Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Nonlinear eigenproblem
Mathematical equation involving a matrix-valued function that is singular at the eigenvalue.

In mathematics, a nonlinear eigenproblem, sometimes nonlinear eigenvalue problem, is a generalization of the (ordinary) eigenvalue problem to equations that depend nonlinearly on the eigenvalue. Specifically, it refers to equations of the form

M ( λ ) x = 0 , {\displaystyle M(\lambda )x=0,}

where x ≠ 0 {\displaystyle x\neq 0} is a vector, and M {\displaystyle M} is a matrix-valued function of the number λ {\displaystyle \lambda } . The number λ {\displaystyle \lambda } is known as the (nonlinear) eigenvalue, the vector x {\displaystyle x} as the (nonlinear) eigenvector, and ( λ , x ) {\displaystyle (\lambda ,x)} as the eigenpair. The matrix M ( λ ) {\displaystyle M(\lambda )} is singular at an eigenvalue λ {\displaystyle \lambda } .

We don't have any images related to Nonlinear eigenproblem yet.
We don't have any YouTube videos related to Nonlinear eigenproblem yet.
We don't have any PDF documents related to Nonlinear eigenproblem yet.
We don't have any Books related to Nonlinear eigenproblem yet.
We don't have any archived web articles related to Nonlinear eigenproblem yet.

Definition

In the discipline of numerical linear algebra the following definition is typically used.1234

Let Ω ⊆ C {\displaystyle \Omega \subseteq \mathbb {C} } , and let M : Ω → C n × n {\displaystyle M:\Omega \rightarrow \mathbb {C} ^{n\times n}} be a function that maps scalars to matrices. A scalar λ ∈ C {\displaystyle \lambda \in \mathbb {C} } is called an eigenvalue, and a nonzero vector x ∈ C n {\displaystyle x\in \mathbb {C} ^{n}} is called a right eigevector if M ( λ ) x = 0 {\displaystyle M(\lambda )x=0} . Moreover, a nonzero vector y ∈ C n {\displaystyle y\in \mathbb {C} ^{n}} is called a left eigevector if y H M ( λ ) = 0 H {\displaystyle y^{H}M(\lambda )=0^{H}} , where the superscript H {\displaystyle ^{H}} denotes the Hermitian transpose. The definition of the eigenvalue is equivalent to det ( M ( λ ) ) = 0 {\displaystyle \det(M(\lambda ))=0} , where det ( ) {\displaystyle \det()} denotes the determinant.5

The function M {\displaystyle M} is usually required to be a holomorphic function of λ {\displaystyle \lambda } (in some domain Ω {\displaystyle \Omega } ).

In general, M ( λ ) {\displaystyle M(\lambda )} could be a linear map, but most commonly it is a finite-dimensional, usually square, matrix.

Definition: The problem is said to be regular if there exists a z ∈ Ω {\displaystyle z\in \Omega } such that det ( M ( z ) ) ≠ 0 {\displaystyle \det(M(z))\neq 0} . Otherwise it is said to be singular.67

Definition: An eigenvalue λ {\displaystyle \lambda } is said to have algebraic multiplicity k {\displaystyle k} if k {\displaystyle k} is the smallest integer such that the k {\displaystyle k} th derivative of det ( M ( z ) ) {\displaystyle \det(M(z))} with respect to z {\displaystyle z} , in λ {\displaystyle \lambda } is nonzero. In formulas that d k det ( M ( z ) ) d z k | z = λ ≠ 0 {\displaystyle \left.{\frac {d^{k}\det(M(z))}{dz^{k}}}\right|_{z=\lambda }\neq 0} but d ℓ det ( M ( z ) ) d z ℓ | z = λ = 0 {\displaystyle \left.{\frac {d^{\ell }\det(M(z))}{dz^{\ell }}}\right|_{z=\lambda }=0} for ℓ = 0 , 1 , 2 , … , k − 1 {\displaystyle \ell =0,1,2,\dots ,k-1} .89

Definition: The geometric multiplicity of an eigenvalue λ {\displaystyle \lambda } is the dimension of the nullspace of M ( λ ) {\displaystyle M(\lambda )} .1011

Special cases

The following examples are special cases of the nonlinear eigenproblem.

