Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Matrix variate beta distribution

In statistics, the matrix variate beta distribution is a generalization of the beta distribution. If U {\displaystyle U} is a p × p {\displaystyle p\times p} positive definite matrix with a matrix variate beta distribution, and a , b > ( p − 1 ) / 2 {\displaystyle a,b>(p-1)/2} are real parameters, we write U ∼ B p ( a , b ) {\displaystyle U\sim B_{p}\left(a,b\right)} (sometimes B p I ( a , b ) {\displaystyle B_{p}^{I}\left(a,b\right)} ). The probability density function for U {\displaystyle U} is:

{ β p ( a , b ) } − 1 det ( U ) a − ( p + 1 ) / 2 det ( I p − U ) b − ( p + 1 ) / 2 . {\displaystyle \left\{\beta _{p}\left(a,b\right)\right\}^{-1}\det \left(U\right)^{a-(p+1)/2}\det \left(I_{p}-U\right)^{b-(p+1)/2}.}

Here β p ( a , b ) {\displaystyle \beta _{p}\left(a,b\right)} is the multivariate beta function:

β p ( a , b ) = Γ p ( a ) Γ p ( b ) Γ p ( a + b ) {\displaystyle \beta _{p}\left(a,b\right)={\frac {\Gamma _{p}\left(a\right)\Gamma _{p}\left(b\right)}{\Gamma _{p}\left(a+b\right)}}}

where Γ p ( a ) {\displaystyle \Gamma _{p}\left(a\right)} is the multivariate gamma function given by

Γ p ( a ) = π p ( p − 1 ) / 4 ∏ i = 1 p Γ ( a − ( i − 1 ) / 2 ) . {\displaystyle \Gamma _{p}\left(a\right)=\pi ^{p(p-1)/4}\prod _{i=1}^{p}\Gamma \left(a-(i-1)/2\right).}
We don't have any images related to Matrix variate beta distribution yet.
We don't have any YouTube videos related to Matrix variate beta distribution yet.
We don't have any PDF documents related to Matrix variate beta distribution yet.
We don't have any Books related to Matrix variate beta distribution yet.
We don't have any archived web articles related to Matrix variate beta distribution yet.

Theorems

Distribution of matrix inverse

If U ∼ B p ( a , b ) {\displaystyle U\sim B_{p}(a,b)} then the density of X = U − 1 {\displaystyle X=U^{-1}} is given by

1 β p ( a , b ) det ( X ) − ( a + b ) det ( X − I p ) b − ( p + 1 ) / 2 {\displaystyle {\frac {1}{\beta _{p}\left(a,b\right)}}\det(X)^{-(a+b)}\det \left(X-I_{p}\right)^{b-(p+1)/2}}

provided that X > I p {\displaystyle X>I_{p}} and a , b > ( p − 1 ) / 2 {\displaystyle a,b>(p-1)/2} .

Orthogonal transform

If U ∼ B p ( a , b ) {\displaystyle U\sim B_{p}(a,b)} and H {\displaystyle H} is a constant p × p {\displaystyle p\times p} orthogonal matrix, then H U H T ∼ B ( a , b ) . {\displaystyle HUH^{T}\sim B(a,b).}

Also, if H {\displaystyle H} is a random orthogonal p × p {\displaystyle p\times p} matrix which is independent of U {\displaystyle U} , then H U H T ∼ B p ( a , b ) {\displaystyle HUH^{T}\sim B_{p}(a,b)} , distributed independently of H {\displaystyle H} .

If A {\displaystyle A} is any constant q × p {\displaystyle q\times p} , q ≤ p {\displaystyle q\leq p} matrix of rank q {\displaystyle q} , then A U A T {\displaystyle AUA^{T}} has a generalized matrix variate beta distribution, specifically A U A T ∼ G B q ( a , b ; A A T , 0 ) {\displaystyle AUA^{T}\sim GB_{q}\left(a,b;AA^{T},0\right)} .

