease Association. - "American Parkinson Disease Association: Home". American Parkinson Disease Association. Archived from the original on 10 May 2012. Retrieved 9 August 2010. https://web.archive.org/web/20120510165933/http://www.apdaparkinson.org/userND/index.asp

  354. European Parkinson's Disease Association. - "About EPDA". European Parkinson's Disease Association. 2010. Archived from the original on 15 August 2010. Retrieved 9 August 2010. http://www.epda.eu.com/about-us

  355. Parkinson's Foundation. - "Notable Figures with Parkinson's". Parkinson's Foundation. Retrieved 22 November 2023. https://www.parkinson.org/understanding-parkinsons/statistics/notable-figures

  356. The Michael J. Fox Foundation for Parkinson's Research. - "Michael's Story". The Michael J. Fox Foundation for Parkinson's Research. Retrieved 7 May 2023. https://www.michaeljfox.org/michaels-story

  357. Davis 2007. - Davis P (3 May 2007). "Michael J. Fox". The Time 100. New York: Time. Archived from the original on 25 April 2011. Retrieved 2 April 2011. https://web.archive.org/web/20110425013526/http://www.time.com/time/specials/2007/time100/article/0,28804,1595326_1615754_1615882,00.html

  358. Brockes 2009. - Brockes E (11 April 2009). "'It's the gift that keeps on taking'". The Guardian. Archived from the original on 8 October 2013. Retrieved 25 October 2010. https://www.theguardian.com/lifeandstyle/2009/apr/11/michael-j-fox-parkinsons

  359. Burleson & Breen 2023. - Burleson N, Breen K (9 November 2023). "Michael J. Fox talks funding breakthrough research for Parkinson's disease". CBS News. Retrieved 23 November 2023. https://www.cbsnews.com/news/michael-j-fox-parkinsons-research-funded-by-his-foundation/

  360. Brey 2006. - Brey RL (April 2006). "Muhammad Ali's Message: Keep Moving Forward". Neurology Now. 2 (2): 8. doi:10.1097/01222928-200602020-00003 (inactive 4 February 2025). Archived from the original on 27 September 2011. Retrieved 22 August 2020. https://web.archive.org/web/20110927022505/http://www.aan.com/elibrary/neurologynow/?event=home.showArticle&id=ovid.com%3A%2Fbib%2Fovftdb%2F01222928-200602020-00003

  361. Matthews 2006, p. 10–23. - Matthews W (April 2006). "Ali's Fighting Spirit". Neurology Now. 2 (2): 10–23. doi:10.1097/01222928-200602020-00004 (inactive 23 January 2025). S2CID 181104230. https://www.brainandlife.org/articles/ali-s-fighting-spirit

  362. Macur 2008. - Macur J (26 March 2008). "For the Phinney Family, a Dream and a Challenge". The New York Times. Archived from the original on 6 November 2014. Retrieved 25 May 2013. About 1.5 million Americans have received a diagnosis of Parkinson's disease, but only 5 to 10 percent learn of it before age 40, according to the National Parkinson Foundation. Davis Phinney was among the few. https://www.nytimes.com/2008/03/26/sports/othersports/26cycling.html

  363. Davis Phinney Foundation. - "Who We Are". Davis Phinney Foundation. Archived from the original on 11 January 2012. Retrieved 18 January 2012. http://davisphinneyfoundation.org/dpf/who-we-are/

  364. Gupta et al. 2015, pp. 1447–1452. - Gupta R, Kim C, Agarwal N, Lieber B, Monaco EA (2015). "Understanding the Influence of Parkinson Disease on Adolf Hitler's Decision-Making during World War II". World Neurosurgery. 84 (5): 1447–1452. doi:10.1016/j.wneu.2015.06.014. PMID 26093359. https://doi.org/10.1016%2Fj.wneu.2015.06.014

  365. Boettcher et al. 2015, p. E8. - Boettcher L, Bonney P, Smitherman A, Sughrue M (2015). "Hitler's parkinsonism". Neurosurgical Focus. 39 (1): E8. doi:10.3171/2015.4.FOCUS1563. PMID 26126407. https://doi.org/10.3171%2F2015.4.FOCUS1563