  • The (ordinary) eigenvalue problem: M ( λ ) = A − λ I . {\displaystyle M(\lambda )=A-\lambda I.}
  • The generalized eigenvalue problem: M ( λ ) = A − λ B . {\displaystyle M(\lambda )=A-\lambda B.}
  • The quadratic eigenvalue problem: M ( λ ) = A 0 + λ A 1 + λ 2 A 2 . {\displaystyle M(\lambda )=A_{0}+\lambda A_{1}+\lambda ^{2}A_{2}.}
  • The polynomial eigenvalue problem: M ( λ ) = ∑ i = 0 m λ i A i . {\displaystyle M(\lambda )=\sum _{i=0}^{m}\lambda ^{i}A_{i}.}
  • The rational eigenvalue problem: M ( λ ) = ∑ i = 0 m 1 A i λ i + ∑ i = 1 m 2 B i r i ( λ ) , {\displaystyle M(\lambda )=\sum _{i=0}^{m_{1}}A_{i}\lambda ^{i}+\sum _{i=1}^{m_{2}}B_{i}r_{i}(\lambda ),} where r i ( λ ) {\displaystyle r_{i}(\lambda )} are rational functions.
  • The delay eigenvalue problem: M ( λ ) = − I λ + A 0 + ∑ i = 1 m A i e − τ i λ , {\displaystyle M(\lambda )=-I\lambda +A_{0}+\sum _{i=1}^{m}A_{i}e^{-\tau _{i}\lambda },} where τ 1 , τ 2 , … , τ m {\displaystyle \tau _{1},\tau _{2},\dots ,\tau _{m}} are given scalars, known as delays.

Jordan chains

Definition: Let ( λ 0 , x 0 ) {\displaystyle (\lambda _{0},x_{0})} be an eigenpair. A tuple of vectors ( x 0 , x 1 , … , x r − 1 ) ∈ C n × C n × ⋯ × C n {\displaystyle (x_{0},x_{1},\dots ,x_{r-1})\in \mathbb {C} ^{n}\times \mathbb {C} ^{n}\times \dots \times \mathbb {C} ^{n}} is called a Jordan chain if ∑ k = 0 ℓ M ( k ) ( λ 0 ) x ℓ − k = 0 , {\displaystyle \sum _{k=0}^{\ell }M^{(k)}(\lambda _{0})x_{\ell -k}=0,} for ℓ = 0 , 1 , … , r − 1 {\displaystyle \ell =0,1,\dots ,r-1} , where M ( k ) ( λ 0 ) {\displaystyle M^{(k)}(\lambda _{0})} denotes the k {\displaystyle k} th derivative of M {\displaystyle M} with respect to λ {\displaystyle \lambda } and evaluated in λ = λ 0 {\displaystyle \lambda =\lambda _{0}} . The vectors x 0 , x 1 , … , x r − 1 {\displaystyle x_{0},x_{1},\dots ,x_{r-1}} are called generalized eigenvectors, r {\displaystyle r} is called the length of the Jordan chain, and the maximal length a Jordan chain starting with x 0 {\displaystyle x_{0}} is called the rank of x 0 {\displaystyle x_{0}} .1213

Theorem:14 A tuple of vectors ( x 0 , x 1 , … , x r − 1 ) ∈ C n × C n × ⋯ × C n {\displaystyle (x_{0},x_{1},\dots ,x_{r-1})\in \mathbb {C} ^{n}\times \mathbb {C} ^{n}\times \dots \times \mathbb {C} ^{n}} is a Jordan chain if and only if the function M ( λ ) χ ℓ ( λ ) {\displaystyle M(\lambda )\chi _{\ell }(\lambda )} has a root in λ = λ 0 {\displaystyle \lambda =\lambda _{0}} and the root is of multiplicity at least ℓ {\displaystyle \ell } for ℓ = 0 , 1 , … , r − 1 {\displaystyle \ell =0,1,\dots ,r-1} , where the vector valued function χ ℓ ( λ ) {\displaystyle \chi _{\ell }(\lambda )} is defined as χ ℓ ( λ ) = ∑ k = 0 ℓ x k ( λ − λ 0 ) k . {\displaystyle \chi _{\ell }(\lambda )=\sum _{k=0}^{\ell }x_{k}(\lambda -\lambda _{0})^{k}.}

