Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of magnesium

Magnesium (12Mg) naturally occurs in three stable isotopes: 24Mg, 25Mg, and 26Mg. There are 19 radioisotopes that have been discovered, ranging from 18Mg to 40Mg (with the exception of 39Mg). The longest-lived radioisotope is 28Mg with a half-life of 20.915(9) h. The lighter isotopes mostly decay to isotopes of sodium while the heavier isotopes decay to isotopes of aluminium. The shortest-lived is proton-unbound 18Mg with a half-life of 4.0(3.4) zeptoseconds.

A precise measurement of the neutron-rich 40Mg in 2019 showed the unexpected difference in its nuclear structure, compared to the lighter neighboring isotopes.

Related Image Collections Add Image
We don't have any YouTube videos related to Isotopes of magnesium yet.
We don't have any PDF documents related to Isotopes of magnesium yet.
We don't have any Books related to Isotopes of magnesium yet.
We don't have any archived web articles related to Isotopes of magnesium yet.

List of isotopes

NuclideZNIsotopic mass (Da)34Half-life56Decaymode78Daughterisotope9Spin andparity101112Natural abundance (mole fraction)
Normal proportion13Range of variation
18Mg141264.0(3.4) zs2p16Ne0+
19Mg12719.034180(60)5(3) ps2p17Ne1/2−#
20Mg 12820.0187631(20)90.4(5) msβ+ (69.7(1.2)%)20Na0+
β+p (30.3(1.2)%)19Ne
21Mg 12921.0117058(8)120.0(4) msβ+ (79.8(2.1)%)21Na5/2+
β+p (20.1(2.1)%)20Ne
β+α (0.116(18)%)17F
β+pα (0.016(3)%)16O
22Mg 121021.99957060(17)3.8745(7) sβ+22Na0+
23Mg 121122.99412377(3)11.3039(32) sβ+23Na3/2+
24Mg 121223.985041689(14)Stable0+[0.7888, 0.7905]
25Mg 121324.98583697(5)Stable5/2+[0.09988, 0.10034]
26Mg15 121425.98259297(3)Stable0+[0.1096, 0.1109]
27Mg 121526.98434065(5)9.435(27) minβ−27Al1/2+
28Mg 121627.98387543(28)20.915(9) hβ−28Al0+
29Mg 121728.9886072(4)1.30(12) sβ−29Al3/2+
30Mg 121829.9904655(14)317(4) msβ− (> 99.94%)30Al0+
β−n (< 0.06%)29Al
31Mg 121930.996648(3)270(2) msβ− (93.8(1.9)%)31Al1/2+
β−n (6.2(1.9)%)30Al
32Mg 122031.999110(4)80.4(4) msβ− (94.5(5)%)32Al0+
β−n (5.5(5)%)31Al
33Mg 122133.0053279(29)92.0(1.2) msβ− (86(2)%)33Al3/2−
β−n (14(2)%)32Al
β−2n ?1631Al ?
34Mg 122234.008935(7)44.9(4) msβ− (> 78.9(7.0)%)34Al0+
β−n (21(7)%)33Al
β−2n (< 0.1%)32Al
35Mg 122335.01679(29)11.3(6) msβ−n (52(46)%)34Al(3/2−, 5/2−)
β− (48(46)%)35Al
β−2n ?1733Al ?
36Mg 122436.02188(74)3.9(1.3) msβ− (52(12)%)36Al0+
β−n (48(12)%)35Al
β−2n ?1834Al ?
37Mg 122537.03029(75)8(4) msβ− ?1937Al ?(3/2−)
β−n ?2036Al ?
β−2n ?2135Al ?
38Mg 122638.03658(54)#3.1(4 (stat), 2 (sys)) ms22β−n (81%)37Al0+
β− (9%)38Al
β−2n (9%)36Al
40Mg 122840.05319(54)#1# ms [> 170 ns]β− ?2340Al ?0+
β−n ?2439Al ?
β−2n ?2538Al ?
This table header & footer:
  • view

References

  1. glennroberts (2019-02-07). "New Measurements of Exotic Magnesium Suggest Surprising Shape-Shift". Berkeley Lab News Center. Retrieved 2023-09-10. https://newscenter.lbl.gov/2019/02/07/new-measurements-exotic-magnesium-suggest-surprising-shape-shift/

  2. "NP A Change in Structure for a S... | U.S. DOE Office of Science(SC)". science.osti.gov. 2019-08-01. Retrieved 2023-09-10. https://science.osti.gov/np/Highlights/2019/NP-2019-08-a

  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  4. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  5. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  6. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  7. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  8. Modes of decay: n:Neutron emissionp:Proton emission /wiki/Neutron_emission

  9. Bold symbol as daughter – Daughter product is stable.

  10. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  11. ( ) spin value – Indicates spin with weak assignment arguments.

  12. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  13. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  14. Jin, Y.; et al. (2021). "First observation of the four-proton unbound nucleus 18Mg". Physical Review Letters. 127 (262502): 262502. doi:10.1103/PhysRevLett.127.262502. OSTI 1837749. PMID 35029460. S2CID 245434485. /wiki/Physical_Review_Letters

  15. Used in radiodating events early in the Solar System's history /wiki/Radiodating#The_26Al_-_26Mg_chronometer

  16. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  17. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  18. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  19. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  20. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  21. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  22. Crawford, H. L.; Tripathi, V.; Allmond, J. M.; et al. (2022). "Crossing N = 28 toward the neutron drip line: first measurement of half-lives at FRIB". Physical Review Letters. 129 (212501): 212501. Bibcode:2022PhRvL.129u2501C. doi:10.1103/PhysRevLett.129.212501. PMID 36461950. S2CID 253600995. https://doi.org/10.1103%2FPhysRevLett.129.212501

  23. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  24. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  25. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.