  366. Lieberman 1996, p. 95. - Lieberman A (April 1996). "Adolf Hitler had post-encephalitic Parkinsonism". Parkinsonism & Related Disorders. 2 (2): 95–103. doi:10.1016/1353-8020(96)00005-3. PMID 18591024. https://doi.org/10.1016%2F1353-8020%2896%2900005-3

  367. Crotty & Schwarzschild 2020, p. 1. - Crotty GF, Schwarzschild MA (2020). "Chasing Protection in Parkinson's Disease: Does Exercise Reduce Risk and Progression?". Frontiers in Aging Neuroscience. 12: 186. doi:10.3389/fnagi.2020.00186. PMC 7318912. PMID 32636740. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318912

  368. Fabbri et al. 2024, p. 2. - Fabbri M, Rascol O, Foltynie T, Carroll C, Postuma RB, Porcher R, et al. (2024). "Advantages and Challenges of Platform Trials for Disease Modifying Therapies in Parkinson's Disease". Movement Disorders. 39 (9): 1468–1477. doi:10.1002/mds.29899. PMID 38925541. https://doi.org/10.1002%2Fmds.29899

  369. Poewe et al. 2017. - Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. (March 2017). "Parkinson disease". Nature Reviews. Disease Primers. 3 (1): 17013. doi:10.1038/nrdp.2017.13. PMID 28332488. S2CID 11605091. https://doi.org/10.1038%2Fnrdp.2017.13

  370. Pardo-Moreno et al. 2023, p. 1. - Pardo-Moreno T, García-Morales V, Suleiman-Martos S, Rivas-Domínguez A, Mohamed-Mohamed H, Ramos-Rodríguez JJ, et al. (February 2023). "Current Treatments and New, Tentative Therapies for Parkinson's Disease". Pharmaceutics. 15 (3): 770. doi:10.3390/pharmaceutics15030770. hdl:10481/81647. PMC 10051786. PMID 36986631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051786

  371. Li & Le 2020, p. 183. - Li T, Le W (February 2020). "Biomarkers for Parkinson's Disease: How Good Are They?". Neuroscience Bulletin. 36 (2): 183–194. doi:10.1007/s12264-019-00433-1. PMC 6977795. PMID 31646434. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977795

  372. Heinzel et al. 2019. - Heinzel S, Berg D, Gasser T, Chen H, Yao C, Postuma RB (October 2019). "Update of the MDS research criteria for prodromal Parkinson's disease". Movement Disorders. 34 (10): 1464–1470. doi:10.1002/mds.27802. PMID 31412427. S2CID 199663713. https://doi.org/10.1002%2Fmds.27802

  373. Pardo-Moreno et al. 2023, pp. 12–13. - Pardo-Moreno T, García-Morales V, Suleiman-Martos S, Rivas-Domínguez A, Mohamed-Mohamed H, Ramos-Rodríguez JJ, et al. (February 2023). "Current Treatments and New, Tentative Therapies for Parkinson's Disease". Pharmaceutics. 15 (3): 770. doi:10.3390/pharmaceutics15030770. hdl:10481/81647. PMC 10051786. PMID 36986631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051786

  374. Alfaidi, Barker & Kuan 2024, p. 1. - Alfaidi M, Barker RA, Kuan W (2024). "An update on immune-based alpha-synuclein trials in Parkinson's disease". Journal of Neurology. 272 (1): 21. doi:10.1007/s00415-024-12770-x. PMC 11638298. PMID 39666171. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638298

  375. Jasutkar, Oh & Mouradian 2022, p. 208. - Jasutkar HG, Oh SE, Mouradian MM (January 2022). "Therapeutics in the Pipeline Targeting α-Synuclein for Parkinson's Disease". Pharmacological Reviews. 74 (1): 207–237. doi:10.1124/pharmrev.120.000133. PMC 11034868. PMID 35017177. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034868

  376. Alfaidi, Barker & Kuan 2024, p. 1. - Alfaidi M, Barker RA, Kuan W (2024). "An update on immune-based alpha-synuclein trials in Parkinson's disease". Journal of Neurology. 272 (1): 21. doi:10.1007/s00415-024-12770-x. PMC 11638298. PMID 39666171. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638298