Mathematical software

  • The eigenvalue solver package SLEPc contains C-implementations of many numerical methods for nonlinear eigenvalue problems.15
  • The NLEVP collection of nonlinear eigenvalue problems is a MATLAB package containing many nonlinear eigenvalue problems with various properties. 16
  • The FEAST eigenvalue solver is a software package for standard eigenvalue problems as well as nonlinear eigenvalue problems, designed from density-matrix representation in quantum mechanics combined with contour integration techniques.17
  • The MATLAB toolbox NLEIGS contains an implementation of fully rational Krylov with a dynamically constructed rational interpolant.18
  • The MATLAB toolbox CORK contains an implementation of the compact rational Krylov algorithm that exploits the Kronecker structure of the linearization pencils.19
  • The MATLAB toolbox AAA-EIGS contains an implementation of CORK with rational approximation by set-valued AAA.20
  • The MATLAB toolbox RKToolbox (Rational Krylov Toolbox) contains implementations of the rational Krylov method for nonlinear eigenvalue problems as well as features for rational approximation. 21
  • The Julia package NEP-PACK contains many implementations of various numerical methods for nonlinear eigenvalue problems, as well as many benchmark problems.22
  • The review paper of Güttel & Tisseur23 contains MATLAB code snippets implementing basic Newton-type methods and contour integration methods for nonlinear eigenproblems.

Eigenvector nonlinearity

Eigenvector nonlinearities is a related, but different, form of nonlinearity that is sometimes studied. In this case the function M {\displaystyle M} maps vectors to matrices, or sometimes hermitian matrices to hermitian matrices.2425

Further reading

References

  1. Güttel, Stefan; Tisseur, Françoise (2017). "The nonlinear eigenvalue problem" (PDF). Acta Numerica. 26: 1–94. doi:10.1017/S0962492917000034. ISSN 0962-4929. S2CID 46749298. /wiki/Fran%C3%A7oise_Tisseur

  2. Ruhe, Axel (1973). "Algorithms for the Nonlinear Eigenvalue Problem". SIAM Journal on Numerical Analysis. 10 (4): 674–689. Bibcode:1973SJNA...10..674R. doi:10.1137/0710059. ISSN 0036-1429. JSTOR 2156278. https://epubs.siam.org/doi/10.1137/0710059

  3. Mehrmann, Volker; Voss, Heinrich (2004). "Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods". GAMM-Mitteilungen. 27 (2): 121–152. doi:10.1002/gamm.201490007. ISSN 1522-2608. S2CID 14493456. /wiki/Volker_Mehrmann

  4. Voss, Heinrich (2014). "Nonlinear eigenvalue problems" (PDF). In Hogben, Leslie (ed.). Handbook of Linear Algebra (2 ed.). Boca Raton, FL: Chapman and Hall/CRC. ISBN 9781466507289. 9781466507289

  5. Güttel, Stefan; Tisseur, Françoise (2017). "The nonlinear eigenvalue problem" (PDF). Acta Numerica. 26: 1–94. doi:10.1017/S0962492917000034. ISSN 0962-4929. S2CID 46749298. /wiki/Fran%C3%A7oise_Tisseur

  6. Güttel, Stefan; Tisseur, Françoise (2017). "The nonlinear eigenvalue problem" (PDF). Acta Numerica. 26: 1–94. doi:10.1017/S0962492917000034. ISSN 0962-4929. S2CID 46749298. /wiki/Fran%C3%A7oise_Tisseur

  7. Voss, Heinrich (2014). "Nonlinear eigenvalue problems" (PDF). In Hogben, Leslie (ed.). Handbook of Linear Algebra (2 ed.). Boca Raton, FL: Chapman and Hall/CRC. ISBN 9781466507289. 9781466507289

  8. Güttel, Stefan; Tisseur, Françoise (2017). "The nonlinear eigenvalue problem" (PDF). Acta Numerica. 26: 1–94. doi:10.1017/S0962492917000034. ISSN 0962-4929. S2CID 46749298. /wiki/Fran%C3%A7oise_Tisseur

  9. Voss, Heinrich (2014). "Nonlinear eigenvalue problems" (PDF). In Hogben, Leslie (ed.). Handbook of Linear Algebra (2 ed.). Boca Raton, FL: Chapman and Hall/CRC. ISBN 9781466507289. 9781466507289

  10. Güttel, Stefan; Tisseur, Françoise (2017). "The nonlinear eigenvalue problem" (PDF). Acta Numerica. 26: 1–94. doi:10.1017/S0962492917000034. ISSN 0962-4929. S2CID 46749298. /wiki/Fran%C3%A7oise_Tisseur

  11. Voss, Heinrich (2014). "Nonlinear eigenvalue problems" (PDF). In Hogben, Leslie (ed.). Handbook of Linear Algebra (2 ed.). Boca Raton, FL: Chapman and Hall/CRC. ISBN 9781466507289. 9781466507289

