Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Nickel(II) hydroxide
Chemical compound

Nickel(II) hydroxide is the inorganic compound with the formula Ni(OH)2. It is a lime-green solid that dissolves with decomposition in ammonia and amines and is attacked by acids. It is electroactive, being converted to the Ni(III) oxy-hydroxide, leading to widespread applications in rechargeable batteries.

Related Image Collections Add Image
We don't have any YouTube videos related to Nickel(II) hydroxide yet.
We don't have any PDF documents related to Nickel(II) hydroxide yet.
We don't have any Books related to Nickel(II) hydroxide yet.
We don't have any archived web articles related to Nickel(II) hydroxide yet.

Properties

Nickel(II) hydroxide has two well-characterized polymorphs, α and β. The α structure consists of Ni(OH)2 layers with intercalated anions or water.23 The β form adopts a hexagonal close-packed structure of Ni2+ and OH− ions.45 In the presence of water, the α polymorph typically recrystallizes to the β form.67 In addition to the α and β polymorphs, several γ nickel hydroxides have been described, distinguished by crystal structures with much larger inter-sheet distances.8

The mineral form of Ni(OH)2, theophrastite, was first identified in the Vermion region of northern Greece, in 1980. It is found naturally as a translucent emerald-green crystal formed in thin sheets near the boundaries of idocrase or chlorite crystals.9 A nickel-magnesium variant of the mineral, (Ni,Mg)(OH)2 had been previously discovered at Hagdale on the island of Unst in Scotland.10

Reactions

Nickel(II) hydroxide is frequently used in electrical car batteries.11 Specifically, Ni(OH)2 readily oxidizes to nickel oxyhydroxide, NiOOH, in combination with a reduction reaction, often of a metal hydride (reaction 1 and 2).1213

Reaction 1 Ni(OH)2 + OH− → NiO(OH) + H2O + e−

Reaction 2 M + H2O + e− → MH + OH−

Net Reaction (in H2O) Ni(OH)2 + M → NiOOH + MH

Of the two polymorphs, α-Ni(OH)2 has a higher theoretical capacity and thus is generally considered to be preferable in electrochemical applications. However, it transforms to β-Ni(OH)2 in alkaline solutions, leading to many investigations into the possibility of stabilized α-Ni(OH)2 electrodes for industrial applications.14

Synthesis

The synthesis entails treating aqueous solutions of nickel(II) salts with potassium hydroxide. When the same reaction is conducted in the presence of bromine, the product is Ni3O2(OH)4.15

Toxicity

The Ni2+ ion is a carcinogen when inhaled.

See also

References

  1. Chen, J.; Bradhurst, D.H.; Dou, S.X.; Liu, H.K. (1999). "Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries". Journal of the Electrochemical Society. 146 (10): 3606–3612. Bibcode:1999JElS..146.3606C. doi:10.1149/1.1392522. S2CID 33058220. https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1118&context=engpapers

  2. Oliva, P.; Leonardi, J.; Laurent, J.F. (1982). "Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides". Journal of Power Sources. 8 (2): 229–255. Bibcode:1982JPS.....8..229O. doi:10.1016/0378-7753(82)80057-8. /wiki/Bibcode_(identifier)

  3. Jeevanandam, P.; Koltypin, Y.; Gedanken, A. (2001). "Synthesis of Nanosized α-Nickel Hydroxide by a Sonochemical Method". Nano Letters. 1 (5): 263–266. Bibcode:2001NanoL...1..263J. doi:10.1021/nl010003p. /wiki/Bibcode_(identifier)

  4. Oliva, P.; Leonardi, J.; Laurent, J.F. (1982). "Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides". Journal of Power Sources. 8 (2): 229–255. Bibcode:1982JPS.....8..229O. doi:10.1016/0378-7753(82)80057-8. /wiki/Bibcode_(identifier)

  5. Jeevanandam, P.; Koltypin, Y.; Gedanken, A. (2001). "Synthesis of Nanosized α-Nickel Hydroxide by a Sonochemical Method". Nano Letters. 1 (5): 263–266. Bibcode:2001NanoL...1..263J. doi:10.1021/nl010003p. /wiki/Bibcode_(identifier)

  6. Oliva, P.; Leonardi, J.; Laurent, J.F. (1982). "Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides". Journal of Power Sources. 8 (2): 229–255. Bibcode:1982JPS.....8..229O. doi:10.1016/0378-7753(82)80057-8. /wiki/Bibcode_(identifier)

  7. Shukla, A.K.; Kumar, V.G.; Munichandriah, N. (1994). "Stabilized α-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells". Journal of the Electrochemical Society. 141 (11): 2956–2959. Bibcode:1994JElS..141.2956V. doi:10.1149/1.2059264. /wiki/Bibcode_(identifier)

  8. Oliva, P.; Leonardi, J.; Laurent, J.F. (1982). "Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides". Journal of Power Sources. 8 (2): 229–255. Bibcode:1982JPS.....8..229O. doi:10.1016/0378-7753(82)80057-8. /wiki/Bibcode_(identifier)

  9. Marcopoulos, T.; Economou, M. (1980). "Theophrastite, Ni(OH)2, a new mineral from northern Greece" (PDF). American Mineralogist. 66: 1020–1021. http://www.minsocam.org/ammin/AM66/AM66_1020.pdf

  10. Livingston, A.; Bish, D. L. (1982). "On the new mineral theophrastite, a nickel hydroxide, from Unst, Shetland, Scotland" (PDF). Mineralogical Magazine. 46 (338): 1. Bibcode:1982MinM...46....1L. doi:10.1180/minmag.1982.046.338.01. S2CID 8381523. http://www.minersoc.org/pages/Archive-MM/Volume_46/46-338-1.pdf

  11. Jeevanandam, P.; Koltypin, Y.; Gedanken, A. (2001). "Synthesis of Nanosized α-Nickel Hydroxide by a Sonochemical Method". Nano Letters. 1 (5): 263–266. Bibcode:2001NanoL...1..263J. doi:10.1021/nl010003p. /wiki/Bibcode_(identifier)

  12. Ovshinsky, S.R.; Fetcenko, M.A.; Ross, J. (1993). "A nickel metal hydride battery for electric vehicles". Science. 260 (5105): 176–181. Bibcode:1993Sci...260..176O. doi:10.1126/science.260.5105.176. PMID 17807176. S2CID 9523468. /wiki/Bibcode_(identifier)

  13. Young, Kwo (2016). Nickel Metal Hydride Batteries. MDPI. doi:10.3390/books978-3-03842-303-4. ISBN 978-3-03842-303-4. 978-3-03842-303-4

  14. Shukla, A.K.; Kumar, V.G.; Munichandriah, N. (1994). "Stabilized α-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells". Journal of the Electrochemical Society. 141 (11): 2956–2959. Bibcode:1994JElS..141.2956V. doi:10.1149/1.2059264. /wiki/Bibcode_(identifier)

  15. O. Glemser (1963). "Nickel (II) Hydroxide and Nickel (II,III) Hydroxide". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2. New York: Academic Press. p. 1549-1551.