  377. Pardo-Moreno et al. 2023, pp. 10–11. - Pardo-Moreno T, García-Morales V, Suleiman-Martos S, Rivas-Domínguez A, Mohamed-Mohamed H, Ramos-Rodríguez JJ, et al. (February 2023). "Current Treatments and New, Tentative Therapies for Parkinson's Disease". Pharmaceutics. 15 (3): 770. doi:10.3390/pharmaceutics15030770. hdl:10481/81647. PMC 10051786. PMID 36986631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051786

  378. Pardo-Moreno et al. 2023, pp. 12–13. - Pardo-Moreno T, García-Morales V, Suleiman-Martos S, Rivas-Domínguez A, Mohamed-Mohamed H, Ramos-Rodríguez JJ, et al. (February 2023). "Current Treatments and New, Tentative Therapies for Parkinson's Disease". Pharmaceutics. 15 (3): 770. doi:10.3390/pharmaceutics15030770. hdl:10481/81647. PMC 10051786. PMID 36986631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051786

  379. Pardo-Moreno et al. 2023, p. 13. - Pardo-Moreno T, García-Morales V, Suleiman-Martos S, Rivas-Domínguez A, Mohamed-Mohamed H, Ramos-Rodríguez JJ, et al. (February 2023). "Current Treatments and New, Tentative Therapies for Parkinson's Disease". Pharmaceutics. 15 (3): 770. doi:10.3390/pharmaceutics15030770. hdl:10481/81647. PMC 10051786. PMID 36986631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051786

  380. Pardo-Moreno et al. 2023, p. 10. - Pardo-Moreno T, García-Morales V, Suleiman-Martos S, Rivas-Domínguez A, Mohamed-Mohamed H, Ramos-Rodríguez JJ, et al. (February 2023). "Current Treatments and New, Tentative Therapies for Parkinson's Disease". Pharmaceutics. 15 (3): 770. doi:10.3390/pharmaceutics15030770. hdl:10481/81647. PMC 10051786. PMID 36986631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051786

  381. Pardo-Moreno et al. 2023, p. 10. - Pardo-Moreno T, García-Morales V, Suleiman-Martos S, Rivas-Domínguez A, Mohamed-Mohamed H, Ramos-Rodríguez JJ, et al. (February 2023). "Current Treatments and New, Tentative Therapies for Parkinson's Disease". Pharmaceutics. 15 (3): 770. doi:10.3390/pharmaceutics15030770. hdl:10481/81647. PMC 10051786. PMID 36986631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051786

  382. Parmar, Grealish & Henchcliffe 2020, pp. 103. - Parmar M, Grealish S, Henchcliffe C (February 2020). "The future of stem cell therapies for Parkinson disease". Nature Reviews. Neuroscience. 21 (2): 103–115. doi:10.1038/s41583-019-0257-7. PMID 31907406. https://doi.org/10.1038%2Fs41583-019-0257-7

  383. Parmar, Grealish & Henchcliffe 2020, pp. 103–104. - Parmar M, Grealish S, Henchcliffe C (February 2020). "The future of stem cell therapies for Parkinson disease". Nature Reviews. Neuroscience. 21 (2): 103–115. doi:10.1038/s41583-019-0257-7. PMID 31907406. https://doi.org/10.1038%2Fs41583-019-0257-7

  384. Parmar, Grealish & Henchcliffe 2020, pp. 106. - Parmar M, Grealish S, Henchcliffe C (February 2020). "The future of stem cell therapies for Parkinson disease". Nature Reviews. Neuroscience. 21 (2): 103–115. doi:10.1038/s41583-019-0257-7. PMID 31907406. https://doi.org/10.1038%2Fs41583-019-0257-7

  385. Henchcliffe & Parmar 2018, pp. 134. - Henchcliffe C, Parmar M (2018). "Repairing the Brain: Cell Replacement Using Stem Cell-Based Technologies". Journal of Parkinson's Disease. 8 (s1): S131 – S137. doi:10.3233/JPD-181488. PMC 6311366. PMID 30584166. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311366