  12. Güttel, Stefan; Tisseur, Françoise (2017). "The nonlinear eigenvalue problem" (PDF). Acta Numerica. 26: 1–94. doi:10.1017/S0962492917000034. ISSN 0962-4929. S2CID 46749298. /wiki/Fran%C3%A7oise_Tisseur

  13. Voss, Heinrich (2014). "Nonlinear eigenvalue problems" (PDF). In Hogben, Leslie (ed.). Handbook of Linear Algebra (2 ed.). Boca Raton, FL: Chapman and Hall/CRC. ISBN 9781466507289. 9781466507289

  14. Güttel, Stefan; Tisseur, Françoise (2017). "The nonlinear eigenvalue problem" (PDF). Acta Numerica. 26: 1–94. doi:10.1017/S0962492917000034. ISSN 0962-4929. S2CID 46749298. /wiki/Fran%C3%A7oise_Tisseur

  15. Hernandez, Vicente; Roman, Jose E.; Vidal, Vicente (September 2005). "SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems". ACM Transactions on Mathematical Software. 31 (3): 351–362. doi:10.1145/1089014.1089019. S2CID 14305707. /wiki/Doi_(identifier)

  16. Betcke, Timo; Higham, Nicholas J.; Mehrmann, Volker; Schröder, Christian; Tisseur, Françoise (February 2013). "NLEVP: A Collection of Nonlinear Eigenvalue Problems". ACM Transactions on Mathematical Software. 39 (2): 1–28. doi:10.1145/2427023.2427024. S2CID 4271705. /wiki/Doi_(identifier)

  17. Polizzi, Eric (2020). "FEAST Eigenvalue Solver v4.0 User Guide". arXiv:2002.04807 [cs.MS]. /wiki/ArXiv_(identifier)

  18. Güttel, Stefan; Van Beeumen, Roel; Meerbergen, Karl; Michiels, Wim (1 January 2014). "NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems". SIAM Journal on Scientific Computing. 36 (6): A2842 – A2864. Bibcode:2014SJSC...36A2842G. doi:10.1137/130935045. /wiki/Bibcode_(identifier)

  19. Van Beeumen, Roel; Meerbergen, Karl; Michiels, Wim (2015). "Compact rational Krylov methods for nonlinear eigenvalue problems". SIAM Journal on Matrix Analysis and Applications. 36 (2): 820–838. doi:10.1137/140976698. S2CID 18893623. https://lirias.kuleuven.be/handle/123456789/490706

  20. Lietaert, Pieter; Meerbergen, Karl; Pérez, Javier; Vandereycken, Bart (13 April 2022). "Automatic rational approximation and linearization of nonlinear eigenvalue problems". IMA Journal of Numerical Analysis. 42 (2): 1087–1115. arXiv:1801.08622. doi:10.1093/imanum/draa098. /wiki/ArXiv_(identifier)

  21. Berljafa, Mario; Steven, Elsworth; Güttel, Stefan (15 July 2020). "An overview of the example collection". index.m. Retrieved 31 May 2022. http://guettel.com/rktoolbox/examples/html/index.html#5

  22. Jarlebring, Elias; Bennedich, Max; Mele, Giampaolo; Ringh, Emil; Upadhyaya, Parikshit (23 November 2018). "NEP-PACK: A Julia package for nonlinear eigenproblems". arXiv:1811.09592 [math.NA]. /wiki/ArXiv_(identifier)

  23. Güttel, Stefan; Tisseur, Françoise (2017). "The nonlinear eigenvalue problem" (PDF). Acta Numerica. 26: 1–94. doi:10.1017/S0962492917000034. ISSN 0962-4929. S2CID 46749298. /wiki/Fran%C3%A7oise_Tisseur

  24. Jarlebring, Elias; Kvaal, Simen; Michiels, Wim (2014-01-01). "An Inverse Iteration Method for Eigenvalue Problems with Eigenvector Nonlinearities". SIAM Journal on Scientific Computing. 36 (4): A1978 – A2001. arXiv:1212.0417. Bibcode:2014SJSC...36A1978J. doi:10.1137/130910014. ISSN 1064-8275. S2CID 16959079. https://epubs.siam.org/doi/10.1137/130910014

  25. Upadhyaya, Parikshit; Jarlebring, Elias; Rubensson, Emanuel H. (2021). "A density matrix approach to the convergence of the self-consistent field iteration". Numerical Algebra, Control & Optimization. 11 (1): 99. arXiv:1809.02183. doi:10.3934/naco.2020018. ISSN 2155-3297. https://doi.org/10.3934%2Fnaco.2020018