Partitioned matrix results

If U ∼ B p ( a , b ) {\displaystyle U\sim B_{p}\left(a,b\right)} and we partition U {\displaystyle U} as

U = [ U 11 U 12 U 21 U 22 ] {\displaystyle U={\begin{bmatrix}U_{11}&U_{12}\\U_{21}&U_{22}\end{bmatrix}}}

where U 11 {\displaystyle U_{11}} is p 1 × p 1 {\displaystyle p_{1}\times p_{1}} and U 22 {\displaystyle U_{22}} is p 2 × p 2 {\displaystyle p_{2}\times p_{2}} , then defining the Schur complement U 22 ⋅ 1 {\displaystyle U_{22\cdot 1}} as U 22 − U 21 U 11 − 1 U 12 {\displaystyle U_{22}-U_{21}{U_{11}}^{-1}U_{12}} gives the following results:

  • U 11 {\displaystyle U_{11}} is independent of U 22 ⋅ 1 {\displaystyle U_{22\cdot 1}}
  • U 11 ∼ B p 1 ( a , b ) {\displaystyle U_{11}\sim B_{p_{1}}\left(a,b\right)}
  • U 22 ⋅ 1 ∼ B p 2 ( a − p 1 / 2 , b ) {\displaystyle U_{22\cdot 1}\sim B_{p_{2}}\left(a-p_{1}/2,b\right)}
  • U 21 ∣ U 11 , U 22 ⋅ 1 {\displaystyle U_{21}\mid U_{11},U_{22\cdot 1}} has an inverted matrix variate t distribution, specifically U 21 ∣ U 11 , U 22 ⋅ 1 ∼ I T p 2 , p 1 ( 2 b − p + 1 , 0 , I p 2 − U 22 ⋅ 1 , U 11 ( I p 1 − U 11 ) ) . {\displaystyle U_{21}\mid U_{11},U_{22\cdot 1}\sim IT_{p_{2},p_{1}}\left(2b-p+1,0,I_{p_{2}}-U_{22\cdot 1},U_{11}(I_{p_{1}}-U_{11})\right).}

Wishart results

Mitra proves the following theorem which illustrates a useful property of the matrix variate beta distribution. Suppose S 1 , S 2 {\displaystyle S_{1},S_{2}} are independent Wishart p × p {\displaystyle p\times p} matrices S 1 ∼ W p ( n 1 , Σ ) , S 2 ∼ W p ( n 2 , Σ ) {\displaystyle S_{1}\sim W_{p}(n_{1},\Sigma ),S_{2}\sim W_{p}(n_{2},\Sigma )} . Assume that Σ {\displaystyle \Sigma } is positive definite and that n 1 + n 2 ≥ p {\displaystyle n_{1}+n_{2}\geq p} . If

U = S − 1 / 2 S 1 ( S − 1 / 2 ) T , {\displaystyle U=S^{-1/2}S_{1}\left(S^{-1/2}\right)^{T},}

where S = S 1 + S 2 {\displaystyle S=S_{1}+S_{2}} , then U {\displaystyle U} has a matrix variate beta distribution B p ( n 1 / 2 , n 2 / 2 ) {\displaystyle B_{p}(n_{1}/2,n_{2}/2)} . In particular, U {\displaystyle U} is independent of Σ {\displaystyle \Sigma } .

See also

  • Gupta, A. K.; Nagar, D. K. (1999). Matrix Variate Distributions. Chapman and Hall. ISBN 1-58488-046-5.
  • Khatri, C. G. (1992). "Matrix Beta Distribution with Applications to Linear Models, Testing, Skewness and Kurtosis". In Venugopal, N. (ed.). Contributions to Stochastics. John Wiley & Sons. pp. 26–34. ISBN 0-470-22050-3.
  • Mitra, S. K. (1970). "A density-free approach to matrix variate beta distribution". The Indian Journal of Statistics. Series A (1961–2002). 32 (1): 81–88. JSTOR 25049638.