  386. Parmar, Grealish & Henchcliffe 2020, pp. 106, 108. - Parmar M, Grealish S, Henchcliffe C (February 2020). "The future of stem cell therapies for Parkinson disease". Nature Reviews. Neuroscience. 21 (2): 103–115. doi:10.1038/s41583-019-0257-7. PMID 31907406. https://doi.org/10.1038%2Fs41583-019-0257-7

  387. Schweitzer et al. 2020, p. 1926. - Schweitzer JS, Song B, Herrington TM, Park TY, Lee N, Ko S, et al. (May 2020). "Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson's Disease". The New England Journal of Medicine. 382 (20): 1926–1932. doi:10.1056/NEJMoa1915872. PMC 7288982. PMID 32402162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288982

  388. Parmar, Grealish & Henchcliffe 2020, pp. 105, 109. - Parmar M, Grealish S, Henchcliffe C (February 2020). "The future of stem cell therapies for Parkinson disease". Nature Reviews. Neuroscience. 21 (2): 103–115. doi:10.1038/s41583-019-0257-7. PMID 31907406. https://doi.org/10.1038%2Fs41583-019-0257-7

  389. Henchcliffe & Parmar 2018, pp. 132. - Henchcliffe C, Parmar M (2018). "Repairing the Brain: Cell Replacement Using Stem Cell-Based Technologies". Journal of Parkinson's Disease. 8 (s1): S131 – S137. doi:10.3233/JPD-181488. PMC 6311366. PMID 30584166. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311366

  390. Van Laar et al. 2021, p. S174. - Van Laar AD, Van Laar VS, San Sebastian W, Merola A, Elder JB, Lonser RR, et al. (2021). "An Update on Gene Therapy Approaches for Parkinson's Disease: Restoration of Dopaminergic Function". Journal of Parkinson's Disease. 11 (S2): S173 – S182. doi:10.3233/JPD-212724. PMC 8543243. PMID 34366374. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543243

  391. Hitti et al. 2019, p. 16. - Hitti FL, Yang AI, Gonzalez-Alegre P, Baltuch GH (September 2019). "Human gene therapy approaches for the treatment of Parkinson's disease: An overview of current and completed clinical trials". Parkinsonism & Related Disorders. 66: 16–24. doi:10.1016/j.parkreldis.2019.07.018. PMID 31324556. S2CID 198132349. https://doi.org/10.1016%2Fj.parkreldis.2019.07.018

  392. Hitti et al. 2019, pp. 16–17. - Hitti FL, Yang AI, Gonzalez-Alegre P, Baltuch GH (September 2019). "Human gene therapy approaches for the treatment of Parkinson's disease: An overview of current and completed clinical trials". Parkinsonism & Related Disorders. 66: 16–24. doi:10.1016/j.parkreldis.2019.07.018. PMID 31324556. S2CID 198132349. https://doi.org/10.1016%2Fj.parkreldis.2019.07.018

  393. Van Laar et al. 2021, p. S174, S176. - Van Laar AD, Van Laar VS, San Sebastian W, Merola A, Elder JB, Lonser RR, et al. (2021). "An Update on Gene Therapy Approaches for Parkinson's Disease: Restoration of Dopaminergic Function". Journal of Parkinson's Disease. 11 (S2): S173 – S182. doi:10.3233/JPD-212724. PMC 8543243. PMID 34366374. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543243

  394. Hitti et al. 2019, p. 21. - Hitti FL, Yang AI, Gonzalez-Alegre P, Baltuch GH (September 2019). "Human gene therapy approaches for the treatment of Parkinson's disease: An overview of current and completed clinical trials". Parkinsonism & Related Disorders. 66: 16–24. doi:10.1016/j.parkreldis.2019.07.018. PMID 31324556. S2CID 198132349. https://doi.org/10.1016%2Fj.parkreldis.2019.07.018

  395. Shaheen et al. 2024, pp. 5–6. - Shaheen N, Shaheen A, Osama M, Nashwan AJ, Bharmauria V, Flouty O (October 2024). "MicroRNAs regulation in Parkinson's disease, and their potential role as diagnostic and therapeutic targets". npj Parkinson's Disease Volume. 10 (3): 186. doi:10.1038/s41531-024-00791-2. PMC 11455891. PMID 39369002. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455891